Published online by Cambridge University Press: 24 November 2022
The chapter shows how the classical adaptive filtering algorithms can be adapted to distributed learning. In distributed learning, there is a set of adaptive filtering placed at nodes utilizing a local input and desired signals. These distributed networks of sensor nodes are located at distinct positions, which might improve the reliability and robustness of the parameter estimation in comparison to stand-alone adaptive filters. In distributed adaptive networks, parameter estimation might be obtained in a centralized form or a decentralized form. The centralized case processes the signals from all nodes of the network in a single fusion center, whereas in the decentralized case, processing is performed locally followed by a proper combination of partial estimates to result in a consensus parameter estimate. The main drawbacks of the centralized configuration are its data communication and computational costs, particularly in networks with a large number of nodes. On the other hand, the decentralized estimators require fewer data to feed the estimators and improve on robustness. The provides a discussion on equilibrium and consensus using arguments drawn from the pari-mutuel betting system. The expert opinion pool is the concept to induce improved estimation and data modeling, utilizing De-Groot’s algorithm and Markov chains as tools to probate equilibrium at consensus. It also introduces the distributed versions of the LMS and RLS adaptive filtering algorithms with emphasis on the decentralized parameter estimation case. This chapter also addresses how data broadcasting can be confined to a subset of nodes so that the overall network reduces the power consumption and bandwidth usage. Then, the chapter discusses a strategy to incorporate a data selection based on the SM adaptive filtering.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.