Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T14:10:29.045Z Has data issue: false hasContentIssue false

8 - Introduction to Optimization and Nonlinear Equations

Published online by Cambridge University Press:  21 March 2011

John F. Monahan
Affiliation:
North Carolina State University
Get access

Summary

Introduction

This chapter serves as an appetizer to the main course, maximum likelihood and nonlinear least squares. This is stated so boldly because many statistical problems of this type originate in estimation problems with maximum likelihood (or a similar criterion) as the goal. Our discussion begins with some of the background calculus and definitions. Next, the discussion turns to the safe and slow methods for optimization in a single variable, for which the statistical term “nonparametric” has the correct connotations. Next, the root-finding problem is addressed with the standard techniques, Newton and secant methods, followed by a brief presentation of convergence rates. After a short digression on stopping and condition, the multivariate problem is first approached with Newton's methods. After a second digression on numerical differentiation, quasi-Newton methods are discussed for optimization and nonlinear equations. Discussions of condition, scaling, and implementation conclude the chapter.

Some topics are not addressed in this discussion. One problem is the solution of polynomial equations, which arise rarely in an isolated form in statistics. Constrained optimization can often be avoided through reparameterization. The specialized problem of nonlinear regression is postponed until the next chapter, to be treated as a special topic in maximum likelihood.

Before attacking the problems at hand, it is wise to review some foundations to gain a clearer perspective of the situation. The cornerstone for everything are the first results of calculus, the primary tools in applied mathematics. These results will first be stated in their univariate form.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×