Published online by Cambridge University Press: 30 May 2024
Clusters can form and grow from a supersaturated vapor by successive reactions in which molecules (or “monomers”) of the vapor collide with the cluster and stick. In general, these reactions are reversible. The net forward rate of each of these reactions is termed the “nucleation current” of clusters of the size formed by the reaction. If a steady-state cluster size distribution exists, then the nucleation currents for clusters of all sizes are identical and can be equated to the steady-state (or “stationary”) nucleation rate. In that case, one can derive a closed-form expression for the nucleation rate in terms of a summation over clusters of all sizes up to some arbitrarily large size. The key terms in this summation are the forward rate constants and the Gibbs free energies of cluster formation from the monomer vapor. Evaluating the summation requires size-dependent values of these terms. For saturation ratios that lie within the condensation–evaporation regime, the free energy of cluster formation has a maximum at the critical cluster size. The nucleation theorem relates this size to the dependence of the nucleation rate on saturation ratio.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.