Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T02:14:44.654Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 December 2021

Joseph A. Ball
Affiliation:
Virginia Tech
Vladimir Bolotnikov
Affiliation:
College of William and Mary, Virginia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadias, L., Bollo, C., and Yakubovich, D., Operator inequalities, functional models and ergodicity, J. Math. Anal. Appl. 498(2) (2021), 124984, 39 pp.Google Scholar
Abbott, S., Understanding Analysis, Undergraduate Texts in Mathematics, Springer, New York, 2015.Google Scholar
Agler, J., The Arveson extension theorem and coanalytic models, Integral Equ. Oper. Theory 5(5) (1982), 608631.CrossRefGoogle Scholar
Agler, J., Hypercontractions and subnormality, J. Operator Theory 13(2) (1985), 203217.Google Scholar
J. Agler, On the representation of certain holomorphic functions defined on a polydisc, Topics in Operator Theory: Ernst D. Hellinger memorial volume (Eds. L. de Branges, I. Gohberg, and J. Rovnyak), Oper. Theory Adv. Appl. 48, Birkhäuser, Basel, 1990, pp. 47–66.Google Scholar
Agler, J. and McCarthy, J.E., Global holomorphic functions in several noncommuting variables, Canad. J. Math. 67(2) (2015), 241285.Google Scholar
Agler, J. and McCarthy, J.E., Pick interpolation for free holomorphic functions, Amer. J. Math. 137(6) (2015), 16851701.CrossRefGoogle Scholar
Agler, J. and McCarthy, J.E., Non-commutative functional calculus, J. Anal. Math. 137(1) (2019), 211229.CrossRefGoogle Scholar
Agler, J., McCarthy, J.E., and Young, N., Operator Analysis: Hilbert Space Methods in Complex Analysis, Cambridge Tracts in Mathematics 219, Cambridge University Press, 2020.Google Scholar
J. Agler, and Stankus, M., m-isometric transformations of Hilbert space I, Integral Equ. Oper. Theory 21(4) (1995), 383–429.Google Scholar
J. Agler, and Stankus, M., m-isometric transformations of Hilbert space II, Integral Equ. Oper. Theory 23(1) (1995), 1–48.Google Scholar
J. Agler, and Stankus, M., m-isometric transformations of Hilbert space III, Integral Equ. Oper. Theory 24(4) (1996), 379–421.Google Scholar
Aleman, A., Hartz, M., McCarthy, J.E., and Richter, S., Interpolation sequences in spaces with the complete Pick property, Int. Math. Res. Not. 12 (2019), 3832– 3854.Google Scholar
Aleman, A., Richter, S., and Sundberg, C., Beurling’s theorem for the Bergman space, Acta Math. 177(2) (1996), 275310.CrossRefGoogle Scholar
Alpay, D., Pinhas, A., and Vinnikov, V., de Branges spaces on compact Riemann surfaces and a Beurling-Lax type theorem, Adv. Math. 373 (2020), Art. 107315, 66 pp.Google Scholar
Ambrozie, C.-G., Englis, M., and Müller, V., Operator tuples and analytic models over general domains in Cn, J. Operator Theory 47(2) (2002), 287302.Google Scholar
Anderson, B.D.O. and Vongpanitlerd, S., Network Analysis and Synthesis: A Modern Systems Theory Approach, Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar
Arazy, J. and Engliš, M., Analytic models for commuting operator tuples on bounded symmetric domains, Trans. Amer. Math. Soc. 355(2) (2003), 837864.Google Scholar
Arveson, W., Subalgebras of C algebras III: multivariable operator theory, Acta Math. 181 (1998), 159228.Google Scholar
Athavale, A., Model theory on the unit ball in Cm, J. Operator Theory 27 (1992), 347358.Google Scholar
Ball, J.A., Linear systems, operator model theory and scattering: multivariable generalizations, Operator Theory and Its Applications (Eds. A.G. Ramm, P.N. Shivakumar, and A.V. Strauss), Fields Inst. Commun. 25, American Mathematical Society, Providence, RI, 2000, pp. 151178.Google Scholar
Ball, J.A. and Bolotnikov, V., Canonical transfer-function realization for Schur multipliers on the Drury-Arveson space and models for commuting row contractions, Indiana Univ. Math. J. 61(2) (2012), 665716.Google Scholar
Ball, J.A. and Bolotnikov, V., Weighted Bergman spaces: shift-invariant subspaces and input/state/output linear systems, Integral Equ. Oper. Theory 76(1) (2013), 301356.CrossRefGoogle Scholar
Ball, J.A. and Bolotnikov, V., Weighted Hardy spaces: shift invariant and coinvariant subspaces, linear systems and operator model theory, Acta Sci. Math. (Szeged) 79 (2013), 623686.Google Scholar
Ball, J.A. and Bolotnikov, V., A Beurling type theorem in weighted Bergman spaces, C. R. Math. Acad. Sci. Paris 351(11–12) (2013), 433436.CrossRefGoogle Scholar
Ball, J.A. and Bolotnikov, V., On the expansive property of inner functions in weighted Hardy spaces, Complex Analysis and Dynamical Systems (Eds. M.L. Agranovsky et al.), Contemp. Math. 667, Israel Math. Conf. Proc., American Mathematical Society, Providence, RI, 2016, pp. 4761.CrossRefGoogle Scholar
Ball, J.A. and Bolotnikov, V., Contractive multipliers from Hardy space to weighted Hardy space, Proc. Amer. Math. Soc. 145(6) (2017), 24112425.Google Scholar
Ball, J.A. and Bolotnikov, V., de Branges-Rovnyak spaces: basics and theory, Operator Theory, vol. 1 (Ed. D. Alpay), Springer, 2015, pp. 631–679.Google Scholar
Ball, J.A. and Bolotnikov, V., Interpolation by contractive multipliers between Fock spaces, Complex Function Theory, Operator Theory, Schur Analysis and Systems Theory (Eds. D. Alpay, B. Fritzsche, and B. Kirstein), Oper. Theory Adv. Appl. 280, Birkhäuser, Basel, 2020, pp. 79–138.CrossRefGoogle Scholar
Ball, J.A., Bolotnikov, V., and Fang, Q., Multivariable backward-shift-invariant subspaces and observability operators, Multidim. Syst. Signal Process. 18(4) (2007), 191248.Google Scholar
Ball, J.A., Bolotnikov, V., and Fang, Q., Transfer function realization for multipliers of the Arveson space, J. Math. Anal. Appl. 333(1) (2007), 6892.Google Scholar
Ball, J.A., Bolotnikov, V., and Fang, Q., Schur-class multipliers on the Arveson space: De Branges-Rovnyak reproducing kernel spaces and commutative transfer-function realizations, J. Math. Anal. Appl. 341(1) (2008), 519539.Google Scholar
Ball, J.A., Bolotnikov, V., and Fang, Q., Schur-class multipliers on the Fock space: de Branges-Rovnyak reproducing kernel spaces and transfer-function realizations, Operator Theory, Structured Matrices, and Dilations: Tiberiu Constantinescu Memorial Volume (Eds. M. Bakonyi, A. Gheondea, M. Putinar, and J. Rovnyak), Theta Ser. Adv. Math. 7, Theta, Bucharest, 2007, pp. 85–114.Google Scholar
Ball, J.A. and Cohen, N., de Branges-Rovnyak operator models and system theory: a survey, Topics in Matrix and Operator Theory (Eds. H. Bart, I. Gohberg, and M.A. Kaashoek), Oper. Theory Adv. Appl. 50, Birkhäuser, Basel, 1991, pp. 93–136Google Scholar
Ball, J.A., Groenewald, G., and Malakorn, T., Structured noncommutative multidimensional linear system, SIAM J. Control Optim. 44(4) (2005), 14741528.Google Scholar
Ball, J.A., Groenewald, G., and Malakorn, T., Conservative structured noncommutative multidimensional linear systems, The State Space Method: Generalizations and Applications (Eds. D. Alpay and I. Gohberg), Oper. Theory Adv. Appl. 161,Birkhäuser, Basel, 2006, pp. 179–223.CrossRefGoogle Scholar
Ball, J.A., Groenewald, G., and Malakorn, T., Bounded real lemma for structured noncommutative multidimensional linear systems and robust control, Multidim. Syst. Signal Process. 17(2–3) (2006), 119150.Google Scholar
Ball, J.A., Groenewald, G., and ter Horst, S., Bounded real lemma and structured singular value versus diagonal scaling: the free noncommutative setting, Multidim. Syst. Signal Process. 27(1) (2016), 217254.Google Scholar
Ball, J.A., Groenewald, G., and ter Horst, S., Standard versus strict Bounded Real Lemma with infinite-dimensional state space I. The state-space-similarity approach, J. Operator Theory 80(1) (2018), 225–253.Google Scholar
Ball, J.A., Groenewald, G., and ter Horst, S., Standard versus strict Bounded Real Lemma with infinite-dimensional state space II. The storage function approach, The Diversity and Beauty of Applied Operator Theory (Eds. A. Böttcher, D. Potts, P. Stollmann, and D. Wenzel), Oper. Theory Adv. Appl. 268, Birkhäuser/Springer, Cham, 2018, pp. 1–50.Google Scholar
Ball, J.A. and Kriete, T.L., Operator-valued Nevanlinna-Pick kernels and the functional models for contraction operators, Integral Equ. Oper. Theory 10(1) (1987), 1761.CrossRefGoogle Scholar
Ball, J.A., Marx, G., and Vinnikov, V., Noncommutative reproducing kernel Hilbert spaces, J. Funct. Anal. 271(7) (2016), 18441920.CrossRefGoogle Scholar
Ball, J.A., Kaliuzhnyi-Verbovetskyi, D.S., Sadosky, C., and Vinnikov, V., Scattering systems with several evolutions and formal reproducing kernel Hilbert spaces, Complex Anal. Oper. Theory 9(4) (2015), 827931.Google Scholar
Ball, J.A., Sadosky, C., and Vinnikov, V., Scattering systems with several evolutions and multidimensional input/state/output linear systems, Integral Equ. Oper. Theory 52(3) (2005), 323393.Google Scholar
Ball, J.A. and Vinnikov, V., Formal reproducing kernel Hilbert spaces: the commutative and noncommutative settings, Reproducing Kernel Spaces and Applications (Ed. D. Alpay), Oper. Theory Adv. Appl. 143, Birkhäuser, Basel, 2003, pp. 77–134.CrossRefGoogle Scholar
Ball, J.A. and Vinnikov, V., Lax-Phillips scattering and conservative linear systems: a Cuntz-algebra multidimensional setting, Mem. Amer. Math. Soc. 178(837) (2005).CrossRefGoogle Scholar
Barrow, D. L., Chui, C. K., Smith, P. M. and Ward, J. D., Unicity of best mean approximation by second order splines with variable knots, Math. Comp. 32(144) (1978), 11311143.Google Scholar
Basseville, M., Benveniste, A., Chou, K.C., Golden, S.A., Nikoukhah, M., and Wilsky, A.S., Modeling and estimation of multiscale stochastic processes, IEEE Trans. Inform. Theory 38(2) (1992), 766784.Google Scholar
J. Berstel, and Reutenauer, C., Noncommutative Rational Series with Applications. Encyclopedia of Mathematics and Its Applications 137, Cambridge University Press, Cambridge, 2011.Google Scholar
Beurling, A., On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 239255.Google Scholar
Bhattacharjee, M., Eschmeier, J., Keshari, D.K., and Sarkar, J., Dilations, wandering subspaces, and inner functions, Linear Algebra Appl. 523 (2017), 263280.CrossRefGoogle Scholar
Bhattacharjee, M., Das, B.K., and Sarkar, J., Hypercontractions and factorizations of multipliers in one and several variables, arXiv1812.081432v2, 2019.Google Scholar
Bhattacharyya, T., Eschmeier, J., and Sarkar, J., Characteristic function of a pure commuting contractive tuple, Integral Equ. Oper. Theory 53(1) (2005), 2332.Google Scholar
Bhattacharyya, T., Eschmeier, J., and Sarkar, J., On C.N.C. commuting contractive tuples, Proc. Ind. Acad. Sci. Math. Sci. 116(3) (2006), 299–316.Google Scholar
Bhattacharyya, T. and Sarkar, J., Characteristic function for polynomially contractive commuting tuples, J. Math. Anal. Appl. 321(1) (2006), 242259.Google Scholar
Blecher, D.P. and le Merdy, C., Operator Algebras and Their Modules: An Operator Space Approach, London Mathematical Society Monographs New Series 30, Oxford University Press, 2004.CrossRefGoogle Scholar
Borichev, A. and Hedenmalm, H., Harmonic functions of maximal growth: invertibility and cyclicity in Bergman spaces, J. Amer. Math. Soc. 10(4) (1997), 761796.Google Scholar
de Branges, L. and Rovnyak, J., Canonical models in quantum scattering theory, Perturbation Theory and Its Applications in Quantum Mechanics (Ed. C. Wilcox), Holt, Rinehart and Winston, New York, 1966, pp. 295392.Google Scholar
de Branges, L. and Rovnyak, J., Square Summable Power Series, Holt, Rinehart and Winston, New York, 1966.Google Scholar
Bunce, J.W., Models for n-tuples of noncommuting operators, J. Funct. Anal. 57(1) (1984), 2130.Google Scholar
F. Beatrous, and Burbea, J., Reproducing kernels and interpolation of holomorphic functions, Complex Analysis, Functional Analysis and Approximation Theory (Ed. J. Mujica), North-Holland Math. Stud. 125, North-Holland, Amsterdam, 1986, pp. 25–46.Google Scholar
Chavan, S., Pradhan, D.K., and Trivedi, S., Multishifts on directed Cartesian products of rooted directed trees. Dissertationes Math. 527 (2017).Google Scholar
Chen, Y., Quasi-wandering subspaces in a class of reproducing analytic Hilbert spaces, Proc. Amer. Math. Soc. 140(1) (2012), 42354242.Google Scholar
Chou, K.C., Willsky, A.S., and Benveniste, A., Multiscale recursive estimation, data fusion, and reglarization, IEEE Trans. Autom. Control 39(3) (1994), 464478.Google Scholar
Clouâtre, R. and Hartz, M., Multiplier algebras of complete Nevanlinna-Pick spaces: dilations, boundary representations and hyperrigidity, J. Funct. Anal. 274(6) (2018), 16901738.Google Scholar
Clouâtre, R., Hartz, M., and Schillo, D., A Beurling-Lax-Halmos theorem for spaces with a complete Nevanlinna-Pick factor, Proc. Amer. Math. Soc. 148(2) (2020), 731740.Google Scholar
Curto, R.E. and Vasilescu, F.H., Standard operator models in the polydisk, Indiana Univ. Math. J. 42(3) (1993), 791810.CrossRefGoogle Scholar
Curto, R.E. and Vasilescu, F.H., Standard operator models in the polydisk II, Indiana Univ. Math. J. 44(3) (1995), 727746,Google Scholar
Davidson, K. and Pitts, D., Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras, Integral Equ. Oper. Theory 31(3) (1998), 321337.Google Scholar
Davidson, K.R., Free semigroup algebras: a survey, Systems, Approximation, Singular Integral Operators, and Related Topics (Eds. A.A. Borichev and N.K. Nikolski), Oper. Theory Adv. Appl. 129, Birkhauser, Basel, 2001, pp. 209–240.Google Scholar
Deepak, K.D., Deepak, K.P., Sarkar, J., and Timotin, D., Commutant lifting and Nevanlinna-Pick interpolation in several variables, Integral Equ. Oper. Theory 92(3) (2020), 15 pp.Google Scholar
Douglas, R.G., On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413415.Google Scholar
Douglas, R.G., Structure theory for operators, J. Reine Angew. Math. 232 (1968), 180193.Google Scholar
Douglas, R.G., Misra, G., and Sarkar, J., Contractive Hilbert modules and their dilations, Israel J. Math. 187 (2012), 141165.CrossRefGoogle Scholar
Dullerud, G.E. and Paganini, F., A Course in Robust Control Theory: A Convex Approach, Texts in Applied Mathematics 36, Springer-Verlag, New York, 2000.Google Scholar
Duren, P. and Schuster, A., Bergman Spaces, Mathematical Surveys and Monographs 100, American Mathematical Society, Providence, RI, 2004.Google Scholar
Duren, P., Khavinson, D., Shapiro, H.S., and Sundberg, C., Contractive zero-divisors in Bergman spaces, Pacific J. Math. 157(1) (1993), 3756.Google Scholar
Duren, P., Khavinson, D., Shapiro, H.S., and Sundberg, C., Invariant subspaces in Bergman spaces and the biharmonic equation, Michigan Math. J. 41(2) (1994), 247259.CrossRefGoogle Scholar
Eschmeier, J., Bergman inner functions and m-hypercontractions, J. Funct. Anal. 275(1) (2018), 73102.Google Scholar
Eschmeier, J. and Langendörfer, S., Multivariable Bergman shifts and Wold decompositions, Integral Equ. Oper. Theory 90(5) (2018), Art. 56, 17 pp.Google Scholar
Fliess, M., Matrices de Hankel, Une théorie fonctionnelle de la réalisation en filtrage multidimensionnel, échantillonné, récurrent, Inform. Control 43 (1979), 338355.Google Scholar
Foias, C. and Frazho, A.E., The Commutant Lifting Approach to Interpolation Problems. Oper. Theory Adv. Appl. 44, Birkhäuser Verlag, Basel, 1990.Google Scholar
Foias, C., Frazho, A.E., Gohberg, I., and Kaashoek, M.A., Metric Constrained Interpolation, Commutant Lifting and Systems, Oper. Theory Adv. Appl. 100, Birkhäuser Verlag, Basel, 1998.Google Scholar
Frazho, A.E., A shift operator approach to bilinear system theory, SIAM J. Control 1(6) (1980), 640658.Google Scholar
Frazho, A.E., Models for noncommuting operators, J. Funct. Anal. 48(1) (1982), 111.Google Scholar
Frazho, A.E., ter Horst, S., and Kaashoek, M.A., All solutions to an operator Nevanlinna-Pick interpolation problem, Operator Theory in Different Settings and Related Applications (Eds. R. Duduchava et al.), Oper. Theory Adv. Appl. 262,Birkhäuser/Springer, Cham, 2018, pp. 139220.Google Scholar
Fuhrmann, P.A., Linear Systems and Operators in Hilbert Space, McGraw-Hill, New York, 1981.Google Scholar
Gleason, A.M., Finitely generated ideals in Banach algebras, J. Math. Mech. 13 (1964), 125132.Google Scholar
Giselsson, O. and Olofsson, A., On some Bergman shift operators, Complex Anal. Oper. Theory 6(4) (2012), 829842.Google Scholar
Golub, G.H. and van Loan, C.F., Matrix Computations, Johns Hopkins Series in Mathematical Sciences 3, Johns Hopkins University Press, Baltimore, 1983.Google Scholar
Gorai, S. and Sarkar, J., Contractively embedded invariant subspaces, Interpolation and Realization Theory with Applications to Control Theory (Eds. V. Bolotnikov et al.), Oper. Theory Adv. Appl. 272, Birkhäouser/Springer, Cham, 2019, pp. 117–131.CrossRefGoogle Scholar
Gupta, R., Kumar, S., and Trivedi, S., Unitary equivalence of operator-valued multishifts, J. Math. Anal. Appl. 497(2) (2020), Art. 124032, 23 pp.CrossRefGoogle Scholar
Halmos, P. R., Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102– 112.Google Scholar
Hartz, M., Every complete Pick space satisfies the column-row property, arXiv:2005.09614v1.Google Scholar
Hedenmalm, H., A factorization theorem for square area-integrable analytic functions, J. Reine Angew. Math. 422 (1991), 4568.Google Scholar
Hedenmalm, H., A factoring theorem for a weighted Bergman space, Algebra i Analiz 4(1) (1992), 167–176; translation in St. Petersburg Math. J. 4(1) (1993), 163–174.Google Scholar
Hedenmalm, H., Korenblum, B., and Zhu, K., Theory of Bergman Spaces, Graduate Texts in Mathematics 199, Springer, Berlin, 2000.Google Scholar
Hedenmalm, H., Zhu, K., On the failure of optimal factorization for certain weighted Bergman spaces, Complex Variables Theory Appl. 19(3) (1992), 165176.Google Scholar
Helton, J.W., Passive network realization using abstract operator theory, IEEE Trans. Circuit Theory CT-19 (1972), 518520.Google Scholar
Helton, J.W., Discrete time systems, operator models, and scattering theory, J. Funct. Anal. 16 (1974), 1538.Google Scholar
Helton, J.W., I. Klep, and S. McCullough, Free convex algebraic geometry, Semidefinite Optimization and Convex Algebraic Geometry (Eds. G. Blekherman, P.A. Parrilo, and R.R. Thomas), MOS-SIAM Ser. Optim., 13, SIAM, Philadelphia, PA, 2013, pp. 341–405.Google Scholar
Helton, J.W., Mai, T., and Speicher, R., Applications of realizations (aka linearizations) to free probability, J. Funct. Anal. 274(1) (2018), 179.Google Scholar
Hoffman, K., Banach Spaces of Analytic Functions, Dover, New York, 1988.Google Scholar
Horowitz, C., Zeros of functions in the Bergman space, Duke Math. J. 41 (1974), 693710.Google Scholar
Izuchi, K. J., Izuchi, K. H., and Izuchi, Y., Wandering subspaces and the Beurling type Theorem I, Arch. Math. 95(5) (2010), 439446.Google Scholar
Izuchi, K. J., Izuchi, K. H., and Izuchi, Y., Quasi-wandering subspaces in the Bergman space, Integral Equ. Oper. Theory 67(2) (2010), 151161.Google Scholar
Jacob, B., Partington, J.R., Pott, S., and Wynn, A., β-admissibility of observation operators for hypercontractive semigroups, J. Evol. Equ. 18 (2018), 153–170.Google Scholar
Jury, M.T. and Martin, R.T.W., Non-commutative Clark theory for the free and abelian Toeplitz algebras, J. Math. Anal. Appl. 456(2) (2017), 10621100.Google Scholar
Kaliuzhnyi-Verbovetskyi, D. and Vinnikov, V., Foundations of Free Noncommutative Function Theory, Mathematical Surveys and Monographs 199, American Mathematical Society, Providence, RI, 2014.Google Scholar
Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical Systems Theory, McGraw-Hill, New York/Toronto, ON/London, 1969.Google Scholar
Katsnel’son, V.È., Kheĭfets, A.Y., and Yuditskiĭ, P.M., An abstract interpolation problem and the theory of extensions of isometric operators, Operators in Function Spaces and Problems in Function Theory (Ed. V.A. Marchenko), Naukova Dumka, Kiev, 1987, pp. 83–96; translation in Topics in Interpolation Theory (Eds. H. Dym et al.), Oper. Theory Adv. Appl. 95, Birkhauser Verlag, Basel, 1997, pp. 283–298.Google Scholar
Knuth, D. E., The Art of Computer Programming, I, Fundamental algorithms, Wiley, New York, 1997.Google Scholar
Krein, M., Concerning the resolvents of an Hermitian operator with the deficiency-index (m, m), Dokl. Acad. Nauk SSSR 52 (1946), 651654.Google Scholar
M. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Mat. Sbornik 20 (1947), 431–495.Google Scholar
Krein, M. G. and Krasnoselskii, M. A., Fundamental theorems on the extension of Hermitian operators and certain of their applications to the theory of orthogonal polynomials and the problem of moments, Uspehi Matem. Nauk 2(3) (1947), 60106.Google Scholar
Krein, M. G. and Saakjan, S. N., Certain new results in the theory of resolvents of Hermitian operators, Dokl. Akad. Nauk SSSR 169 (1966), 12691272.Google Scholar
Kriete, T.L., Canonical models and the self-adjoint parts of dissipative operators, J. Funct. Anal. 23(1) (1976), 3994.Google Scholar
Kumari, R., Sarkar, J., Sarkar, S., and Timotin, D., Factorizations of kernels and reproducing kernel Hilbert spaces, Integral Equ. Oper. Theory 87(2) (2017), 225244.Google Scholar
Lax, P.D., Translation invariant spaces, Acta Math. 101 (1959), 161178,Google Scholar
Leech, R.B., Factorization of analytic functions and operator inequalities, Integral Equ. Oper. Theory 78(1) (2014), 7173.Google Scholar
Livšic, M.S., On the theory of isometric operators with equal deficiency indices (Russian), Dokl. Akad. Nauk SSSR (N.S.) 58 ( 1947 ), 13-15.Google Scholar
Livsic, M.S., On the reduction of a linear non-Hermitian operator to “triangular” form (Russian), doklady Akad. Nauk SSSR 85 (1952), 873876.Google Scholar
Mai, T. and Speicher, R., Flee probability, random matrices, and representations of non-commutative rational functions, Computation and Combinatorics in Dynamics Stochastics, and Control (Eds. E. Celledon et al.), Abel Symp, 13, Springer, Cham, 2018, pp. 551–577.Google Scholar
Martin, R.T.W. and Shamovich, E., A de Branges-Beurling theorem for the full Fock space, J. Math. Anal. Appl., to appear.Google Scholar
McCullough, S. and Trent, T.T., Invariant subspaces and Nevanlinna-Pick kernels, J. Funct. Anal. 178(1) (2000), 226249.Google Scholar
Muhly, P. S. and Solel, B., Tensor algebras over C-correspondences: representations, dilations, and C-envelopes, J. Funct. Anal. 158(2) (1998), 389457.Google Scholar
Muhly, P. S. and Solel, B., Canonical models for representations of Hardy algebras, Integral Equ. Oper. Theory 53(3) (2005), 411452.Google Scholar
Muhly, P. S. and Solel, B., Schur class functions and automorphisms of Hardy algebras, Doc. Math. 13 (2008), 365411.Google Scholar
Muhly, P. S. and Solel, B., Matricial function theory and weighted shifts, Integral Equ. Oper. Theory 84(4) (2016), 501553.CrossRefGoogle Scholar
Müller, V., Models for operators using weighted shifts, J. Operator Theory 20(1) (1988), 320.Google Scholar
Müller, V. and Vasilescu, F.H., Standard models for some commuting multioperators, Proc. Amer. Math. Soc. 117(4) (1993), 979989.Google Scholar
Nikolski, N.K, Operators, Functions, and Systems: An Easy Reading. Vol. 1. Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, 92 American Mathematical Society, Providence, RI, 2002.Google Scholar
Nikolski, N.K., Operators, Functions, and Systems: An Easy Reading. Vol. 2. Model Operators and Systems, Mathematical Surveys and Monographs, 93, American Mathematical Society, Providence, RI, 2002.Google Scholar
Olofsson, A., A characteristic operator function for the class of n-hypercontractions, J. Funct. Anal. 236(2) (2006), 517545.Google Scholar
Olofsson, A., An operator-valued Berezin transform and the class of n-hypercontractions, Integral Equ. Oper. Theory 58(4) (2007), 503549.Google Scholar
Olofsson, A., Operator-valued Bergman inner functions as transfer functions, Algebra i Analiz 19(4) (2007), 146173.Google Scholar
Olofsson, A. and Wennman, A., Operator identities for standard weighted Bergman shift and Toeplitz operators, J. Operator Theory 70(2) (2013), 451475.Google Scholar
Olofsson, A., Parts of adjoint weighted shifts, J. Operator Theory 74(2) (2015), 249280.Google Scholar
Paulsen, V., Completely Bounded Maps and Operator Algebras, Cambridge Studies in Advanced Mathematics 78, Cambridge University Press, Cambridge, 2002.Google Scholar
Petersen, I.A., Anderson, B.D.O., and Jonkheere, E.A., A first principles solution to the non-singular H-control problem, Int. J. Robust Nonlinear Con. 1 (1991), 171185.Google Scholar
Popescu, G., Models for infinite sequences of noncommuting operators, Acta Sci. Math. (Szeged) 53(3–4) (1989), 355368.Google Scholar
Popescu, G., Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316(2) (1989), 523536.Google Scholar
Popescu, G., Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory 22(1) (1989), 5171.Google Scholar
Popescu, G., Multi-analytic operators and some factorization theorems, Indiana Univ. Math. J. 38(3) (1989), 693710.Google Scholar
Popescu, G., Multi-analytic operators on Fock spaces, Math. Ann. 303(1) (1995), 3146.Google Scholar
Popescu, G., Free holomorphic functions on the unit ball of B(H)n, J. Funct. Anal. 241(1) (2006), 268333.Google Scholar
Popescu, G., Operator theory on noncommutative varieties, Indiana Univ. Math. J. 55(2) (2006), 389442.Google Scholar
Popescu, G., Operator theory on noncommutative varieties II, Proc. Amer. Math. Soc. 135(7) (2007), 21512164.Google Scholar
Popescu, G., Noncommutative Berezin transforms and multivariable operator model theory, J. Funct. Anal. 254(4) (2008), 10031057.Google Scholar
Popescu, G., Operator theory on noncommutative domains, Mem. Amer. Math. Soc. 205(964), 2010.Google Scholar
Popescu, G., Berezin transforms on noncommutative varieties in polydomains, J. Funct. Anal. 265(10) (2013), 25002552.Google Scholar
Popescu, G., Berezin transforms on noncommutative polydomains, Trans. Amer. Math. Soc. 368(6) (2016), 43754416.Google Scholar
Popescu, G., Invariant subspaces and operator model theory on noncommutative varieties, Math. Ann. 372(1–2) (2018), 611650.Google Scholar
Popescu, G., Noncommutative hyperballs, wandering subspaces, and inner functions, J. Funct. Anal. 276(11) (2019), 34063440.Google Scholar
Pott, S., Standard models under polynomial positivity conditions, J. Operator Theory 41(2) (1999), 365389.Google Scholar
Reed, M. and Simon, B., Methods of Mathematical Physics I: Functional Analysis, Academic Press, San Diego, 1980.Google Scholar
Rosenblum, M. and Rovnyak, J., Hardy Classes and Operator Theory. Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 1985.Google Scholar
Rota, G.-C., On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469472.Google Scholar
Rudin, W., Principles of Mathematical Analysis, Third edition, International Series in Pure and Applied Mathematics, McGraw-Hill, 1976.Google Scholar
Salomon, G., Shalit, O.M., and Shamovich, E., Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball, Trans. Amer. Math. Soc. 370(12) (2018), 86398690.Google Scholar
Sarason, D., Generalized interpolation in H, Trans. Amer. Math. Soc.- 127 (1967), 179–293.Google Scholar
Sarason, D., Sub-Hardy Hilbert Spaces in the Unit Disk, University of Arkansas Lecture Notes in Mathematical Sciences 10, Wiley, New York, 1994.Google Scholar
Sarkar, J., invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces I, J. Operator Theory 73(2) (2015), 433–441.Google Scholar
Sarkar, J., An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces II, Complex Anal. Oper. Theory 10(4)(2016), 769782.Google Scholar
Schiitzenberger, M.P., On the definition of a family of automata, Inform. Control 4 (1961), 218220.Google Scholar
Shields, A.L., Weighted shift operators and analytic function theory, Topics in Operator Theory (Ed. C. Pearcy), Mathematical Surveys 13, American Mathematical Society, Providence, RI, 1974, pp. 49128.Google Scholar
Shimorin, S., Wold-type decompositions and wandering subspaces for operators close to isometries, J. Reine Angew. Math. 531 (2001), 147189.Google Scholar
Shimorin, S., On Beurling-type theorems in weighted 2 and Bergman spaces, Proc. Amer. Math. Soc. 131(6) (2003), 17771787.Google Scholar
Solel, B., Invariant subspaces for certain tuples of operators with applications to reproducing kernel correspondences, Integral Equ. Oper. Theory 92(4) (2020), Art. 38, 22 pp.Google Scholar
Sz.-Nagy, B. and Foias, C., Sur les contractions de l’espace de Hilbert VIII, Acta Sci. Math. 25 (1964), 38–71.Google Scholar
Sz.-Nagy, B., Foias, C., Bercovici, H., and Kércy, L., Harmonic Analysis of Operators on Hilbert Space, Universitext, Springer, New York, 2010.Google Scholar
Taylor, J.L., Functions of several noncommuting variables, Bull. Amer. Math. Soc. 79 (1973), 134.Google Scholar
Timotin, D., Regular dilations and models for multicontractions, Indiana Univ. Math. J. 47(2) (1998), 671684.Google Scholar
Vinnikov, V., Commuting operators and function theory on a Riemann surface, Holomorphic Spaces (Eds.S.Axler,J.E.McCarthy,andD.Sarason),Math.Sci. Res. Inst. Publ. 33, Cambridge University Press, Cambridge, 1998, pp. 445–476.Google Scholar
Vukotić, D., Linear extremal problems for Bergman spaces, Exposition. Math. 14(4) (1996), 313352.Google Scholar
Weiss, G., Two conjectures on the admissibility of control operators, Estimation an Control of Distributed Parameter Systems (Eds. W. Desch, F. Kappel, and K. Kunisch), Internat. Ser. Numer. Math. 100, Birkhäuser-Verlag, 1991, pp. 367–378.Google Scholar
Wold, H., A Study in Analysis of Stationary Time Series, Almquist und Wiksell, Uppsala, 1938.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Joseph A. Ball, Vladimir Bolotnikov, College of William and Mary, Virginia
  • Book: Noncommutative Function-Theoretic Operator Theory and Applications
  • Online publication: 09 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781009004305.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Joseph A. Ball, Vladimir Bolotnikov, College of William and Mary, Virginia
  • Book: Noncommutative Function-Theoretic Operator Theory and Applications
  • Online publication: 09 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781009004305.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Joseph A. Ball, Vladimir Bolotnikov, College of William and Mary, Virginia
  • Book: Noncommutative Function-Theoretic Operator Theory and Applications
  • Online publication: 09 December 2021
  • Chapter DOI: https://doi.org/10.1017/9781009004305.012
Available formats
×