Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T02:16:12.830Z Has data issue: false hasContentIssue false

11 - Applications

Published online by Cambridge University Press:  06 August 2010

William S. Price
Affiliation:
University of Western Sydney
Get access

Summary

Introduction and reviews

The applications of NMR techniques to the study of translational motion is enormous and it is impossible to give anything approaching a comprehensive review. Consequently, only a smattering of papers from the different areas of application is presented and, in general, instead of citing the first paper with respect to each application, more recent papers have been chosen and the interested reader should consult the references listed therein. The classification of different studies is complicated since many studies have significance in more than one area. Numerous reviews on PGSE NMR have already appeared in the literature including ones of a general nature. Similarly, there are many books and review articles devoted entirely or in part to the use and applications of MRI techniques to study translational motion and mass transfer including clinical applications and rheological studies.

There are also a large number of more specialised reviews (or reviews on specialised areas including sections on gradient-based NMR techniques) dealing with NMR measurements of translational motion on diffusion-weighted spectroscopy for studying intact mammalian tissues, drug binding, exchange and combinatorial chemistry, flow, heterogeneous systems, liquid crystals, membranes and surfactants, organometallics, polymers, porous systems including zeolites, and solids.

Reviews have also been presented on the complementarity of the structural information that can be obtained from NMR diffusion measurements with that obtained from NOE experiments, the use of PGSE NMR in the studies of physicochemical processes in molecular systems, applications to environmental science, ENMR, the spectral editing of complex mixtures with particular emphasis on techniques involving diffusion, and B1 gradient-based measurements.

Type
Chapter
Information
NMR Studies of Translational Motion
Principles and Applications
, pp. 313 - 368
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stilbs, P., Fourier Transform Pulsed-Gradient Spin-Echo Studies of Molecular Diffusion. Prog. NMR Spectrosc. 19 (1987), 1–45.CrossRefGoogle Scholar
Kärger, J., Pfeifer, H., and Heink, W., Principles and Applications of Self-Diffusion Measurements by Nuclear Magnetic Resonance. Adv. Magn. Reson. 12 (1988), 1–89.CrossRefGoogle Scholar
Haner, R. L. and Schleich, T., Measurement of Translational Motion by Pulse-Gradient Spin-Echo Nuclear Magnetic Resonance. Methods Enzymol. 176 (1989), 418–46.CrossRefGoogle ScholarPubMed
Callaghan, P. T., Principles of Nuclear Magnetic Resonance Microscopy. (Oxford: Clarendon Press, 1991).Google Scholar
Canet, D. and Décorps, M., Applications of Field Gradients in NMR. In Dynamics of Solutions and Fluid Mixtures, ed. Delpuech, J.-J.. (New York: Wiley, 1995), pp. 309–43.Google Scholar
Packer, K. J., Diffusion & Flow in Liquids. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. (New York: Wiley, 1996), pp. 1615–26.Google Scholar
Price, W. S., Gradient NMR. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 32. (London: Academic Press, 1996), pp. 51–142.Google Scholar
Kimmich, R., NMR: Tomography, Diffusometry, Relaxometry. (Berlin: Springer Verlag, 1997).CrossRefGoogle Scholar
Johnson, Jr. C. S., Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: Principles and Applications. Prog. NMR Spectrosc. 34 (1999), 203–56.CrossRefGoogle Scholar
Price, W. S., Probing Molecular Dynamics in Biochemical and Chemical Systems Using Pulsed Field Gradient NMR Diffusion Measurements. In New Advances in Analytical Chemistry, ed. Atta-Ur-Rahman, . vol. 1. (Amsterdam: Harwood Academic Publishers, 2000), pp. 31–72.Google Scholar
Stilbs, P., Diffusion Studied Using NMR Spectroscopy. In Encyclopedia of Spectroscopy and Spectrometry, ed. Lindon, J. C., Tranter, G. E., and Holmes, J. L.. vol. 1. (London: Academic Press, 2000), pp. 369–75.Google Scholar
Weingärtner, H. and Holz, M., NMR Studies of Self-Diffusion in Liquids. In Annu. Rep. Prog. Chem., Sect. C, ed. Webb, G. A.. vol. 98. (Cambridge: Royal Society of Chemistry, 2002), pp. 121–55.Google Scholar
Ardelean, I. and Kimmich, R., Principles and Unconventional Aspects of NMR Diffusometry. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 49. (London: Academic Press, 2003), pp. 43–115.Google Scholar
Blümich, B. and Kuhn, W., (eds) Magnetic Resonance Microscopy. (Berlin: VCH, 1992).Google Scholar
Hajnal, J. V. and Young, I. R., Perfusion and Diffusion Imaging. Magn. Reson. Mater. Phys. Bio. Med. 2 (1994), 225–31.CrossRefGoogle Scholar
Blümich, P., Blümich, B., Botto, R., and Fukushima, E., (eds) Spatially Resolved Magnetic Resonance. (Weinheim: VCH, 1998).Google Scholar
Haacke, E. M., Brown, R. W., Thompson, M. R., and Venkatesan, R., Magnetic Resonance Imaging–Physical Principles and Sequence Design. (New York: Wiley, 1999).Google Scholar
Koptyug, I. V. and Sagdeev, R. Z., Modern Applications of NMR Tomography in Physical Chemistry. The Characteristic Features of the Technique and Its Applications to Studies of Liquid-Containing Objects. Russ. Chem. Rev. 71 (2002), 593–617.CrossRefGoogle Scholar
Bihan, D., Looking into the Functional Architecture of the Brain with Diffusion MRI. Nature Reviews: Neuroscience 4 (2003), 469–80.CrossRefGoogle ScholarPubMed
Mantle, M. D. and Sederman, A. J., Dynamic MRI in Chemical Process and Reaction Engineering. Prog. NMR Spectrosc. 43 (2003), 3–60.CrossRefGoogle Scholar
Narasimhan, P. T. and Jacobs, R. E., Microscopy in Magnetic Resonance Imaging. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 55. (London: Academic Press, 2005), pp. 259–97.Google Scholar
Callaghan, P. T., Rheo-NMR and Velocity Imaging. Curr. Opin. Colloid Interface Sci. 11 (2006), 13–18.CrossRefGoogle Scholar
Stapf, S. and Han, S.-I., (eds) NMR Imaging in Chemical Engineering. (New York: Wiley, 2006).Google Scholar
Callaghan, P. T., Rheo-NMR: A New Window on the Rheology of Complex Fluids. (New York: Wiley, 2007).Google Scholar
Mori, S., Introduction to Diffusion Tensor Imaging. (Oxford: Elsevier, 2007).Google Scholar
Nicolay, K., Braun, K. P., Graaf, R. A., Dijkhuizen, R. M., and Kruiskamp, M. J., Diffusion NMR Spectroscopy. NMR Biomed. 14 (2001), 94–111.CrossRefGoogle ScholarPubMed
Strijkers, G. J., Drost, M. R., Heemskerk, A. M., Kruiskamp, M. J., and Nicolay, K., Diffusion MRI and MRS of Skeletal Muscle. Isr. J. Chem. 43 (2003), 71–80.CrossRefGoogle Scholar
Waldeck, A. R., Kuchel, P. W., Lennon, A. J., and Chapman, B. E., NMR Diffusion Measurements to Characterise Membrane Transport and Solute Binding. Prog. NMR Spectrosc. 30 (1997), 39–68.CrossRefGoogle Scholar
Shapiro, M. J. and Gounarides, J. S., NMR Methods Utilized in Combinatorial Chemistry Research. Prog. NMR Spectrosc. 35 (1999), 153–200.CrossRefGoogle Scholar
Stockman, B. J. and Dalvit, C., NMR Screening Techniques in Drug Discovery and Drug Design. Prog. NMR Spectrosc. 41 (2002), 187–231.CrossRefGoogle Scholar
Meyer, B. and Peters, T., NMR Spectroscopy Techniques for Screening and Identifying Ligand Binding to Protein Receptors. Angew. Chem. (Int. Ed.) 42 (2003), 864–90.CrossRefGoogle ScholarPubMed
Lucas, L. H. and Larive, C. K., Measuring Ligand-Protein Binding Using NMR Diffusion Experiments. Concepts Magn. Reson. 20A (2004), 24–41.CrossRefGoogle Scholar
Cohen, Y., Avram, L., and Frish, L., Diffusion NMR Spectroscopy in Supramolecular and Combinatorial Chemistry: An Old Parameter – New Insights. Angew. Chem. (Int. Ed.) 44 (2005), 520–54.CrossRefGoogle ScholarPubMed
Fielding, L., NMR Methods for the Determination of Protein–Ligand Dissociation Constants. Prog. NMR Spectrosc. 51 (2007), 219–42.CrossRefGoogle Scholar
Fukushima, E., Nuclear Magnetic Resonance as a Tool to Study Flow. Ann. Rev. Fluid Mech. 31 (1999), 95–123.CrossRefGoogle Scholar
Newling, B., Gas Flow Measurements by NMR. Prog. NMR Spectrosc. 52 (2008), 31–48.CrossRefGoogle Scholar
Kärger, J. and Fleischer, G., NMR Diffusion Studies in Heterogeneous Systems. Trends Anal. Chem. 13 (1994), 145–57.CrossRefGoogle Scholar
Lindblom, G. and Orädd, G., NMR Studies of Translational Diffusion in Lyotropic Liquid Crystals and Lipid Membranes. Prog. NMR Spectrosc. 26 (1994), 483–515.CrossRefGoogle Scholar
Lindblom, G. and Orädd, G., Liquid Crystalline Samples: Diffusion. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 4 (New York: Wiley, 1996), pp. 2760–8.Google Scholar
Celebre, G., Chidichimo, G., Coppola, L., Mesa, C., Muzzalupo, R., Pogliani, L., Ranieri, G. A., and Terenzi, M., Water Self-Diffusion in Lyotropic Liquid Crystals: Pulsed Gradient Spin-Echo NMR and Simulation Techniques. Gazz. Chim. Ital. 126 (1996), 489–503.Google Scholar
Söderman, O., Stilbs, P., and Price, W. S., NMR Studies of Surfactants. Concepts Magn. Reson. 23A (2004), 121–35.CrossRefGoogle Scholar
Furó, I., NMR Spectroscopy of Micelles and Related Systems. J. Mol. Liquids 117 (2005), 117–37.CrossRefGoogle Scholar
Dvinskikh, S. V. and Furó, I., Nuclear Magnetic Resonance Studies of Translational Diffusion in Thermotropic Liquid Crystals. Russ. Chem. Rev. 75 (2006), 497–506.CrossRefGoogle Scholar
Lindblom, G. and Gröbner, G., NMR on Lipid Membranes and Their Proteins. Curr. Opin. Colloid Interface Sci. 11 (2006), 24–9.CrossRefGoogle Scholar
Johns, M. L. and Hollingsworth, K. G., Characterisation of Emulsion Systems Using NMR and MRI. Prog. NMR Spectrosc. 50 (2007), 51–70.CrossRefGoogle Scholar
Pregosin, P. S., Ion Pairing Using PGSE Diffusion Studies. Prog. NMR Spectrosc. 49 (2006), 261–88.CrossRefGoogle Scholar
Nose, T., Pulsed-Field-Gradient NMR Studies of the Diffusion of Chain Molecules in Polymer Matrices. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 27. (London: Academic Press, 1993), pp. 217–53.Google Scholar
Yamane, Y., Kanesaka, S., Kim, S., Kamiguchi, K., Matsui, M., Kuroki, S., and Ando, I., Diffusion in Soft Polymer Systems as Approached by Field-Gradient NMR. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 58. (London: Elsevier, 2006), pp. 51–154.Google Scholar
Kärger, J., Diffusion in Porous Media. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 3. (New York: Wiley, 1996), pp. 1656–63.Google Scholar
Watson, A. T. and Chang, C. T. P., Characterizing Porous Media with NMR Methods. Prog. NMR Spectrosc. 31 (1997), 343–86.CrossRefGoogle Scholar
Kimmich, R., Strange Kinetics, Porous Media, and NMR. Chem. Phys. 284 (2002), 253–85.CrossRefGoogle Scholar
Stallmach, F. and Galvosas, P., Spin Echo NMR Diffusion Studies. In Annual Reports on NMR Spectroscopy, ed. Webb, G. A.. vol. 61. (New York: Elsevier, 2007), pp. 51–131.Google Scholar
Cotts, R. M., Diffusion in Solids. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 3. (New York: Wiley, 1996), pp. 1670–85.Google Scholar
Brand, T., Cabrita, E. J., and Berger, S., Intermolecular Interaction as Investigated by NOE and Diffusion Studies. Prog. NMR Spectrosc. 46 (2005), 159–96.CrossRefGoogle Scholar
Skirda, V. D. and Volkov, V. I., NMR with Pulsed Magnetic Field Gradient in Studies of Physicochemical Processes in Molecular Systems. Zh. Fiz. Khim. A 73 (1999), 298–309.Google Scholar
Cardoza, L. A., Korir, A. K., Otto, W. H., Wurrey, C. J., and Larive, C. K., Applications of NMR Spectroscopy in Environmental Science. Prog. NMR Spectrosc. 45 (2005), 209–38.CrossRefGoogle Scholar
Johnson, Jr. C. S., Electrophoretic NMR. In Encyclopedia of Nuclear Magnetic Resonance, ed. Grant, D. M. and Harris, R. K.. vol. 3. (New York: Wiley, 1996), pp. 1886–95.Google Scholar
Holz, M., Field-Assisted Diffusion Studied by Electrophoretic NMR. In Diffusion in Condensed Matter, ed. Kärger, J. and Heitjans, P.. (Berlin: Springer, 2005), pp. 717–42.CrossRefGoogle Scholar
Griffiths, P. C., Paul, A., and Hirst, N., Electrophoretic NMR Studies of Polymer and Surfactant Systems. Chem. Soc. Rev. 35 (2006), 134–45.CrossRefGoogle ScholarPubMed
Dixon, A. M. and Larive, C. K., NMR Spectroscopy with Spectral Editing for the Analysis of Complex Mixtures. Appl. Spectrosc. 53 (1999), 426A–40A.CrossRefGoogle Scholar
Canet, D., Radiofrequency Field Gradient Experiments. Prog. NMR Spectrosc. 30 (1997), 101–35.CrossRefGoogle Scholar
Canet, D., Radiofrequency Field Gradients in NMR, Theory. In Encyclopedia of Spectroscopy and Spectrometry, ed. Lindon, J. C., Tranter, G. E., and Holmes, J. L.. vol. 3. (London: Academic Press, 2000), pp. 1937–44.Google Scholar
Lin, M., Shapiro, M. J., and Wareing, J. R., Diffusion-Edited NMR-Affinity NMR for Direct Observation of Molecular Interactions. J. Am. Chem. Soc. 119 (1997), 5249–50.CrossRefGoogle Scholar
Kriwacki, R. W., Hill, R. B., Flanagan, J. M., Caradonna, J. P., and Prestegard, J. H., New NMR Methods for the Characterization of Bound Waters in Macromolecules. J. Am. Chem. Soc. 115 (1993), 8907–11.CrossRefGoogle Scholar
Mori, S., Johnson, M. O., Berg, J. M., and Zijl, P. C. M., Water Exchange Filter (WEX Filter) for Nuclear Magnetic Resonance Studies of Macromolecules. J. Am. Chem. Soc. 116 (1994), 11982–4.CrossRefGoogle Scholar
Wider, G., Riek, R., and Wüthrich, K., Diffusion Filters for Separation of Solvent–Protein and Protein–Protein Nuclear Overhauser Effects (HYDRA). J. Am. Chem. Soc. 118 (1996), 11629–34.CrossRefGoogle Scholar
Ponstingl, H. and Otting, G., Detection of Protein – Ligand NOEs with Small, Weakly Binding Ligands by Combined Relaxation and Diffusion Filtering. J. Biomol. NMR 9 (1997), 441–4.CrossRefGoogle Scholar
Gonnella, N., Lin, M., Shapiro, M. J., Wareing, J. R., and Zhang, X., Isotope-Filtered Affinity NMR. J. Magn. Reson. 131 (1998), 336–8.CrossRefGoogle ScholarPubMed
Lin, M. and Shapiro, M. J., Mixture Analysis in Combinatorial Chemistry. Application of Diffusion-Resolved NMR Spectroscopy. J. Org. Chem. 61 (1996), 7617–19.CrossRefGoogle ScholarPubMed
Bleicher, K., Lin, M., Shapiro, M. J., and Wareing, J. R., Diffusion Edited NMR: Screening Compound Mixtures by Affinity NMR to Detect Binding Ligands to Vancomycin. J. Org. Chem. 63 (1998), 8486–90.CrossRefGoogle Scholar
Williamson, R. T., Chapin, E. L., Carr, A. W., Gilbert, J. R., Graupner, P. R., Lewer, P., McKamey, P., Carney, J. R., and Gerwick, W. H., New Diffusion-Edited NMR Experiments to Expedite the Dereplication of Known Compounds from Natural Product Mixtures. Org. Lett. 2 (2000), 289–92.CrossRefGoogle ScholarPubMed
Beckwith-Hall, B. M., Thompson, N. A., Nicholson, J. K., Lindon, J. C., and Holmes, E., A Metabonomic Investigation of Hepatotoxicity Using Diffusion-Edited 1H NMR Spectroscopy of Blood Serum. Analyst 128 (2003), 814–18.CrossRefGoogle ScholarPubMed
Chin, J., Chen, A., and Shapiro, M. J., Improved High-Resolution Diffusion Filtered 1H MAS NMR. Magn. Reson. Chem. 38 (2000), 782–4.3.0.CO;2-N>CrossRefGoogle Scholar
Chen, A. and Shapiro, M. J., NOE Pumping: A Novel NMR Technique for Identification of Compounds with Binding Affinity to Macromolecules. J. Am. Chem. Soc. 120 (1998), 10258–9.CrossRefGoogle Scholar
Morris, K. F. and Johnson, Jr. C. S., Resolution of Discrete and Continuous Molecular Size Distributions by Means of Diffusion-Ordered 2D NMR Spectroscopy. J. Am. Chem. Soc. 115 (1993), 4291–9.CrossRefGoogle Scholar
Morris, K. F., Stilbs, P., and Johnson, Jr. C. S., Analysis of Mixtures Based on Molecular Size and Hydrophobicity by Means of Diffusion-Ordered 2D NMR. Anal. Chem. 66 (1994), 211–15.CrossRefGoogle Scholar
Barjat, H., Morris, G. A., Smart, S., Swanson, A. G., and Williams, S. C. R., High-Resolution Diffusion-Ordered 2D Spectroscopy (HR-DOSY) – A New Tool for the Analysis of Complex Mixtures. J. Magn. Reson. B 108 (1995), 170–2.CrossRefGoogle Scholar
Morris, K. F., Johnson, Jr. C. S., and Wong, T. C., Polymer-Induced Non-Newtonian to Newtonian Transition in Viscoelastic CTAB/Sodium Salicylate/Water as Studied by Diffusion-Ordered 2D NMR. J. Phys. Chem. 98 (1994), 603–8.CrossRefGoogle Scholar
Hinton, D. P. and Johnson, Jr. C. S., Simultaneous Measurements of Vesicle Diffusion Coefficients and Trapping Efficiencies by Means of Diffusion Ordered 2D NMR Spectroscopy. Chem. Phys. Lipids 69 (1994), 175–8.CrossRefGoogle Scholar
Kapur, G. S., Findeisen, M., and Berger, S., Analysis of Hydrocarbon Mixtures by Diffusion-Ordered NMR Spectroscopy. Fuel 79 (2000), 1347–51.CrossRefGoogle Scholar
Gil, A. M., Duarte, I., Cabrita, E., Goodfellow, B. J., Spraul, M., and Kerssebaum, R., Exploratory Applications of Diffusion Ordered Spectroscopy to Liquid Foods: An Aid Towards Spectral Assignment. Anal. Chim. Acta 506 (2004), 215–23.CrossRefGoogle Scholar
Nilsson, M., Duarte, I. F., Almeida, C., Delgadillo, I., Goodfellow, B. J., Gil, A. M., and Morris, G. A., High-Resolution NMR and Diffusion-Ordered Spectroscopy of Port Wine. J. Agric. Food Chem. 52 (2004), 3736–43.CrossRefGoogle ScholarPubMed
Politi, M., Groves, P., Chávez, M. I., Cañada, F. J., and Jiménez-Barbero, J., Useful Applications of DOSY Experiments for the Study of Mushroom Polysaccharides. Carbohydr. Res. 341 (2006), 84–9.CrossRefGoogle Scholar
Simpson, A. J., Kingery, W. L., Spraul, M., Humpfer, E., Dvortsak, P., and Kerssebaum, R., Separation of Structural Components in Soil Organic Matter by Diffusion Ordered Spectroscopy. Environ. Sci. Technol. 35 (2001), 4421–25.CrossRefGoogle ScholarPubMed
Steinbeck, C. A., Hedin, N., and Chmelka, B. F., Interactions of Charged Porphyrins with Nonionic Triblock Copolymer Hosts in Aqueous Solutions. Langmuir 20 (2004), 10399–412.CrossRefGoogle ScholarPubMed
Gozansky, E. K. and Gorenstein, D. G., DOSY-NOESY: Diffusion-Ordered NOESY. J. Magn. Reson. B 111 (1996), 94–6.CrossRefGoogle ScholarPubMed
Harris, R. K., Kinnear, K. A., Morris, G. A., Stchedroff, M. J., Samadi-Maybodi, A., and Azizi, N., Silicon-29 Diffusion-Ordered NMR Spectroscopy (DOSY) as a Tool for Studying Aqueous Silicates. Chem. Commun. (2001), 2422–3.CrossRefGoogle ScholarPubMed
Pages, G., Delaurent, C., and Caldarelli, S., Simplified Analysis of Mixtures of Small Molecules by Chromatographic NMR Spectroscopy. Angew. Chem. (Int. Ed.) 49 (2006), 5950–3.CrossRefGoogle Scholar
Gibbs, S. J. and Johnson, Jr. C. S., Pulsed Field Gradient NMR Study of Probe Motion in Polyacrylamide Gels. Macromolecules 24 (1991), 6110–13.CrossRefGoogle Scholar
Hinton, D. P. and Johnson, Jr. C. S., Diffusion Coefficients, Electrophoretic Mobilities, and Morphologies of Charged Phospholid Vesicles by Pulsed Field Gradient NMR and Electron Microscopy. J. Colloid Interface Sci. 173 (1995), 364–71.CrossRefGoogle Scholar
Griffiths, P. C., Cheung, A. Y. F., Farley, C., Paul, A., Heenan, R. K., King, S. M., Pettersson, E., Stilbs, P., and Ranganathan, R., Small-Angle Neutron Scattering, Electron Paramagnetic Resonance, Electrophoretic NMR, and Time-Resolved Fluorescence Quenching Studies of Sodium Dodecyl Sulfate and Tetra(ethylene oxide) Dodecyl Ether Mixed Surfactant Micelles. J. Phys. Chem. B 108 (2004), 1351–6.CrossRefGoogle Scholar
Griffiths, P. C., Pettersson, E., Stilbs, P., Cheung, A. Y. F., Howe, A. M., and Pitt, A. R., Electrophoretic Nuclear Magnetic Resonance Studies of Mixed Anionic-Nonionic Surfactant Micelles. Langmuir 17 (2001), 7178–81.CrossRefGoogle Scholar
Böhme, U. and Scheler, U., Effective Charge of Bovine Serum Albumin Determined by Electrophoresis NMR. Chem. Phys. Lett. 435 (2007), 342–5.CrossRefGoogle Scholar
Böhme, U. and Scheler, U., Counterion Mobility and Effective Charge of Polyelectrolytes in Solution. Macromol. Symp. 211 (2004), 87–92.CrossRefGoogle Scholar
He, Q. and Wei, Z., Convection Compensated Electrophoretic NMR. J. Magn. Reson. 150 (2001), 126–31.CrossRefGoogle ScholarPubMed
Pettersson, E., Topgaard, D., Stilbs, P., and Söderman, O., Surfactant/Nonionic Polymer Interaction. A NMR Investigation and NMR Electrophoretic Investigation. Langmuir 20 (2004), 1138–43.CrossRefGoogle ScholarPubMed
Walls, H. J. and Zawodzinski, Jr. T. A., Anion and Cation Transference Numbers Determined by Electrophoretic NMR of Polymer Electrolytes Sum to Unity. Electrochem. Solid State Lett. 3 (2000), 321–4.CrossRefGoogle Scholar
Holz, M., Heil, S. R., and Schwab, I. A., Electrophoretic NMR Studies of Electrical Transport in Fluid-Filled Porous Systems. Magn. Reson. Imaging 19 (2001), 457–63.CrossRefGoogle ScholarPubMed
Manz, B., Stilbs, P., Jönsson, B., Söderman, O., and Callaghan, P. T., NMR Imaging of the Time Evolution of Electroosmotic Flow in a Capillary. J. Phys. Chem. 99 (1995), 11297–301.CrossRefGoogle Scholar
Bendel, P., Bernado, M., Dunsmuir, J. H., and Thomann, H., Electric Field Driven Flow in Natural Porous Media. Magn. Reson. Imaging 21 (2003), 321–7.CrossRefGoogle ScholarPubMed
Ise, M., Kreuer, K. D., and Maier, J., Electroosmotic Drag in Polymer Electrolyte Membranes: An Electrophoretic NMR Study. Solid State Ionics 125 (1999), 213–23.CrossRefGoogle Scholar
Wu, D., Chen, A., and Johnson, Jr. C. S., Flow Imaging by Means of 1D Pulsed-Field-Gradient NMR with Application to Electroosmotic Flow. J. Magn. Reson. A 115 (1995), 123–6.CrossRefGoogle Scholar
Gaemers, S., Elsevier, C. J., and Bax, Ad., NMR of Biomolecules in Low Viscosity, Liquid CO2. Chem. Phys. Lett. 301 (1999), 138–44.CrossRefGoogle Scholar
Kamatari, Y. O., Yamada, H., Akasaka, K., Jones, J. A., Dobson, C. M., and Smith, L. J., Response of Native and Denatured Hen Lysozyme to High Pressure Studied by 15N/1H NMR Spectroscopy. Eur. J. Biochem. 268 (2001), 1782–93.CrossRefGoogle Scholar
Mackay, J. P., Shaw, G. L., and King, G. F., Backbone Dynamics of the c-Jun Leucine Zipper: 15N NMR Relaxation Studies. Biochemistry 35 (1996), 4867–77.CrossRefGoogle ScholarPubMed
Everhart, C. H. and Johnson, Jr. C. S., The Determination of Tracer Diffusion Coefficients for Proteins by Means of Pulsed Field Gradient NMR with Applications to Hemoglobin. J. Magn. Reson. 48 (1982), 466–74.Google Scholar
Price, W. S., Tsuchiya, F., and Arata, Y., Lysozyme Aggregation and Solution Properties Studied Using PGSE NMR Diffusion Measurements. J. Am. Chem. Soc. 121 (1999), 11503–12.CrossRefGoogle Scholar
Nesmelova, I. V. and Fedotov, V. D., Self-Diffusion of Myoglobin and Water Molecules in Solutions. Polym. Sci. A 39 (1997), 361–5.Google Scholar
Dingley, A. J., Mackay, J. P., Chapman, B. E., Morris, M. B., Kuchel, P. W., Hambly, B. D., and King, G. F., Measuring Protein Self-Association Using Pulsed-Field-Gradient NMR Spectroscopy: Application to Myosin Light Chain 2. J. Biomol. NMR 6 (1995), 321–8.CrossRefGoogle ScholarPubMed
Gibbs, S. J., Chu, A. S., Lightfoot, E. N., and Root, T. W., Ovalbumin Diffusion at Low Ionic Strength. J. Phys. Chem. 95 (1991), 467–71.CrossRefGoogle Scholar
Dehner, A. and Kessler, H., Diffusion NMR Spectroscopy: Folding and Aggregation of Domains in P53. ChemBioChem 6 (2005), 1550–65.CrossRefGoogle ScholarPubMed
Price, W. S., Nara, M., and Arata, Y., A Pulsed Field Gradient NMR Study of the Aggregation and Hydration of Parvalbumin. Biophys. Chem. 65 (1997), 179–87.CrossRefGoogle ScholarPubMed
Inglis, S. R., McGann, M. J., Price, W. S., and Harding, M. M., Diffusion NMR Studies on Fish Antifreeze Proteins and Synthetic Analogues. FEBS Lett. 580 (2006), 3911–15.CrossRefGoogle ScholarPubMed
Krishnan, V. V., Determination of Oligomeric State of Proteins in Solution from Pulsed-Field-Gradient Self-Diffusion Coefficient Measurements. A Comparison of Experimental, Theoretical, and Hard-Sphere Approximated Values. J. Magn. Reson. 124 (1997), 468–73.CrossRefGoogle Scholar
Derrick, T. S. and Larive, C. K., Use of PFG-NMR for Mixture Analysis: Measurement of Diffusion Coefficients of Cis and Trans Isomers of Proline-Containing Peptides. Appl. Spectrosc. 53 (1999), 1595–600.CrossRefGoogle Scholar
McAlister, M. S. B., Davis, B., Pfuhl, M., and Driscoll, P. C., NMR Analysis of the N-Terminal SRCR Domain of Human CD5: Engineering of a Glycoprotein for Superior Characteristics in NMR Experiments. Protein Eng. 11 (1998), 847–53.CrossRefGoogle ScholarPubMed
Aso, Y., Yoshioka, S., and Kojima, S., Determination of the Diffusion Coefficient of Insulin and Lysozyme in Crosslinked Dextran Hydrogels by Pulsed-Field-Gradient NMR. Chem. Pharm. Bull. 46 (1998), 1836–9.CrossRefGoogle ScholarPubMed
Kuchel, P. W., Chapman, B. E., and Lennon, A. J., Diffusion of Hydrogen in Aqueous Solutions Containing Protein. Pulsed Field Gradient NMR Measurements. J. Magn. Reson. A 103 (1993), 329–31.CrossRefGoogle Scholar
Knauss, R., Schiller, J., Fleischer, G., Kärger, J., and Arnold, K., Self-Diffusion of Water in Cartilage and Cartilage Components as Studied by Pulsed Field Gradient NMR. Magn. Reson. Med. 41 (1999), 285–92.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Kimmich, R., Klammler, F., Skirda, V. D., Serebrennikova, I. A., Maklakov, A. I., and Fatkullin, N., Geometrical Restrictions of Water Diffusion in Aqueous Protein Systems. A Study Using NMR Field-Gradient Techniques. Appl. Magn. Reson. 4 (1993), 425–40.CrossRefGoogle Scholar
Dötsch, V. and Wider, G., Exchange Rates of Internal Water Molecules in Proteins Measured Using Pulsed Field Gradients. J. Am. Chem. Soc. 117 (1995), 6064–70.CrossRefGoogle Scholar
Baranowska, H. M. and Olszewski, K. J., The Hydration of Proteins in Solutions by Self-Diffusion Coefficients NMR Study. Biochim. Biophys. Acta 1289 (1996), 312–14.CrossRefGoogle ScholarPubMed
Lamanna, R., Delmelle, M., and Cannistraro, S., Solvent Stokes–Einstein Violation in Aqueous Protein Solutions. Phys. Rev. E 49 (1994), 5878–80.CrossRefGoogle ScholarPubMed
Mariette, F., Topgaard, D., Jönsson, B., and Söderman, O., 1H NMR Diffusometry Study of Water in Casein Dispersions and Gels. J. Agric. Food Chem. 50 (2002), 4295–302.CrossRefGoogle ScholarPubMed
Kotitschke, K., Kimmich, R., Rommel, E., and Parak, F., NMR Study of Diffusion in Protein Hydration Shells. Progr. Colloid Polym. Sci. 83 (1990), 211–15.CrossRefGoogle Scholar
Price, W. S., NMR Gradient Methods in the Study of Proteins. In Annual Reports on the Progress in Chemistry Section C, ed. Webb, G. A.. vol. 96. (Cambridge: Royal Society of Chemistry, 2000), pp. 3–53.Google Scholar
Price, W. S., Tsuchiya, F., and Arata, Y., Time-Dependence of Aggregation in Crystallizing Lysozyme Solutions Probed Using NMR Self-Diffusion Measurements. Biophys. J. 80 (2001), 1585–90.CrossRefGoogle ScholarPubMed
Moll, R. E., Observation of a Helix-Coil Transition by Pulsed-Field-Gradient Spin-Echo Nuclear Magnetic Resonance. J. Am. Chem. Soc. 90 (1968), 4739.CrossRefGoogle Scholar
Mayo, K. H., Ilyina, E., and Park, H., A Recipe for Designing Water-Soluble, β-Sheet-Forming Peptides. Protein Eng. 5 (1996), 1301–15.Google ScholarPubMed
Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D., and Dobson, C. M., Amyloid Fibril Formation by an SH3 Domain. Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 4224–8.CrossRefGoogle ScholarPubMed
Pan, H., Barany, G., and Woodward, C., Reduced BPTI is Collapsed. A Pulsed Field Gradient NMR Study of Unfolded and Partially Folded Bovine Pancreatic Trypsin Inhibitor. Protein Sci. 6 (1997), 1985–92.CrossRefGoogle ScholarPubMed
Choy, W. Y., Mulder, F. A. A., Crowhurst, K. A., Muhandiram, D. R., Millett, I. S., Doniach, S., Forman-Kay, J. D., and Kay, L. E., Distribution of Molecular Size within An Unfolded State Ensemble Using Small-Angle X-Ray Scattering and Pulse Field Gradient NMR Techniques. J. Mol. Biol. 316 (2002), 101–12.CrossRefGoogle ScholarPubMed
Buevich, A. V. and Baum, J., Residue-Specific Real-Time NMR Diffusion Experiments Define the Association States of Proteins during Folding. J. Am. Chem. Soc. 124 (2002), 7156–62.CrossRefGoogle ScholarPubMed
Jones, J. A., Wilkins, D. K., Smith, L. J., and Dobson, C. M., Characterization of Protein Unfolding by NMR Diffusion Measurements. J. Biomol. NMR 10 (1997), 199–203.CrossRefGoogle Scholar
Price, W. S., Tsuchiya, F., Suzuki, C., and Arata, Y., Characterization of the Solution Properties of Pichia farinosa Killer Toxin Using PGSE NMR Diffusion Measurements. J. Biomol. NMR 13 (1999), 113–17.CrossRefGoogle ScholarPubMed
Wilkins, D. K., Grimshaw, S. B., Receveur, V., Dobson, C. M., Jones, J. A., and Smith, L. J., Hydrodynamic Radii of Native and Denatured Proteins Measured by Pulse Field Gradient NMR Techniques. Biochemistry 38 (1999), 16424–31.CrossRefGoogle ScholarPubMed
Jayawickrama, D. A. and Larive, C. K., Analysis of the (Trimethylsilyl)Propionic Acid-β(12–28) Peptide Binding Equilibrium with NMR Spectroscopy. Anal. Chem. 71 (1999), 2117–22.CrossRefGoogle ScholarPubMed
Begotka, B. A., Hunsader, J. L., Oparaeche, C., Vincent, J. K., and Morris, K. F., A Pulsed Field Gradient NMR Diffusion Investigation of Enkephalin Peptide-Sodium Dodecyl Sulfate Micelle Association. Magn. Reson. Chem. 44 (2006), 586–93.CrossRefGoogle ScholarPubMed
Andersson, A., Almqvist, J., Hagn, F., and Mäler, L., Diffusion and Dynamics of Penetratin in Different Membrane Mimicking Media. Biochim. Biophys. Acta 1661 (2007), 18–25.CrossRefGoogle Scholar
Chien, W. J., Cheng, S. F., and Chang, D. K., Determination of the Binding Constant of a Protein Kinase C Substrate, NG(28–43), to Sodium Dodecyl Sulfate via the Diffusion Coefficient Measured by Pulsed Field Gradient Nuclear Magnetic Resonance. Anal. Biochem. 264 (1998), 211–15.CrossRefGoogle Scholar
Liu, M., Nicholson, J. K., and Lindon, J. C., Analysis of Drug-Protein Binding Using Nuclear Magnetic Resonance Based Molecular Diffusion Measurements. Anal. Commun. 34 (1997), 225–8.CrossRefGoogle Scholar
Yao, S., Cherny, R. A., Bush, A. I., Masters, C. L., and Barnham, K. J., Characterizing Bathocuproine Self-Association and Subsequent Binding to Alzheimer's Disease Amyloid β-Peptide by NMR. J. Peptide Sci. 10 (2004), 210–17.CrossRefGoogle Scholar
Ma, Y., Liu, M., Mao, X.-A., Nicholson, J. K., and Lindon, J. C., NMR Spectroscopic Diffusion, Chemical Shift and Linewidth Measurements of Low-Affinity Binding of Ibuprofen Enantiomers to Human Serum Albumin. Magn. Reson. Chem. 37 (1999), 269–73.3.0.CO;2-U>CrossRefGoogle Scholar
Luo, R.-S., Liu, M.-L., and Mao, X.-A., NMR Diffusion and Relaxation Study on Ibuprofen-HSA Interaction. Appl. Spectrosc. 53 (1999), 776–9.CrossRefGoogle Scholar
Price, W. S., Elwinger, F., Vigouroux, C., and Stilbs, P., PGSE-WATERGATE, a New Tool for NMR Diffusion-Based Studies of Ligand-Macromolecule Binding. Magn. Reson. Chem. 40 (2002), 391–5.CrossRefGoogle Scholar
Yang, Y., Bai, G., Zhang, Xu., Ye, C., and Liu, M., 1H Spectroscopic Evidence of Interaction Between Ibuprofen and Lipoproteins in Human Blood Plasma. Anal. Biochem. 324 (2004), 292–7.CrossRefGoogle ScholarPubMed
Lennon, A. J., Scott, N. R., Chapman, B. E., and Kuchel, P. W., Hemoglobin Affinity for 2,3-Bisphosphoglycerate in Solutions and Intact Erythrocytes: Studies Using Pulsed-Field Gradient Nuclear Magnetic Resonance and Monte Carlo Simulations. Biophys. J. 67 (1994), 2096–109.CrossRefGoogle ScholarPubMed
Lapham, J., Rife, J. P., Moore, P. B., and Crothers, D. M., Measurement of Diffusion Constants for Nucleic Acids by NMR. J. Biomol. NMR 10 (1997), 255–62.CrossRefGoogle Scholar
Yang, X., Sanghvi, Y. S., and Gao, X., Conformational Studies of Antisense DNA by PFG NMR. J. Biomol. NMR 10 (1997), 383–8.CrossRefGoogle ScholarPubMed
Andreasson, B., Nordenskiöld, L., and Schultz, J., Interactions of Spermidine and Methylspermidine with DNA Studied by Nuclear Magnetic Resonance Self-Diffusion Measurements. Biophys. J. 70 (1996), 2847–56.CrossRefGoogle ScholarPubMed
Dam, L., Lyubartsev, A. P., Laaksonen, A., and Nordenskiöld, L., Self-Diffusion and Association of Li+, Cs+, and H2O in Oriented DNA Fibres. An NMR and MD Simulation Study. J. Phys. Chem. B 102 (1998), 10636–42.Google Scholar
Kaucher, M. S., Lam, Y.-F., Pieraccini, S., Gotarelli, G., and Davis, J. T., Using Diffusion NMR to Characterize Guanosine Self-Association: Insights into Structure and Mechanism. Chemistry: A European Journal 11 (2005), 164–73.CrossRefGoogle Scholar
Evan-Salem, T., Frish, L., Leeuwen, F. W. B., Reinhoudt, D. N., Verboom, W., Kaucher, M. S., Davis, J. T., and Cohen, Y., Self-Assembled Ionophores from Isoguanosine: Diffusion NMR Spectroscopy Clarifies Cation's and Anion's Influence on Supramolecular Structure. Chemistry: A European Journal 13 (2007), 1969–77.CrossRefGoogle ScholarPubMed
Böckmann, A. and Guittet, E., Determination of Fast Proton Exchange Rates of Biomolecules by NMR Using Water Selective Diffusion Experiments. FEBS Lett. 418 (1997), 127–30.CrossRefGoogle ScholarPubMed
Gmeiner, W. H., Hudalla, C. J., Soto, A. M., and Marky, L., Binding of Ethidium to DNA Measured Using a 2D Diffusion-Modulated Gradient COSY NMR Experiment. FEBS Lett. 465 (2000), 148–52.CrossRefGoogle ScholarPubMed
Pluen, A., Netti, P. A., Jain, R. K., and Berk, D. A., Diffusion of Macromolecules in Agarose Gels: Comparison of Linear and Globular Configurations. Biophys. J. 77 (1999), 542–52.CrossRefGoogle ScholarPubMed
Gibbs, S. J. and Johnson, Jr. C. S., Polyammonium Cation Diffusion in Aqueous Solutions of DNA as Studied by Pulsed Field Gradient NMR. Macromolecules 24 (1991), 5224–5.CrossRefGoogle Scholar
Baslow, M. H. and Guilfoyle, D. N., Effect of N-Acetylaspartic Acid on the Diffusion Coefficient of Water: A Proton Magnetic Resonance Phantom Method for Measurement of Osmolyte-Obligated Water. Anal. Biochem. 311 (2002), 133–8.CrossRefGoogle ScholarPubMed
Daranas, A. H., Fernández, J. H., Morales, E. Q., Norte, M., and Gavín, J. A., Self-Association of Okadaic Acid upon Complexation with Potassium Ion. J. Med. Chem. 47 (2004), 10–13.CrossRefGoogle ScholarPubMed
Adachi, K., Natsuisaka, M., and Tanioka, A., Measurements of Self-Diffusion Coefficients of Monensin in Chloroform Solution by PFG-NMR. J. Chem. Soc., Faraday Trans. 93 (1997), 3347–50.CrossRefGoogle Scholar
Parkinson, J. A., Sun, H., and Sadler, P. J., New Approach to the Solution Chemistry of Bismuth Citrate Antiulcer Complexes. Chem. Commun. (1998), 881–2.CrossRefGoogle Scholar
Lo, M.-C., Helm, J. S., Sarngadharan, G., Pelczer, I., and Walker, S., A New Structure for the Substrate-Binding Antibiotic Ramoplanin. J. Am. Chem. Soc. 123 (2001), 8640–1.CrossRefGoogle ScholarPubMed
Orfi, L., Larive, C. K., and LeVine, S. M., Physicochemical Characterization of Psychosine by 1H Nuclear Magnetic Resonance and Electron Microscopy. Lipids 32 (1997), 1035–40.CrossRefGoogle ScholarPubMed
Shikii, K., Sakamoto, S., Seki, H., Utsumi, H., and Yamaguchi, K., Narcissistic Aggregation of Steroid Compounds in Diluted Solution Elucidated by CSI-MS, PFG NMR and X-Ray Analysis. Tetrahedron 60 (2004), 3487–92.CrossRefGoogle Scholar
Blinc, A., Lahajnar, G., Blinc, R., Zidanšek, A., and Sepe, A., Proton NMR Study of the State of Water in Fibrin Gels, Plasma, and Blood Clots. Magn. Reson. Med. 14 (1990), 105–22.CrossRefGoogle ScholarPubMed
Zhang, Xu., Li, C.-G., Ye, C.-H., and Liu, M.-L., Determination of Molecular Self-Diffusion Coefficient Using Multiple Spin-Echo NMR Spectroscopy with Removal of Convection and Background Gradient Artifacts. Anal. Chem. 73 (2001), 3528–34.CrossRefGoogle ScholarPubMed
Yamane, Y., Kobayashi, M., Kimura, H., Kuroki, S., and Ando, I., Diffusional Behavior of Amino Acids in Solid-Phase Reaction Field as Studied by 1H Pulsed-Field-Gradient Spin-Echo NMR Method. Polymer 43 (2002), 1767–72.CrossRefGoogle Scholar
Kwak, S. and Lafleur, M., NMR Self-Diffusion of Molecular and Macromolecular Species in Dextran Solutions and Gels. Macromolecules 36 (2003), 3189–95.CrossRefGoogle Scholar
Mistry, N., Ismail, M. I., Farrant, R. D., Liu, M., Nicholson, J. K., and Lindon, J. C., Impurity Profiling in Bulk Pharmaceutical Batches Using 19F NMR Spectroscopy and Distinction Between Monomeric and Dimeric Impurities by NMR-Based Diffusion Measurements. J. Pharm. Biomed. Anal. 19 (1999), 511–17.CrossRefGoogle ScholarPubMed
Morris, K. F., Cutak, B. J., Dixon, A. M., and Larive, C. K., Analysis of Diffusion Coefficient Distributions in Humic and Fulvic Acids by Means of Diffusion Ordered NMR Spectroscopy. Anal. Chem. 71 (1999), 5315–21.CrossRefGoogle ScholarPubMed
Lead, J. R., Wilkinson, K. J., Balnois, E., Cutak, B. J., Larive, C. K., Assemi, S., and Beckett, R., Diffusion Coefficients and Polydispersities of the Suwannee River Fulvic Acid: Comparison of Fluorescence, Pulsed-Field Gradient Nuclear Magnetic Resonance, and Flow Field-Flow Fractionation. Environ. Sci. Technol. 34 (2000), 3508–13.CrossRefGoogle Scholar
Orädd, G. and Lindblom, G., Lateral Diffusion Studied by Pulsed Field Gradient NMR on Oriented Lipid Membranes. Magn. Reson. Chem. 42 (2004), 123–31.CrossRefGoogle ScholarPubMed
Filippov, A., Orädd, G., and Lindblom, G., The Effect of Cholesterol on the Lateral Diffusion of Phospholipids in Oriented Bilayers. Biophys. J. 84 (2003), 3079–86.CrossRefGoogle ScholarPubMed
Filippov, A., Orädd, G., and Lindblom, G., Sphingomyelin Structure Influences the Lateral Diffusion and Raft Formation in Lipid Bilayers. Biophys. J. 90 (2006), 2086–92.CrossRefGoogle ScholarPubMed
Orädd, G., Westerman, P. W., and Lindblom, G., Lateral Diffusion Coefficients of Separate Lipid Species in a Ternary Raft-Forming Bilayer: A Pfg-NMR Multinuclear Study. Biophys. J. 89 (2005), 315–20.CrossRefGoogle Scholar
Orädd, G. and Lindblom, G., NMR Studies of Lipid Lateral Diffusion in the DMPC/Gramicidin D/Water System: Peptide Aggregation and Obstruction Effects. Biophys. J. 87 (2004), 980–7.CrossRefGoogle ScholarPubMed
Shahedi, V., Orädd, G., and Lindblom, G., Domain-Formation in DOPC/SM Bilayers Studied by pfg-NMR: Effect of Sterol Structure. Biophys. J. 91 (2006), 2501–7.CrossRefGoogle ScholarPubMed
Karakatsanis, P. and Bayerl, T. M., Diffusion Measurements in Oriented Phospholipid Bilayers by 1H- NMR in a Static Fringe Field Gradient. Phys. Rev. E 54 (1996), 1785–90.CrossRefGoogle Scholar
Pampel, A., Zick, K., Glauner, H., and Engelke, F., Studying Lateral Diffusion in Lipid Bilayers by Combining a Magic Angle Spinning NMR Probe with a Microimaging Gradient System. J. Am. Chem. Soc. 126 (2004), 9534–5.CrossRefGoogle ScholarPubMed
Gaede, H. C. and Gawrisch, K., Multi-Dimensional Pulsed Field Gradient Magic Angle Spinning NMR Experiments on Membranes. Magn. Reson. Chem. 42 (2004), 115–22.CrossRefGoogle ScholarPubMed
Gaede, H. C., Luckett, K. C., Polozov, I. V., and Gawrisch, K., Multinuclear NMR Studies of Single Lipid Bilayers Supported in Cylindrical Aluminum Oxide Nanopores. Langmuir 20 (2004), 7711–19.CrossRefGoogle ScholarPubMed
Wattraint, O. and Sarazin, C., Diffusion Measurements of Water, Ubiquinone and Lipid Bilayer Inside a Cylindrical Nanoporous Support: A Stimulated Echo Pulsed-Field Gradient MAS-NMR Investigation. Biochim. Biophys. Acta 1713 (2005), 65–72.CrossRefGoogle ScholarPubMed
Tanner, J. E. and Stejskal, E. O., Restricted Self-Diffusion of Protons in Colloidal Systems by the Pulsed-Gradient, Spin-Echo Method. J. Chem. Phys. 49 (1968), 1768–77.CrossRefGoogle Scholar
Cory, D. G. and Garroway, A. N., Measurement of Translational Displacement Probabilities by NMR: An Indicator of Compartmentation. Magn. Reson. Med. 14 (1990), 435–44.CrossRefGoogle ScholarPubMed
Zakhartchenko, N. L., Skirda, V. D., and Valiullin, R. R., Self-Diffusion of Water and Oil in Peanuts Investigated by PFG NMR. Magn. Reson. Imaging 16 (1998), 583–6.CrossRefGoogle ScholarPubMed
Tang, H.-R., Godward, J., and Hills, B., The Distribution of Water in Native Starch Granules – A Multinuclear NMR Study. Carbohydr. Polym. 43 (2000), 375–87.CrossRefGoogle Scholar
Fleischer, G., Skirda, V., and Werner, A., NMR-Investigation of Restricted Self-Diffusion of Oil in Rape Seeds. Eur. Biophys. J. 19 (1990), 25–30.CrossRefGoogle Scholar
Liger-Belair, G., Prost, É., Parmentier, M., Jeandet, P., and Nuzillard, J.-M., Diffusion Coefficient of CO2 Molecules as Determined by 13C NMR in Various Carbonated Beverages. J. Agric. Food Chem. 51 (2003), 7560–3.CrossRefGoogle Scholar
Peemoeller, H., Hale, M. E., Schneider, M. H., Sharp, A. R., and Kydon, D. W., Study of Restricted Diffusion in Wood. Wood Fiber Sci 17 (1985), 110–16.Google Scholar
Wycoff, W., Pickup, S., Cutter, B., Miller, W., and Wong, T. C., The Determination of the Cell Size in Wood by Nuclear Magnetic Resonance Diffusion Techniques. Wood Fiber Sci 32 (2000), 72–80.Google Scholar
Li, T.-Q., Henriksson, U., Klason, T., and Ödberg, L., Water Diffusion in Wood Pulp Cellulose Fibers Studied by Means of the Pulsed Gradient Spin-Echo Method. J. Colloid Interface Sci. 154 (1992), 305–15.CrossRefGoogle Scholar
Li, T.-Q., Häggkvist, M., and Ödberg, L., Porous Structure of Cellulose Fibers Studied by Q-Space NMR Imaging. Langmuir 13 (1997), 3570–4.CrossRefGoogle Scholar
Ek, R., Gren, T., Henriksson, U., Nyqvist, H., Nyström, C., and Ödberg, L., Prediction of Drug Release by Characterisation of the Tortuosity in Porous Cellulose Beads Using a Spin Echo NMR Technique. Int. J. Pharm. 124 (1995), 9–18.CrossRefGoogle Scholar
Topgaard, D. and Söderman, O., A NMR Self-Diffusion Study of the Porous Structure of Starch Granules. Progr. Colloid Polym. Sci. 120 (2002), 47–51.CrossRefGoogle Scholar
Newling, B. and Batchelor, S. N., Pulsed Field Gradient NMR Study of the Diffusion of H2O and Polyethylene Glycol Polymers in the Supramolecular Structure of Wet Cotton. J. Phys. Chem. B 107 (2003), 12391–7.CrossRefGoogle Scholar
Topgaard, D. and Söderman, O., Self-Diffusion in Two- and Three-Dimensional Powders of Anisotropic Domains: An NMR Study of the Diffusion of Water in Cellulose and Starch. J. Phys. Chem. B 106 (2002), 11887–92.CrossRefGoogle Scholar
Zijl, P. C. M., Moonen, C. T. W., Faustino, P., Pekar, J., Kaplan, O., and Cohen, J. S., Complete Separation of Intracellular and Extracellular Information in NMR Spectra of Perfused Cells by Diffusion-Weighted Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 88 (1991), 3228–32.CrossRefGoogle ScholarPubMed
Assaf, Y. and Cohen, Y., Non-Mono-Exponential Attenuation of Water and N-Acetyl Aspartate Signals Due to Diffusion in Brain Tissue. J. Magn. Reson. 131 (1998), 69–85.CrossRefGoogle ScholarPubMed
Malmborg, C., Sjöbeck, M., Brockstedt, S., Englund, E., Söderman, O., and Topgaard, D., Mapping the Intracellular Fraction of Water by Varying the Gradient Pulse Length in q-Space Diffusion MRI. J. Magn. Reson. 180 (2006), 280–5.CrossRefGoogle ScholarPubMed
Cooper, R. L., Chang, D. B., Young, A. C., Martin, C. J., and Ancker-Johnson, B., Restricted Diffusion in Biophysical Systems: Experiment. Biophys. J. 14 (1974), 161–77.CrossRefGoogle ScholarPubMed
Tanner, J. E., Self-Diffusion of Water in Frog Muscle. Biophys. J. 28 (1979), 107–16.CrossRefGoogle ScholarPubMed
Price, W. S., Chapman, B. E., Cornell, B. A., and Kuchel, P. W., Translational Diffusion of Glycine in Erythrocytes Measured at High Resolution with Pulsed Field Gradients. J. Magn. Reson. 83 (1989), 160–6.Google Scholar
Latour, L. L., Svoboda, K., Mitra, P. P., and Sotak, C. H., Time-Dependent Diffusion of Water in a Biological Model System. Proc. Natl. Acad. Sci. U.S.A. 91 (1994), 1229–33.CrossRefGoogle Scholar
Gelderen, P., DesPres, D., Zijl, P. C. M., and Moonen, C. T. W., Evaluation of Restricted Diffusion in Cylinders. Phosphocreatine in Rabbit Leg Muscle. J. Magn. Reson. B 103 (1994), 255–60.CrossRefGoogle ScholarPubMed
Kinsey, S. T., Locke, B. R., Penke, B., and Moerland, T. S., Diffusional Anisotropy is Induced by Subcellular Barriers in Skeletal Muscle. NMR Biomed. 12 (1999), 1–7.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Graaf, R. A., Kranenburg, A., and Nicolay, K., In Vivo 31P-NMR Diffusion Spectroscopy of ATP and Phosphocreatine in Rat Skeletal Muscle. Biophys J. 78 (2000), 1657–64.CrossRefGoogle Scholar
Griffin, J. L., Troke, J., Walker, L. A., Shore, R. F., Lindon, J. C., and Nicholson, J. K., The Biochemical Profile of Rat Testicular Tissue as Measured by Magic Angle Spinning 1H Spectroscopy. FEBS Lett. 486 (2000), 225–9.CrossRefGoogle Scholar
García-Pérez, A. I., López-Beltrán, E. A., Klüner, P., Luque, J., Ballesteros, P., and Cerdan, S., Molecular Crowding and Viscosity as Determinants of Translational Diffusion of Metabolites in Subcellular Organelles. Arch. Biochem. Biophys. 362 (1999), 329–38.CrossRefGoogle ScholarPubMed
Regan, D. G. and Kuchel, P. W., NMR Studies of Diffusion-Coherence Phenomena in Red Cell Suspensions: Current Status. Isr. J. Chem. 43 (2003), 45–54.CrossRefGoogle Scholar
Köpf, M., Corinth, C., Haferkamp, O., and Nonnenmacher, T. F., Anomalous Diffusion of Water in Biological Tissues. Biophys. J. 70 (1996), 2950–8.CrossRefGoogle ScholarPubMed
Howe, F. A., Filler, A. G., Bell, B. A., and Griffiths, J. R., Magnetic Resonance Neurography. Magn. Reson. Med. 28 (1992), 328–38.CrossRefGoogle ScholarPubMed
Moseley, M. E., Kucharczyk, J., Asgari, H. S., and Norman, D., Anisotropy in Diffusion-Weighted MRI. Magn. Reson. Med. 19 (1991), 321–6.CrossRefGoogle ScholarPubMed
Schoeniger, J. S., Aiken, N., Hsu, E., and Blackband, S. J., Relaxation-Time and Diffusion NMR Microscopy of Single Neurons. J. Magn. Reson. B 103 (1994), 261–73.CrossRefGoogle ScholarPubMed
Bihan, D., Molecular Diffusion Nuclear Magnetic Resonance Imaging. Magn. Reson. Q. 7 (1991), 1–30.Google ScholarPubMed
Fichele, S., Paley, M. N. J., Woodhouse, N., Griffiths, P. D., Beek, E. J. R., and Wild, J. M., Measurements and Modeling of Long Range 3He Diffusion in the Lung Using a ‘Slice-Washout’ Method. J. Magn. Reson. 174 (2005), 28–33.CrossRefGoogle ScholarPubMed
Carlton, K. J., Halse, M. R., and Strange, J. H., Diffusion-Weighted Imaging of Bacteria Colonies in the STRAFI Plane. J. Magn. Reson. 143 (2004), 24–9.CrossRefGoogle Scholar
Stanisz, G. J. and Henkelman, R. M., Diffusional Anistropy of total time for image acquisition2 Components in Bovine Optic Nerve. Magn. Reson. Med. 40 (1998), 405–10.CrossRefGoogle Scholar
Peled, S., Cory, D. G., Raymond, S. A., Kirschner, D. A., and Jolesz, F. A., Water Diffusion, T2, and Compartmentation in Frog Sciatic Nerve. Magn. Reson. Med. 42 (1999), 911–18.3.0.CO;2-J>CrossRefGoogle Scholar
Hubbard, P. L., McGrath, K. M., and Callaghan, P. T., A Study of Anisotropic Water Self-Diffusion and Defects in the Lamellar Mesophase. Langmuir 21 (2005), 4340–6.CrossRefGoogle ScholarPubMed
Komlosh, M. E., Horkay, F., Freidlin, R. Z., Nevo, U., Assaf, Y., and Basser, P. J., Detection of Microscopic Anisotropy in Gray Matter and in a Novel Tissue Phantom Using Double Pulsed Gradient Spin Echo MR. J. Magn. Reson. 189 (2007), 38–45.CrossRefGoogle Scholar
Hürlimann, M. D., Venkataramanan, L., and Flaum, C., The Diffusion–Spin Relaxation Time Distribution Function as An Experimental Probe to Characterize Fluid Mixtures in Porous Media. J. Chem. Phys. 117 (2002), 10223–32.CrossRefGoogle Scholar
Hürlimann, M. D., Flaum, M., Venkataramanan, L., Flaum, C., Freedman, R., and Hirasaki, G. J., Diffusion-Relaxation Distribution Functions of Sedimentary Rocks in Different Saturation States. Magn. Reson. Imaging 21 (2003), 305–10.CrossRefGoogle ScholarPubMed
Godefroy, S. and Callaghan, P. T., 2D Relaxation/Diffusion Correlations in Porous Media. Magn. Reson. Imaging 21 (2003), 381–3.CrossRefGoogle ScholarPubMed
Qiao, Y., Galvosas, P., Adalsteinsson, T., Schönhoff, M., and Callaghan, P. T., Diffusion Exchange NMR Spectroscopic Study of Dextran Exchange Through Polyelectrolyte Multilayer Capsules. J. Chem. Phys. 122 (2005), 214912-1–214912-9.CrossRefGoogle ScholarPubMed
Andrasko, J., Measurement of Membrane Permeability to Slowly Penetrating Molecules by a Pulse Gradient NMR Method. J. Magn. Reson. 21 (1976), 479–84.Google Scholar
Jiang, P.-C., Yu, T.-Y., Perng, W.-C., and Hwang, L.-P., Pore-to-Pore Hopping Model for the Interpretation of the Pulsed Gradient Spin Echo Attenuation of Water Diffusion in Cell Suspension Systems. Biophys. J. 80 (2001), 2493–504.CrossRefGoogle ScholarPubMed
Veen, J. W. C., Gelderen, P., Creyghton, J. H. N., and Bovée, W. M. M. J., Diffusion in Red Blood Cell Suspensions: Separation of the Intracellular and Extracellular NMR Sodium Signal. Magn. Reson. Med. 29 (1995), 571–4.CrossRefGoogle Scholar
Potter, K., Kleinberg, R. L., Brockman, F. J., and McFarland, E. W., Assay for Bacteria in Porous Media by Diffusion-Weighted NMR. J. Magn. Reson. B 113 (1996), 9–15.CrossRefGoogle ScholarPubMed
Waldeck, A. R., Lennon, A. J., Chapman, B. E., and Kuchel, P. W., 7Li and 23Na Nuclear Magnetic Resonance Studies of Transport and Diffusion in Liposomes. Comparison of Transport Rate Constants Estimated Using Pulsed Field Gradient and Magnetization-Transfer Procedures. J. Chem. Soc., Faraday Trans. 89 (1993), 2807–14.CrossRefGoogle Scholar
Gao, X. and Wong, T. C., Studies of the Binding and Structure of Adrenocorticotoprin Peptides in Membrane Mimics by NMR Spectroscopy and Pulsed-Field Gradient Diffusion. Biophys. J. 74 (1998), 1871–88.CrossRefGoogle ScholarPubMed
Andrec, M. and Prestegard, J. H., Quantitation of Chemical Exchange Rates Using Pulsed-Field-Gradient Diffusion Measurements. J. Biomol. NMR 9 (1997), 136–50.CrossRefGoogle ScholarPubMed
Liu, M., Toms, H. C., Hawkes, G. E., Nicholson, J. K., and Lindon, J. C., Determination of the Relative NH Proton Lifetimes of the Peptide Analogue Viomycin in Aqueous Solution by NMR-Based Diffusion Measurement. J. Biomol. NMR 13 (1999), 25–30.CrossRefGoogle ScholarPubMed
Cabrita, E. J. and Berger, S., HR-DOSY as a New Tool for the Study of Chemical Exchange Phenomena. Magn. Reson. Chem. 40 (2002), S122–7.CrossRefGoogle Scholar
Thureau, P., Ancian, B., Viel, S., and Thévand, A., Determining Chemical Exchange Rates of the Uracil Labile Protons by NMR Diffusion Experiments. Chem. Commun. (2006), 200–2.CrossRefGoogle ScholarPubMed
Lin, M., Jayawickrama, D. A., Rose, R. A., DelViscio, J. A., and Larive, C. K., Nuclear Magnetic Resonance Spectroscopic Analysis of the Selective Complexation of the cis and trans Isomers of Phenylalanylproline by β-Cyclodextrin. Anal. Chim. Acta 307 (1995), 449–57.CrossRefGoogle Scholar
Rinaldi, F., Lin, M., Shapiro, M. J., and Petersheim, M., duration of the gradient pulse-Opiate DPDE in Magnetically Oriented Phospholipid Micelles: Binding and Arrangement of Aromatic Pharmacophores. Biophys. J. 73 (1997), 3337–48.CrossRefGoogle Scholar
Orfi, L., Lin, M., and Larive, C. K., Measurement of SDS Micelle-Peptide Association Using 1H NMR Chemical Shift Analysis and Pulsed-Field Gradient NMR Spectroscopy. Anal. Chem. 70 (1998), 1339–45.CrossRefGoogle Scholar
Price, W. S., Ide, H., and Arata, Y., Self-Diffusion of Supercooled Water to 238 K Using PGSE NMR Diffusion Measurements. J. Phys. Chem. A 103 (1999), 448–50.CrossRefGoogle Scholar
Price, W. S., Ide, H., Arata, Y., and Söderman, O., Temperature Dependence of the Self-Diffusion of Supercooled Heavy Water to 244K. J. Phys. Chem. B 104 (2000), 5874–6.CrossRefGoogle Scholar
Yoshida, K., Wakai, C., Matubayasi, N., and Nakahara, M., A New High-Temperature Multinuclear-Magnetic-Resonance Probe and the Self-Diffusion of Light and Heavy Water in Sub- and Supercritical Conditions. J. Chem. Phys. 123 (2005), 164506-1–164506-10.CrossRefGoogle ScholarPubMed
Laaksonen, A. and Stilbs, P., Molecular-Dynamics and NMR Study of Methane-Water Systems. Molec. Phys. 74 (1991), 747–64.CrossRefGoogle Scholar
Klenø, J. G., Kristiansen, M. W., Nielsen, C. J., Pedersen, E. J., William, L. R., and Pedersen, T., Diffusion Coefficients in Cold Sulfuric Acid. J. Phys. Chem. A 105 (2001), 8440–4.CrossRefGoogle Scholar
Dippel, Th. and Kreuer, K. D., Proton Transport Mechanism in Concentrated Aqueous Solutions and Solid Hydrates of Acids. Solid State Ionics 46 (1991), 3–9.CrossRefGoogle Scholar
Malveau, C., Diter, B., Humbert, F., and Canet, D., Self-Diffusion Measurements by Carbon-13 NMR Using Radiofrequency Field Gradients. J. Magn. Reson. 130 (1998), 131–4.CrossRefGoogle ScholarPubMed
Murday, J. S. and Cotts, R. M., Self-Diffusion Coefficient of Liquid Lithium. J. Chem. Phys. 48 (1968), 4938–45.CrossRefGoogle Scholar
Murday, J. S. and Cotts, R. M., Self-Diffusion in Molten Lithium. Z. Naturforsch. 26a (1971), 85–93.Google Scholar
Krüger, G. J., Müller-Warmuth, W., and Klemm, A., Self-Diffusion of Liquid 6Li and 7Li as Measured by Nuclear Magnetic Resonance. Z. Naturforsch. 26a (1971), 94–8.Google Scholar
McCall, D. W. and Douglass, D. C., Diffusion in Binary Systems. J. Phys. Chem. 71 (1967), 987–97.CrossRefGoogle Scholar
Jacob, A. C. and Zeidler, M. D., Self-Diffusion in Binary Mixtures: The System Benzene/Cyclohexane at High Pressures. Phys. Chem. Chem. Phys. 5 (2003), 538–42.CrossRefGoogle Scholar
Groβ, T., Chen, L., Buchhauser, J., and Lüdemann, H.-D., total time for image acquisition,coherence order (see also multiple quantum coherences) Dependence of Intradiffusion in Binary Fluid Mixtures with Ammonia as One Component. Phys. Chem. Chem. Phys 3 (2001), 3701–6.Google Scholar
Britton, M. M., Nuclear Magnetic Resonance Studies of the 1,4-Cyclohexanedione-Bromate-Acid Oscillatory System. J. Phys. Chem. A 107 (2003), 5033–41.CrossRefGoogle Scholar
Wuttke, J., Chang, I., Randl, O. G., Fujara, F., and Petry, W., Tagged-Particle Motion in Viscous Glycerol: Diffusion–Relaxation Crossover. Phys. Rev. E 54 (1996), 5364–9.CrossRefGoogle ScholarPubMed
Vergara, A., Paduano, L., D'Errico, G., and Sartorio, R., Network Formation in Polyethyleneglycol Solutions. An Intradiffusion Study. Phys. Chem. Chem. Phys. 1 (1999), 4875–9.CrossRefGoogle Scholar
Groβ, T., Buchhauser, J., and Lüdemann, H.-D., Self-Diffusion in Fluid Carbon Dioxide at High Pressures. J. Chem. Phys. 109 (1998), 4518–22.Google Scholar
Groβ, T., Chen, L., Buchhauser, J., and Lüdemann, H.-D., total time for image acquisition,coherence order (see also multiple quantum coherences) Dependence of Intradiffusion in Binary Fluid Mixtures with Carbon Dioxide as One Component. Phys. Chem. Chem. Phys. 3 (2001), 2845–51.Google Scholar
Etesse, P., Chapman, W. G., and Kobayashi, R., Nuclear Magnetic Resonance Measurement of Spin-Lattice Relaxation and Self-Diffusion in Supercritical CO2-number of spatial dimensions-hexadecane Mixtures. Mol. Phys. 80 (1993), 1145–64.CrossRefGoogle Scholar
Holz, M., Haselmeier, R., Mazitov, R. K., and Weingärtner, H., Self-Diffusion of Neon in Water by 21Ne NMR. J. Am. Chem. Soc. 116 (1994), 801–2.CrossRefGoogle Scholar
Smith, E. G., Rockliffe, J. W., and Riley, P. I., Fourier Transform Pulsed Field Gradient and 1D NMR Imaging Studies of Molecular and Ionic Diffusion in Aqueous Dispersions. J. Colloid Interface Sci. 131 (1989), 29–37.CrossRefGoogle Scholar
Lutz, J. L. and Mendenhall, G. D., Diffusion Coefficients by NMR-Spin Echo Methods for the Systems Water-Ammonium Chloride, Water-Succinonitrile, and Acetone-Succinonitrile. J. Cryst. Growth 217 (2000), 183–8.CrossRefGoogle Scholar
Mo, H. and Pochapsky, T. C., Self-Diffusion Coefficients of Paired Ions. J. Phys. Chem. B 101 (1997), 4485–6.CrossRefGoogle Scholar
Larive, C. K., Lin, M., Kinnear, B. S., Piersma, B. J., Keller, C. E., and Carper, W. R., 13C and 27Al NMR Relaxation, Viscosity, and 1H Diffusion Studies of an Ethylaluminum Dichloride Melt. J. Phys. Chem. B 102 (1998), 1717–23.CrossRefGoogle Scholar
Aihara, Y., Sonai, A., Hattori, M., and Hayamizu, K., Ion Conduction Mechanisms and Thermal Properties of Hydrated and Anhydrous Phosphoric Acids Studied with 1H, 2H, and 31P NMR. J. Phys. Chem. B 110 (2006), 24999–5006.CrossRefGoogle ScholarPubMed
Price, W. S. and Söderman, O., Self-Diffusion Coefficients of Some Hydrocarbons in Water: Measurements and Scaling Relations. J. Phys. Chem. A 104 (2000), 5892–4.CrossRefGoogle Scholar
Meerwall, E., Beckman, S., Jang, J., and Mattice, W. L., Diffusion of Liquid number of spatial dimensions-Alkanes: Free-Volume and Density Effects. J. Chem. Phys. 108 (1998), 4299–304.CrossRefGoogle Scholar
Chen, L., Groβ, T., Lüdemann, H.-D., Krienke, H., and Fischer, R., First Observation of Different Diffusion Coefficients for Two Conformers in a Neat Liquid. Naturwissenschaften 87 (2000), 225–8.CrossRefGoogle Scholar
Buchhauser, J., Groβ, T., Karger, N., and Lüdemann, H.-D., Self-Diffusion in CD4 and ND3: With Notes on the Dynamic Isotope Effect in Liquids. J. Chem. Phys. 110 (1999), 3037–42.CrossRefGoogle Scholar
Davies, J. A. and Griffiths, P. C., A Phenomenological Approach to Separating the Effects of Obstruction and Binding for the Diffusion of Small Molecules in Polymer Solutions. Macromolecules 36 (2003), 950–2.CrossRefGoogle Scholar
Haselmeier, R., Holz, M., Kappes, M. M., Michel, R. H., and Fuchs, D., Translational Diffusion in C60 and C70 Fullerene Solutions. Ber. Bunsenges. Phys. Chem. 98 (1994), 878–81.CrossRefGoogle Scholar
Kato, T., Kikuchi, K., and Achiba, Y., Measurement of the Self-Diffusion Coefficient of C60 in Benzene-embedding dimension6 Using 13C Pulsed-Gradient Spin-Echo. J. Phys. Chem. 97 (1993), 10251–3.CrossRefGoogle Scholar
Feiweier, T., Isfort, O., Geil, B., Fujara, F., and Weingärtner, H., Decoupling of Lithium and Proton Self-Diffusion in Supercooled LiCl:7H2O: A Nuclear Magnetic Resonance Study in Ultrahigh Magnetic Field Gradients. J. Chem. Phys. 105 (1996), 5737–44.CrossRefGoogle Scholar
Monteiro, C. and Penhoat, C. H. du, Translational Diffusion of Dilute Aqueous Solutions of Sugars as Probed by NMR and Hydrodynamic Theory. J. Phys. Chem. A 105 (2001), 9827–33.CrossRefGoogle Scholar
Masuda, A., Ushida, K., Koshida, H., Yamashita, K., and Kluge, T., Novel Distance Dependence of Diffusion Constants in Hyaluronan Aqueous Solution Resulting from Its Characteristic Nano-Microstructure. J. Am. Chem. Soc. 123 (2001), 11468–71.CrossRefGoogle ScholarPubMed
Rampp, M., Buttersack, C., and Lüdemann, H.-D., Self-Diffusion of Sucrose in Molasses. Ind. Eng. Chem. Res. 39 (2000), 4400–07.CrossRefGoogle Scholar
Mahawanich, T. and Schmidt, S. J., Molecular Mobility and the Perceived Sweetness of Sucrose, Fructose, and Glucose Solutions. Food Chem. 84 (2003), 169–79.CrossRefGoogle Scholar
Branca, C., Magazù, S., Maisano, G., Migliardo, P., and Tettamanti, E., Anomalous Translational Diffusive Processes in Hydrogen-Bonded Systems Investigated by Ultrasonic Technique, Raman Scattering and NMR. Physica B 291 (2000), 180–9.CrossRefGoogle Scholar
Ekdawi-Sever, N., Pablo, J. J., Feick, E. J., and Meerwall, E., Diffusion of Sucrose and time-independent scaling constant,time-independent scaling constant-Trehalose in Aqueous Solutions. J. Phys. Chem. A 107 (2003), 936–43.CrossRefGoogle Scholar
Majer, G., Renz, W., Seeger, A., Barnes, R. G., Shinar, J., and Skripov, A. V., Pulsed-Field-Gradient Nuclear Magnetic Resonance Studies of Hydrogen Diffusion in Laves-Phase Hydrides. J. Alloys Compd. 231 (1995), 220–5.CrossRefGoogle Scholar
Pregosin, P. S., Martínez-Viviente, E., and Kumar, P. G. A., Diffusion and NOE NMR Spectroscopy. Applications to Problems Related to Coordination Chemistry and Homogeneous catalysis. J. Chem. Soc., Dalton Trans. (2003), 4007–14.CrossRefGoogle Scholar
Nama, D., Kumar, A. P. G., and Pregosin, P. S., 195Pt, 1H and 31P PGSE Diffusion Studies on Platinum Complexes. Magn. Reson. Chem. 43 (2005), 246–50.CrossRefGoogle ScholarPubMed
Keresztes, I. and Williard, P. G., Diffusion-Ordered NMR Spectroscopy (DOSY) of THF Solvated number of spatial dimensions-Butyllithium Aggregates. J. Am. Chem. Soc. 122 (2000), 10228–9.CrossRefGoogle Scholar
Beves, J. W., Constable, E. C., Housecroft, C. E., Neuberger, M., Schaffner, S., and Shardlow, E. J., [number of spatial dimensions + number of spatial dimensions]-Heterometallomacrocyclic Complexes (number of spatial dimensions ⩾ 2) Prepared From Platinum(II)-Centred Ditopic 2,2′:6′,2′′-Terpyridine Ligands: Dimensional Cataloguing by Pulsed-Field Gradient Spin-Echo NMR Spectroscopy. J. Chem. Soc., Dalton Trans. (2007), 1593–1602.CrossRefGoogle Scholar
Zuccaccia, C., Bellachioma, G., Cardaci, G., and Macchioni, A., Self-Diffusion Coefficients of Transition-Metal Complex Ions, Ion Pairs, and Higher Aggregates by Pulsed Field Gradient Spin-Echo NMR Measurements. Organometallics 19 (2000), 4663–5.CrossRefGoogle Scholar
Xie, X., Auel, C., Henze, W., and Gschwind, R. M., Dimethyl- and Bis[(trimethylsilyl)Methyl]cuprates Show Aggregates Higher than Dimers in Diethyl Ether: Molecular Diffusion Studies by PFG NMR and Aggregation-Reactivity Correlations. J. Am. Chem. Soc. 125 (2003), 1595–601.CrossRefGoogle Scholar
Callaghan, P., Jolley, K. W., and Humphrey, R. S., Diffusion of Fat and Water in Cheese as Studied by Pulsed Field Gradient Nuclear Magnetic Resonance. J. Colloid Interface Sci. 93 (1983), 521–9.CrossRefGoogle Scholar
Berg, T., Arlt, P., Brummer, R., Emeis, D., Kulicke, W.-M., Wiesner, S., and Wittern, K.-P., Insights into the Structure and Dynamics of Complex W/O-Emulsions by Combining NMR, Rheology and Electron Microscopy. Colloids Surf. A 238 (2004), 59–69.CrossRefGoogle Scholar
Hindmarsh, J. P., Hollingsworth, K. G., Wilson, D. I., and Johns, M. L., An NMR Study of the Freezing of Emulsion-Containing Drops. J. Colloid Interface Sci. 275 (2004), 165–71.CrossRefGoogle ScholarPubMed
Balinov, B., Söderman, O., and Ravey, J. C., Diffraction-like Effects Observed in the PGSE Experiment When Applied to a Highly Concentrated Water/Oil Emulsion. J. Phys. Chem. 98 (1994), 393–5.CrossRefGoogle Scholar
Lönnqvist, I., Håkansson, B., Balinov, B., and Söderman, O., NMR Self-Diffusion Studies of the Water and the Oil Components in a W/O/W Emulsion. J. Colloid Interface Sci. 192 (1997), 66–73.CrossRefGoogle Scholar
Hindmarsh, J. P., Su, J., Flanagan, J., and Singh, H., PFG-NMR Analysis of Intercompartment Exchange and Inner Droplet Size Distribution of W/O/W Emulsions. Langmuir 21 (2005), 9076–84.CrossRefGoogle ScholarPubMed
Topgaard, D., Malmborg, C., and Söderman, O., Restricted Self-Diffusion of Water in a Highly Concentrated W/O Emulsion Studied Using Modulated Gradient Spin-Echo NMR. J. Magn. Reson. 156 (2002), 195–201.CrossRefGoogle Scholar
McDonald, P. J., Ciampi, E., Keddie, J. L., Heidenreich, M., and Kimmich, R., Magnetic-Resonance Determination of the Spatial Dependence of the Droplet Size Distribution in the Cream Layer of Oil-in-Water Emulsions: Evidence for the Effects of Depletion Flocculation. Phys. Rev. E 59 (1999), 874–84.CrossRefGoogle Scholar
Hollingsworth, K. G. and Johns, M. L., Spatially Resolved Emulsion Droplet Sizing Using Inverse Abel Transforms. J. Magn. Reson. 176 (2005), 71–8.CrossRefGoogle ScholarPubMed
Stilbs, P. and Lindman, B., Determination of Organic Counterion Binding to Micelles through Fourier Transform NMR Self-Diffusion Measurements. J. Phys. Chem. 85 (1981), 2587–9.CrossRefGoogle Scholar
Annunziata, O., Costantino, L., D'Errico, G., Paduano, L., and Vitagliano, V., Transport Properties for Aqueous Sodium Sulfonate Surfactants 2. Intradiffusion Measurements: Influence of the Obstruction Effect on the Monomer and Micelle Mobilities. J. Colloid Interface Sci. 216 (1999), 16–24.CrossRefGoogle Scholar
Zhang, K., Jonströmer, M., and Lindman, B., Interaction Between Nonionic Micelles and a Nonionic Polymer Studied by Fourier Transform NMR Self-Diffusion. J. Phys. Chem. 98 (1994), 2459–63.CrossRefGoogle Scholar
Xu, B., Lynn, G. W., Guo, Ji., Melnichenko, Y. B., Wignall, G. D., McClain, J. B., DeSimone, J. M., and Johnson, Jr. C. S., NMR and SANS Studies of Aggregation and Microemulsion Formation by Phosphorus Fluorosurfactants in Liquid and Supercritical Carbon Dioxide. J. Phys. Chem. B 109 (2005), 10261–9.CrossRefGoogle ScholarPubMed
Dozol, H. and Berthon, C., Characterisation of the Supramolecular Structure of Malonamides by Application of Pulsed Field Gradients in NMR Spectroscopy. Phys. Chem. Chem. Phys. 9 (2007), 5162–70.CrossRefGoogle ScholarPubMed
Malmborg, C., Topgaard, D., and Söderman, O., Diffusion in An Inhomogeneous System: NMR Studies of Diffusion in Highly Concentrated Emulsions. J. Colloid Interface Sci. 263 (2003), 270–6.CrossRefGoogle Scholar
Chou, J. J., Baber, J. L., and Bax, Ad., Characterization of Phospholipid Mixed Micelles by Translational Diffusion. J. Biomol. NMR 29 (2004), 299–303.CrossRefGoogle ScholarPubMed
Angelico, R., Olsson, U., Palazzo, G., and Ceglie, A., Surfactant Curvilinear Diffusion in Giant Wormlike Micelles. Phys. Rev. Lett. 81 (1998), 2823–6.CrossRefGoogle Scholar
Belmajdoub, A., Boudot, D., Tondre, C., and Canet, D., NMR Self-Diffusion Measurements Using a Radio-Frequency Field Gradient Combined with Water Signal Suppression. Application to the pH-Dependent Solubilization of Hydroxyquinoline in SDS Micellar Solutions. Chem. Phys. Lett. 150 (1988), 194–8.CrossRefGoogle Scholar
Coppola, L., Mesa, C., Ranieri, G. A., and Terenzi, M., Analysis of Water Self-Diffusion in Polycrystalline Lamellar Systems by Pulsed Field Gradient Nuclear Magnetic Resonance Experiments. J. Chem. Phys. 98 (1993), 5087–90.CrossRefGoogle Scholar
Celebre, G., Coppola, L., Ranieri, G. A., and Terenzi, M., Analysis of the PFG-SE NMR Experiments in Lyotropic Mesophases: The Hexagonal Case. Mol. Cryst. Liquid Cryst. 238 (1994), 117–23.CrossRefGoogle Scholar
Domenici, V., Geppi, M., and Veracini, C. A., NMR in Chiral and Achiral Smectic Phases: Structure, Orientational Order and Dynamics. Prog. NMR Spectrosc. 50 (2007), 1–50.CrossRefGoogle Scholar
Coppola, L., Mesa, C., Ranieri, G. A., and Terenzi, M., Water Self-Diffusion in Micellar Solutions: PFG-NMR Study. Ann. Chim. 80 (1990), 271–81.Google Scholar
Cifelli, M., Saunavaara, J., Jokisaari, J., and Veracini, C. A., 129Xe Nuclear Shielding and Diffusion in the A and C* Phases of a Chiral Smectogen. J. Phys. Chem. A 108 (2006), 3973–9.CrossRefGoogle Scholar
Cifelli, M., Domenici, V., and Veracini, C. A., From the Synclinic to the Anticlinic Smectic Phases: a Deuterium NMR and Diffusion NMR Study. Mol. Cryst. Liquid Cryst. 429 (2005), 167–79.CrossRefGoogle Scholar
Ruohonen, J., Ylihautala, M., and Jokisaari, J., 129Xe diffusion in a Ferroelectric Liquid Crystal. Mol. Phys. 99 (2001), 711–19.CrossRefGoogle Scholar
Ruohonen, J. and Jokisaari, J., 129Xe NMR Shielding and Self-Diffusion in the Mixture of Two Thermotropic Nematogens with Opposite Diamagnetic Anisotropy. Phys. Chem. Chem. Phys. 3 (2001), 3208–12.CrossRefGoogle Scholar
Fleischer, G., Micellization in Aqueous Solution of a Poly(ethylene oxide)/Poly(propylene oxide)/Poly(ethylene oxide) Triblock Copolymer Investigated with Pulsed Field Gradient NMR. J. Phys. Chem. 97 (1993), 517–21.CrossRefGoogle Scholar
Nilsson, M., Håkansson, B., Söderman, O., and Topgaard, D., Influence of Polydispersity on the Micellization of Triblock Copolymers Investigated by Pulsed Field Gradient Nuclear Magnetic Resonance. Macromolecules 40 (2007), 8250–8.CrossRefGoogle Scholar
Ambrosone, L., Angelico, R., Ceglie, A., Olsson, U., and Palazzo, G., Molecular Diffusion in a Living Network. Langmuir 17 (2001), 6822–30.CrossRefGoogle Scholar
Blees, M. H., Geurts, J. M., and Leyte, J. C., Self-Diffusion of Charged Polybutadiene Latex Particles in Water Measured by Pulsed Field Gradient NMR. Langmuir 12 (1996), 1947–57.CrossRefGoogle Scholar
Roberts, J. M., Sierzputowska-Gracz, H., Stejskal, E. O., and Osteryoung, J. G., Determination of Li+ Self-Diffusion Coefficients in an Aqueous Suspension of Sulfonated Polystyrene Latex by Pulsed-Field-Gradient, Spin-Echo NMR. J. Phys. Chem. B 102 (1998), 7735–9.CrossRefGoogle Scholar
Schipper, F. J. M. and Leyte, J. C., Mass Transport in Polyelectrolyte Solutions. J. Phys. Condens. Matter 11 (1999), 1409–21.CrossRefGoogle Scholar
Böhme, U. and Scheler, U., Effective Size and Fractal Dimension of Polyelectrolytes Determined by Diffusion NMR. Macromol. Symp. 184 (2002), 349–56.3.0.CO;2-1>CrossRefGoogle Scholar
Daragan, V. A. and Il'ina, E. E., Pulsed Field Gradient NMR for the Study of the Structure of Membrane Systems. Chem. Phys. 158 (1991), 105–11.CrossRefGoogle Scholar
Volkov, V. I., Korotchkova, S. A., Ohya, H., and Guo, Q., Self-Diffusion of Water-Ethanol Mixtures in Polyacrylic Acid-Polysulfone Composite Membranes Obtained by Pulsed-Field Gradient Nuclear Magnetic Resonance Spectroscopy. J. Memb. Sci. 100 (1995), 273–86.CrossRefGoogle Scholar
Volkov, V. I., Korotchkova, S. A., Nesterov, I. A., Ohya, H., Guo, Q., Huang, J., and Chen, J., The Self-Diffusion of Water and Ethanol in Cellulose Derivative Membranes and Particles with the Pulsed Field Gradient NMR Data. J. Memb. Sci. 110 (1996), 1–11.CrossRefGoogle Scholar
Volkov, V. I., Popkov, Yu. M., Timashev, S. F., Bessarabov, D. G., Sanderson, R. D., and Twardowski, Z., Self-Diffusion of Water and Fluorine Ions in Anion-Exchange Polymeric Materials (Membranes and Resin) as Determined by Pulsed-Field Gradient Nuclear Magnetic Resonance Spectroscopy. J. Memb. Sci. 180 (2000), 1–13.CrossRefGoogle Scholar
Cosgrove, T. and Griffiths, P. C., The Critical Overlap Concentration Measured by Pulsed Field Gradient Nuclear Magnetic Resonance Techniques. Polymer 35 (1994), 509–13.CrossRefGoogle Scholar
Callaghan, P. T. and Coy, A., Evidence for Reptational Motion and the Entanglement Tube in Semidilute Polymer Solutions. Phys. Rev. Lett. 68 (1992), 3176–9.CrossRefGoogle ScholarPubMed
McCall, D. W., Douglass, D. C., and Anderson, E. W., Diffusion in Ethylene Polymers. IV. J. Chem. Phys. 30 (1959), 771–3.CrossRefGoogle Scholar
Appel, M., Fleischer, G., Kärger, J., Fujara, F., and Chang, I., Anomalous Segment Diffusion in Polymer Melts. Macromolecules 27 (1994), 4274–7.CrossRefGoogle Scholar
Cheng, S. Z. D., Barley, J. S., and Meerwall, E. D., Self-Diffusion of Poly(ethylene oxide) Fractions and Its Influence on the Crystalline Texture. J. Polym. Sci. B 29 (1991), 515–25.CrossRefGoogle Scholar
Cosgrove, T., Turner, M. J., Griffiths, P. C., Hollingshurst, J., Shenton, M. J., and Semlyen, J. A., Self-Diffusion and Spin-Spin Relaxation in Blends of Linear and Cyclic Polydimethylsiloxane Melts. Polymer 37 (1996), 1535–40.CrossRefGoogle Scholar
Fischer, E., Kimmich, R., and Fatkullin, N., NMR Field Gradient Diffusometry of Segment Displacements in Melts of Entangled Polymers. J. Chem. Phys. 104 (1996), 9174–8.CrossRefGoogle Scholar
Komlosh, M. E. and Callaghan, P. T., Segmental Motion of Entangled Random Coil Polymers Studied by Pulsed Gradient Spin Echo Nuclear Magnetic Resonance. J. Chem. Phys. 109 (1998), 10053–67.CrossRefGoogle Scholar
Cain, J. B., Zhang, K., Betts, D. E., DeSimone, J. M., and Johnson, Jr. C. S., Diffusion of Block Copolymers in Liquid CO2: Evidence of Self-Assembly from Pulsed Field Gradient NMR. J. Am. Chem. Soc. 120 (1998), 9390–1.CrossRefGoogle Scholar
Zhao, T. and Beckham, H. W., Direct Synthesis of Cyclodextrin-Rotaxanated Poly(ethylene glycol)s and Their Self-Diffusion Behavior in Dilute Solution. Macromolecules 36 (2003), 9859–65.CrossRefGoogle Scholar
Fleischer, G., Sillescu, H., and Skirda, V. D., Molecular Motion in Concentrated Solutions of Spherical Polystyrene Microgels Studied with the Pulsed Field Gradient NMR. Polymer 35 (1994), 1936–41.CrossRefGoogle Scholar
Rosén, O., Boström, M., Nydén, M., and Piculell, L., Anomalous Surfactant Diffusion in a Gel of Chemically Cross-Linked Ethyl(hydroxyethyl) Cellulose. J. Phys. Chem. B 107 (2003), 4074–9.CrossRefGoogle Scholar
Shapiro, Y. E., Compartmentation in the Poly(vinyl alcohol) Cryogels. 1H NMR Self-Diffusion Study. Colloids Surf. A 164 (2000), 71–83.CrossRefGoogle Scholar
McConville, P. and Pope, J. M., A Comparison of Water Binding and Mobility in Contact Lens Hydrogels from NMR Measurements of the Water Self-Diffusion Coefficient. Polymer 41 (2000), 9081–8.CrossRefGoogle Scholar
Azurmendi, H. F. and Ramia, M. E., Anomalous Diffusion of Water in a Hydrogel of Sucrose and Diepoxide Monomers. J. Chem. Phys. 114 (2001), 9657–62.CrossRefGoogle Scholar
Skirda, V. D., Aslanyan, I. Yu., Philippova, O. E., Karybiants, N. S., and Khokhlov, A. R., Investigation of Translational Motion of Poly(ethylene glycol) Macromolecules in Poly(methacrylic acid) Hydrogels. Macromol. Chem. Phys. 200 (1999), 2152–9.3.0.CO;2-M>CrossRefGoogle Scholar
Corain, B. and Kralik, M., Generating Palladium Nanoclusters Inside Functional Cross-Linked Polymer Frameworks. J. Mol. Catal. A 173 (2001), 99–115.CrossRefGoogle Scholar
Ohuchi, M., Meadows, P., Horiuchi, H., Sakai, Y., and Furihata, K., Dynamics of Sodium and Lithium Counter-Ions and Water Molecules in Cation-Exchange Resins as Shown by NMR Spectroscopy. Polym. J. 32 (2000), 760–70.CrossRefGoogle Scholar
Walderhaug, H. and Nyström, Bo., Anomalous Diffusion in an Aqueous System of a Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymer during Gelation Studied by Pulsed Field Gradient NMR. J. Phys. Chem. B 101 (1997), 1524–8.CrossRefGoogle Scholar
Meresi, G., Wang, Y., Cardoza, J., Wen, W. Y., Jones, A. A., Gosselin, J., Azar, D., and Inglefield, P. T., Pulse Field Gradient NMR Study of Diffusion of Pentane in Amorphous Glassy Perfluorodioxole. Macromolecules 34 (2001), 4852–6.CrossRefGoogle Scholar
Price, W. S., Chapman, B. E., and Kuchel, P. W., Correlation of Viscosity and Conductance with 23Na+ NMR total time for image acquisition1 Measurements. Bull. Chem. Soc. Jpn. 63 (1990), 2961–5.CrossRefGoogle Scholar
Hayamizu, K., Aihara, Y., and Price, W. S., Correlating the NMR Self-Diffusion and Relaxation Measurements with Ionic Conductivity in Polymer Electrolytes Composed of Cross-Linked Poly(ethylene oxide-propylene oxide) Doped with LiN(SO2CF3)2. J. Chem. Phys. 113 (2000), 4785–93.CrossRefGoogle Scholar
Golodnitsky, D., Livshits, E., Ulus, A., Barkay, Z., Lapides, I., Peled, E., Chung, S. H., and Greenbaum, S., Fast Ion Transport in Oriented Semicrystalline LiI-P(EO)number of spatial dimensions-Based Polymer Electrolytes. J. Phys. Chem. A 105 (2001), 10098–106.CrossRefGoogle Scholar
Price, W. S., Aihara, Y., and Hayamizu, K., NMR Studies of Nanoscale Organization and Dynamics in Polymer Electrolytes. Aust. J. Chem. 57 (2004), 1185–90.CrossRefGoogle Scholar
Gorman, C. B., Smith, J. C., Hager, M. W., Parkhurst, B. L., Sierzputowska-Gracz, H., and Haney, C. A., Molecular Structure-Property Relationships for Electron-Transfer Rate Attenuation in Redox-Active Core Dendrimers. J. Am. Chem. Soc. 121 (1999), 9958–66.CrossRefGoogle Scholar
Newkome, G. R., Young, J. K., Baker, G. R., Potter, R. L., Audoly, L., Cooper, D., Weis, C. D., Morris, K., and Johnson, Jr. C. S., Cascade Polymers. pH Dependence of Hydrodynamic Radii of Acid-Terminated Dendrimers. Macromolecules 26 (1993), 2394–6.CrossRefGoogle Scholar
Young, J. K., Baker, G. R., Newkome, G. R., Morris, K. F., and Johnson, Jr. C. S., ‘Smart’ Cascade Polymers. Modular Syntheses of Four-Directional Dendritic Macromolecules with Acidic, Neutral, or Basic Terminal Groups and the Effect of pH Changes on Their Hydrodynamic Radii. Macromolecules 27 (1994), 3464–71.CrossRefGoogle Scholar
Valentini, M., Vaccaro, A., Rehor, A., Napoli, A., Hubbell, J. A., and Tirelli, N., Diffusion NMR Spectroscopy for the Characterization of the Size and Interactions of Colloidal Matter: The Case of Vesicles and Nanoparticles. J. Am. Chem. Soc. 126 (2004), 2142–7.CrossRefGoogle ScholarPubMed
Baille, W. E., Malveau, C., Zhu, X. X., Kim, Y. H., and Ford, W. T., Self-Diffusion of Hydrophilic Poly(propyleneimine) Dendrimers in Poly(vinyl alcohol) Solutions and Gels by Pulsed Field Gradient NMR Spectroscopy. Macromolecules 36 (2003), 839–47.CrossRefGoogle Scholar
Cate, A. T. ten, Dankers, P. Y. W., Kooijman, H., Spek, A. L., Sijbesma, R. P., and Meijer, E. W., Enantioselective Cyclization of Racemic Supramolecular Polymers. J. Am. Chem. Soc. 125 (2003), 6860–1.CrossRefGoogle ScholarPubMed
Price, W. S., Hallberg, F., and Stilbs, P., A PGSE Diffusion and Electrophoretic NMR Study of Cs+ and Na+ Dynamics in Aqueous Crown Ether Systems. Magn. Reson. Chem. 45 (2007), 152–6.CrossRefGoogle ScholarPubMed
Gafni, A. and Cohen, Y., Complexes of Macrocycles with gyromagnetic ratio-Cyclodextrin as Deduced from NMR Diffusion Measurements. J. Org. Chem. 62 (1997), 120–5.CrossRefGoogle Scholar
Frish, L., Matthews, S. E., Böhmer, V., and Cohen, Y., A Pulsed Gradient Spin Echo NMR Study of Guest Encapsulation by Hydrogen-Bonded Tetraurea Calix[4]arene dimers. J. Chem. Soc., Perkin Trans. 2 2 (1999), 669–71.CrossRefGoogle Scholar
Cameron, K. S. and Fielding, L., NMR Diffusion Spectroscopy as a Measure of Host–Guest Complex Association Constants and as a Probe of Complex Size. J. Org. Chem. 66 (2001), 6891–5.CrossRefGoogle ScholarPubMed
Evan-Salem, T., Baruch, I., Avram, L., Cohen, Y., Palmer, L. C., and Rebek, Jr. J., Resorcinarenes are Hexameric Capsules in Solution. Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 12296–300.CrossRefGoogle ScholarPubMed
Stallmach, F., Kärger, J., Krause, C., Jeschke, M., and Oberhagemann, U., Evidence of Anisotropic Self-Diffusion of Guest Molecules in Nanoporous Materials of MCM-41 Type. J. Am. Chem. Soc. 122 (2000), 9237–42.CrossRefGoogle Scholar
Stallmach, F., Gräser, A., Kärger, J., Krause, C., Jeschke, M., Oberhagemann, U., and Spange, S., Pulsed Field Gradient NMR Studies of Diffusion in MCM-41 Mesoporous Solids. Microporous Mesoporous Mater. 44–45 (2001), 745–53.CrossRefGoogle Scholar
Valiullin, R., Dvoyashkin, M., Kortunov, P., Krause, C., and Kärger, J., Diffusion of Guest Molecules in MCM-41 Agglomerates. J. Chem. Phys. 126 (2007), 054705-1–054705-6.CrossRefGoogle ScholarPubMed
Kukla, V., Kornatowski, J., Demuth, D., Girnus, I., Pfeifer, H., Rees, L. V. C., Schunk, S., Unger, K. K., and Kärger, J., NMR Studies of Single-File Diffusion in Unidimensional Channel Zeolites. Science 272 (1996), 702–4.CrossRefGoogle ScholarPubMed
Meersmann, T., Logan, J. W., Simonutti, R., Caldarelli, S., Comotti, A., Sozzani, P., Kaiser, L. G., and Pines, A., Exploring Single-File Diffusion in One-Dimensional Nanochannels by Laser-Polarized 129Xe NMR Spectroscopy. J. Phys. Chem. A 104 (2000), 11665–70.CrossRefGoogle Scholar
Gjerdåker, L., Sørland, G. H., and Aksnes, D. W., Application of the Short Diffusion Time Model to Diffusion Measurements by NMR in Microporous Crystallites. Microporous Mesoporous Mater. 32 (1999), 305–10.CrossRefGoogle Scholar
Pampel, A., Fernandez, M., Freude, D., and Kärger, J., New Options for Measuring Molecular Diffusion in Zeolites by MAS PFG NMR. Chem. Phys. 407 (2005), 53–7.Google Scholar
Geil, B., Isfort, O., Boddenberg, B., Favre, D. E., Chmelka, B. F., and Fujara, F., Reorientational and Translational Dynamics of Benzene in Zeolite NaY as Studied by One- and Two-Dimensional Exhange Spectroscopy and Static-Field-Gradient Nuclear Magnetic Resonance. J. Chem. Phys. 116 (2002), 2184–93.CrossRefGoogle Scholar
Kortunov, P., Vasenkov, S., Kärger, J., Elía, M. Fé, Perez, M., Stöcker, M., Papadopoulos, G. K., Theodorou, D., Dresecher, B., McElhiney, G., Bernauer, B., Krystl, V., Kocirik, M., Zikanova, A., Jirglova, H., Berger, C., Gläser, R., Weitkamp, J., and Hansen, E. W., Pulsed-Field Gradient Nuclear Magnetic Resonance Study of Transport Properties of Fluid Catalytic Cracking Catalysts. Magn. Reson. Imaging 23 (2005), 233–7.CrossRefGoogle ScholarPubMed
Rigby, S. P. and Gladden, L. F., The Use of Magnetic Resonance Images in the Simulation of Diffusion in Porous Catalyst Support Pellets. J. Catal. 173 (1998), 484–9.CrossRefGoogle Scholar
Flaum, M., Hirosaki, G. J., Flaum, C., and Straley, C., Measuring Pore Connectivity by Pulsed Field Gradient Diffusion Editing with Hydrocarbon. Magn. Reson. Imaging 23 (2005), 337–9.CrossRefGoogle ScholarPubMed
Callaghan, P. T., Eccles, C. D., Haskell, T. G., Langhorne, P. J., and Seymour, J. D., Earth's Field NMR in Antarctica: A Pulsed Gradient Spin Echo NMR Study of Restricted Diffusion in Sea Ice. J. Magn. Reson. 133 (1998), 148–54.CrossRefGoogle ScholarPubMed
Vargas-Florencia, D., Edvinsson, T., Hagfeldt, A., and Furó, I., Pores in Nanostructured TiO2 Films. Size Distribution and Pore Permeability. J. Phys. Chem. C 111 (2007), 7605–11.CrossRefGoogle Scholar
Sørland, G. H., Short-Time PFGSTE Diffusion Measurements. J. Magn. Reson. 126 (1997), 146–8.CrossRefGoogle Scholar
Fordham, E. J., Mitra, P. P., and Latour, L. L., Effective Diffusion Times in Multiple-Pulse PFG Diffusion Measurements in Porous Media. J. Magn. Reson. A 121 (1996), 187–92.CrossRefGoogle Scholar
Latour, L. L., Mitra, P. P., Kleinberg, R. L., and Sotak, C. H., Time-Dependent Diffusion Coefficient of Fluids in Porous Media as a Probe of Surface-to-Volume Ratio. J. Magn. Reson. A 101 (1993), 342–6.CrossRefGoogle Scholar
Hürlimann, M. D., Helmer, K. G., Latour, L. L., and Sotak, C. H., Restricted Diffusion in Sedimentary Rocks. Determination of Surface-Area-to-Volume Ratio and Surface Relaxivity. J. Magn. Reson. A 111 (1994), 169–78.CrossRefGoogle Scholar
Mitra, P. P., Latour, L. L., Kleinberg, R. L., and Sotak, C. H., Pulsed-Field-Gradient NMR Measurements of Restricted Diffusion and the Return-to-the-Origin Probability. J. Magn. Reson. A 114 (1995), 47–58.CrossRefGoogle Scholar
Vasenkov, S., Galvosas, P., Geier, O., Nestle, N., Stallmach, F., and Kärger, J., Determination of Genuine Diffusivities in Heterogeneous Media Using Stimulated Echo Pulsed Field Gradient NMR. J. Magn. Reson. 149 (2001), 228–33.CrossRefGoogle ScholarPubMed
Nestle, N., Galvosas, P., Geier, O., Zimmerman, C., Dakkouri, M., and Kärger, J., Nuclear Magnetic Resonance Study of Diffusion and Relaxation in Hydrating White Cement Pastes of Different Water Content. J. Appl. Phys. 89 (2001), 8061–5.CrossRefGoogle Scholar
Petković, J., Huinink, H. P., Pel, L., and Kopinga, K., Diffusion in Porous Building Materials with High Internal Magnetic Field Gradients. J. Magn. Reson. 167 (2004), 97–106.CrossRefGoogle ScholarPubMed
Stallmach, F., Vogt, C., Kärger, J., Helbig, K., and Jacobs, F., Fractal Geometry of Surface Areas of Sand Grains Probed by Pulsed Field Gradient NMR. Phys. Rev. Lett. 88 (2002), 105505-1–105505-4.CrossRefGoogle ScholarPubMed
Candela, D. and Wong, P.-Z., Using NMR to Measure Fractal Dimensions. Phys. Rev. Lett. 90 (2003), 039601-1.CrossRefGoogle ScholarPubMed
Mutina, A. R. and Skirda, V. D., Porous Media Characterization by PFG and IMFG NMR. J. Magn. Reson. 188 (2007), 122–8.CrossRefGoogle ScholarPubMed
Pel, L., Huinink, H., and Kopinga, K., Salt Transport and Crystallization in Porous Building Materials. Magn. Reson. Imaging 21 (2003), 317–20.CrossRefGoogle ScholarPubMed
Fordham, E. J., Gibbs, S. J., and Hall, L. D., Partially Restricted Diffusion in a Permeable Sandstone: Observations by Stimulated Echo PFG NMR. Magn. Reson. Imaging 12 (1994), 279–84.CrossRefGoogle Scholar
Filippov, A. V., Khosina, E. V., and Khosin, V. G., Liquid Self-Diffusion in Pores of Hardened Gypsum: Pulsed Field Gradient NMR Study. J. Mater. Sci. 31 (1996), 1809–14.CrossRefGoogle Scholar
Scheven, U. M., Stray Field Measurements of Flow Displacement Distributions Without Pulsed Field Gradients. J. Magn. Reson. 174 (2005), 338–42.CrossRefGoogle ScholarPubMed
Takahashi, T., Ohkubo, T., and Ikeda, Y., Montmorillonite Alignment Induced by Magnetic Field: Evidence Based on the Diffusion Anisotropy of Water Molecules. J. Colloid Interface Sci. 299 (2006), 198–203.CrossRefGoogle ScholarPubMed
Tallarek, U., Scheenen, T. W. J, and As, H., Macroscopic Heterogeneities in Electroosmotic and Pressure-Driven Flow through Fixed Beds at Low Column-to-Particle Diameter Ratio. J. Phys. Chem. B 105 (2001), 8591–9.CrossRefGoogle Scholar
Tallarek, U., Vergeldt, F. J., and As, H., Stagnant Mobile Phases Mass Transfer in Chromatographic Media: Intraparticle Diffusion and Exchange Kinetics. J. Phys. Chem. B 103 (1999), 7654–64.CrossRefGoogle Scholar
Tallarek, U., Bayer, E., and Guiochon, G., Study of Dispersion in Packed Chromatographic Columns by Pulsed Field Gradient Nuclear Magnetic Resonance. J. Am. Chem. Soc. 120 (1998), 1494–505.CrossRefGoogle Scholar
Stapf, S., Packer, K. J., Békri, S., and Adler, P. M., Two-Dimensional Nuclear Magnetic Resonance Measurements and Numerical Simulations of Fluid Transport in Porous Rocks. Phys. Fluids 12 (2000), 566–80.CrossRefGoogle Scholar
Manz, B., Gladden, L. F., and Warren, P. B., Flow and Dispersion in Porous Media: Lattice-Boltzmann and NMR Studies. AIChE J. 45 (1999), 1845–54.CrossRefGoogle Scholar
Manz, B., Alexander, P., and Gladden, L. F., Correlations Between Dispersion and Structure in Porous Media Probed by Nuclear Magnetic Resonance. Phys. Fluids 11 (1999), 259–67.CrossRefGoogle Scholar
Tallarek, U., Rapp, E., Scheenen, T., Bayer, E., and As, H., Electroosmotic and Pressure-Driven Flow in Open and Packed Capillaries: Velocity Distributions and Fluid Dispersion. Anal. Chem. 72 (2000), 2292–301.CrossRefGoogle ScholarPubMed
Fernandez, E. J., Grotegut, C. A., Braun, G. W., Kirshner, K. J., Staudaher, J. R., Dickson, M. L., and Fernandez, V. L., The Effects of Permeability Heterogeneity on Miscible Viscous Fingering: A Three-Dimensional Magnetic Resonance Imaging Analysis. Phys. Fluids 7 (1995), 468–77.CrossRefGoogle Scholar
Coffman, J. L., Lightfoot, E. N., and Root, T. W., Protein Diffusion in Porous Chromatographic Media Studied by Proton and Fluorine PFG-NMR. J. Phys. Chem. B 101 (1997), 2218–23.CrossRefGoogle Scholar
Ehrlich, R. S. and Carr, H. Y., Xenon Self-Diffusion Near the Critical Point and on the Liquid Branch of the Coexistence Curve. Phys. Rev. Lett. 25 (1970), 341–4.CrossRefGoogle Scholar
Mair, R. W., Cory, D. G., Peled, S., Tseng, C.-H., Patz, S., and Walsworth, R. L., Pulsed-Field-Gradient Measurements of Time-Dependent Gas Diffusion. J. Magn. Reson. 135 (1998), 478–86.CrossRefGoogle ScholarPubMed
Davies, G. R. and Halstead, T. K., High-Resolution NMR of Low Pressure Laser-Polarized 129Xe gas. Chem. Phys. Lett. 230 (1991), 237–42.CrossRefGoogle Scholar
Patyal, B. R., Gao, J.-H., Williams, R. F., Roby, J., Saam, B., Rockwell, B. A., Thomas, R. J., Stolarski, D. J., and Fox, P. T., Longitudinal Relaxation and Diffusion Measurements Using Magnetic Resonance Signals from Laser-Hyperpolarized 129Xe Nuclei. J. Magn. Reson. 126 (1997), 58–65.CrossRefGoogle ScholarPubMed
Mair, R. W., Hürlimann, M. D., Sen, P. N., Schwartz, L. M., Patz, S., and Walsworth, R. L., Tortuosity Measurement and the Effects of Finite Pulse Widths on Xenon Gas Diffusion NMR Studies of Porous Media. Magn. Reson. Imaging 19 (2001), 345–51.CrossRefGoogle ScholarPubMed
Codd, S. L. and Altobelli, S. A., A PGSE Study of Propane Gas Flow Through Model Porous Bead Packs. J. Magn. Reson. 163 (2003), 16–22.CrossRefGoogle ScholarPubMed
Fatkullin, N., Theory of Stimulated Spin Echo in Polymer System. Sov. Phys. JETP 72 (1991), 563–9.Google Scholar
Zhang, W. and Cory, D. G., First Direct Measurement of the Spin Diffusion Rate in a Homogeneous Solid. Phys. Rev. Lett. 80 (1998), 1324–7.CrossRefGoogle Scholar
Fischer, E., Kimmich, R., and Fatkullin, N., Spin Diffusion in Melts of Entangled Polymers. J. Chem. Phys. 106 (1997), 9883–8.CrossRefGoogle Scholar
Komlosh, M. E. and Callaghan, P. T., Spin Diffusion in Semidilute Random Coil Polymers Studied by Pulsed Gradient Spin-Echo NMR. Macromolecules 33 (2000), 6824–7.CrossRefGoogle Scholar
Bihan, D., The ‘Wet Mind’: Water and Functional Neuroimaging. Phys. Med. Biol. 52 (2007), R57–90.CrossRefGoogle ScholarPubMed
Blackband, S. and Mansfield, P., Diffusion in Liquid-Solid Systems by NMR Imaging. J. Phys. C: Solid State Phys. 19 (1986), L49–52.CrossRefGoogle Scholar
Duval, F. P., Porion, P., and Damme, H., Microscale and Macroscale Diffusion of Water in Colloidal Gels. A Pulsed Field Gradient and NMR Imaging Investigation. J. Phys. Chem. B. 103 (1999), 5730–5.CrossRefGoogle Scholar
Song, Y.-Q., Goodson, B. M., Sheridan, B., Swiet, T. M., and Pines, A., Effects of Diffusion on Magnetic Resonance Imaging of Laser-Polarized Xenon Gas. J. Chem. Phys. 108 (1998), 6233–9.CrossRefGoogle Scholar
Nestle, N. F. E. I. and Kimmich, R., Concentration-Dependent Diffusion Coefficients and Sorption Isotherms. Application to Ion Exchange Processes as an Example. J. Phys. Chem. 100 (1996), 12569–73.CrossRefGoogle Scholar
Biton, I. E., Duncan, I. D., and Cohen, Y., High gradient or diffusion weighting factor-Value q-Space Diffusion MRI in Myelin-Deficient Rat Spinal Cords. Magn. Reson. Imaging 24 (2006), 161–66.CrossRefGoogle Scholar
Mayzel, O., Assaf, Y., Gigi, A., Ben-Bashat, D., Verchovsky, R., Mordohovitch, M., Graif, M., Hendler, T., Korczyn, A., and Cohen, Y., High gradient or diffusion weighting factor-Value Diffusion Imaging of Dementia: Application to Vascular Dementia and Alzheimer Disease. J. Neuro. Sci. 257 (2007), 105–13.CrossRefGoogle Scholar
Does, M. D., Parsons, E. C., and Gore, J. C., Oscillating Gradient Measurements of Water Diffusion in Normal and Globally Ischemic Rat Brain. Magn. Reson. Med. 49 (2008), 206–15.CrossRefGoogle Scholar
Boujraf, S., Luypaert, R., Eisendrath, H., and Osteaux, M., Echo Planar Magnetic Resonance Imaging of Anisotropic Diffusion in Asparagus Stems. Magn. Reson. Mater. Phys. Bio. Med. 13 (2001), 82–90.CrossRefGoogle ScholarPubMed
Ellegood, J., McKay, R. T., Hanstock, C. C., and Beaulieu, C., Anisotropic Diffusion of Metabolites in Peripheral Nerve Using Diffusion Weighted Magnetic Resonance Spectroscopy at Ultra-High Field. J. Magn. Reson. 184 (2007), 20–8.CrossRefGoogle ScholarPubMed
Arfanakis, K., Hermann, B. P., Rogers, B. P., Carew, J. D., Seidenberg, M., and Meyerand, M. E., Diffusion Tensor MRI in Temporal Lobe Epilepsy. Magn. Reson. Imaging 20 (2002), 511–19.CrossRefGoogle ScholarPubMed
Schlüter, M., Stieltjes, B., Hahn, H. K., Rexilius, J., Konrad-Verse, O., and Peitgen, H. O., Detection of Tumour Infiltration in Axonal Fibre Bundles Using Diffusion Tensor Imaging. Int. J. Med. Robot. Comput. Assist. Surg. 1 (2006), 80–6.CrossRefGoogle Scholar
Watts, R., Liston, C., Niogi, S., and Uluğ, A. M., Fiber Tracking Using Magnetic Resonance Diffusion Tensor Imaging and Its Applications to Human Brain Development. Ment. Retard. Dev. Disabil. Res. Rev. 9 (2003), 168–77.CrossRefGoogle ScholarPubMed
Kose, K., Haishi, T., Caprihan, A., and Fukushima, E., Real-Time NMR Imaging Systems Using Personal Computers. J. Magn. Reson. 124 (1997), 35–41.CrossRefGoogle Scholar
Rofe, C. J., Lambert, R. K., and Callaghan, P. T., Nuclear Magnetic Resonance Imaging of Flow for a Shear-Thinning Polymer in Cylindrical Couette Geometry. J. Rheol. 38 (1994), 875–87.CrossRefGoogle Scholar
Gibbs, S. J., James, K. L., Hall, L. D., Haycock, D. E., Frith, W. J., and Ablett, S., Rheometry and Detection of Apparent Wall Slip for Poiseuille Flow of Polymer Solutions and Particulate Dispersions by Nuclear Magnetic Resonance Velocimetry. J. Rheol. 40 (1996), 425–40.CrossRefGoogle Scholar
Britton, M. M. and Callaghan, P. T., NMR Microscopy and the Non-Linear Rheology of Food Materials. Magn. Reson. Chem. 35 (1997), S37–46.3.0.CO;2-T>CrossRefGoogle Scholar
Britton, M. M. and Callaghan, P. T., Nuclear Magnetic Resonance Visualization of Anomalous Flow in Cone-and-Plate Rheometry. J. Rheol. 41 (1997), 1365–86.CrossRefGoogle Scholar
Xia, Y. and Callaghan, P. T., Imaging the Velocity Profiles in Tubeless Siphon Flow by NMR Microscopy. J. Magn. Reson. 164 (2003), 365–8.CrossRefGoogle ScholarPubMed
Yao, S., Costello, M., Fane, A. G., and Pope, J. M., Non-Invasive Observation of Flow Profiles and Polarization Layers in Hollow Fiber Membrane Filtration Modules Using NMR Micro-Imaging. J. Membr. Sci. 99 (1995), 207–16.CrossRefGoogle Scholar
Tallarek, U., Dusschoten, D., Scheenen, T., As, H., Bayer, E., Guiochon, G., and Neue, U. D., Dynamic NMR Microscopy of Chromatographic Columns. AIChE J. 44 (1998), 1962–75.CrossRefGoogle Scholar
Koptyug, I. V., Altobelli, S. A., Fukushima, E., Matveev, A. V., and Sagdeev, R. Z., Thermally Polarized 1H NMR Microimaging Studies of Liquid and Gas Flow in Monolithic Catalysts. J. Magn. Reson. 147 (2000), 36–42.CrossRefGoogle Scholar
Klemm, A., Müller, H.-P., and Kimmich, R., Evaluation of Fractal Parameters of Percolation Model Objects and Natural Porous Media by Means of NMR Microscopy. Physica A 266 (1999), 242–6.CrossRefGoogle Scholar
Gibbs, S. J., Carpenter, T. A., and Hall, L. D., Magnetic Resonance Imaging of Thermal Convection. J. Magn. Reson. A 105 (1993), 209–14.CrossRefGoogle Scholar
Weis, J., Kimmich, R., and Müller, H.-P., NMR Imaging of Thermal Convection Patterns. Magn. Reson. Imaging 14 (1996), 319–27.CrossRefGoogle ScholarPubMed
Mohorič, A. and Stepišnik, J., Effect of Natural Convection in a Horizontally Oriented Cylinder on NMR Imaging of the Distribution of Diffusivity. Phys. Rev. E 62 (2000), 6628–35.CrossRefGoogle Scholar
Weber, M., Klemm, A., and Kimmich, R., Rayleigh-Bénard Percolation Transition Study of Thermal Convection in Porous Media: Numerical Simulation and NMR Experiments. Phys. Rev. Lett. 86 (2001), 4302–5.CrossRefGoogle ScholarPubMed
Mair, R. W., Tseng, C.-H., Wong, G. P., Cory, D. G., and Walsworth, R. L., Magnetic Resonance Imaging of Convection in Laser-Polarized Xenon. Phys. Rev. E 61 (2000), 2741–8.CrossRefGoogle ScholarPubMed
Moseley, M. E., Cohen, Y., Mintorovich, J., Chileuitt, L., Shimizu, H., Kucharczyk, J., Wendland, M. F., and Weinstein, P. R., Early Detection of Regional Cerebral Ischemia in Cats: Comparison of Diffusion- and T2-Weighted MRI and Spectroscopy. Magn. Reson. Med. 14 (1990), 330–46.CrossRefGoogle ScholarPubMed
Chenevert, T. L., Stegman, L. D., Taylor, J. M. G., Robertson, P. L., Greenberg, H. S., Rehemtulla, A., and Ross, B. D., Diffusion Magnetic Resonance Imaging: An Early Surrogate Marker of Therapeutic Efficacy in Brain Tumors. J. Natl. Cancer Inst. 92 (2000), 2029–36.CrossRefGoogle ScholarPubMed
Helmer, K. G., Meiler, M. R., Sotak, C. H., and Petrucelli, J. D., Comparison of the Return-to-the-Origin Probability and the Apparent Diffusion Coefficient of Water as Indicators of Necrosis in RIF-1 Tumors. Magn. Reson. Med. 49 (2003), 468–78.CrossRefGoogle ScholarPubMed
Goldberg-Zimring, D., Mewes, A. U. J., Maddah, M., and Warfield, S. K., Diffusion Tensor Magnetic Resonance Imaging in Multiple Sclerosis. Journal of Neuroimaging 15 (2005), S61–81.CrossRefGoogle ScholarPubMed
Fonseca, C. J., Oxenham, H. C., Cowan, B. R., Occleshaw, C. J., and Young, A. A., Aging Alters Patterns of Regional Nonuniformity in LV Strain Relaxation: A 3-D MR Tissue Tagging Study. Am. J. Physiol. Heart Circ. Physiol. 285 (2003), H621–30.CrossRefGoogle ScholarPubMed
Görke, U., Kimmich, R., and Weis, J., Detection of Anisotropic Pulsating Flow and Its Velocity-Fluctuation Rate in Fertilized Bird Eggs by NMR Microimaging. J. Magn. Reson. B 111 (1996), 236–42.CrossRefGoogle ScholarPubMed
Seo, Y., Shinar, H., Morita, Y., and Navon, G., Anisotropic and Restricted Diffusion of Water in the Sciatic Nerve: A 2H Double Quantum Filtered Study. Magn. Reson. Med. 42 (1999), 461–6.3.0.CO;2-L>CrossRefGoogle Scholar
Fernández-Seara, M. A., Wehrli, S. L., and Wehrli, F. W., Diffusion of Exchangeable Water in Cortical Bone Studied by Nuclear Magnetic Resonance. Biophys. J. 82 (2002), 522–9.CrossRefGoogle ScholarPubMed
Han, S.-I., Marseille, O., Gehlen, C., and Blümich, B., Rheology of Blood by NMR. J. Magn. Reson. 152 (2001), 87–94.CrossRefGoogle Scholar
Sousa, P. Loureiro de, Gounot, D., and Grucker, D., Flow Effects in Long-Range Dipolar Field MRI. J. Magn. Reson. 162 (2003), 356–63.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Applications
  • William S. Price, University of Western Sydney
  • Book: NMR Studies of Translational Motion
  • Online publication: 06 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511770487.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Applications
  • William S. Price, University of Western Sydney
  • Book: NMR Studies of Translational Motion
  • Online publication: 06 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511770487.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Applications
  • William S. Price, University of Western Sydney
  • Book: NMR Studies of Translational Motion
  • Online publication: 06 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511770487.012
Available formats
×