Book contents
- Frontmatter
- Contents
- Foreword
- Birational Calabi–Yau n-folds have equal Betti numbers
- A Calabi–Yau threefold with non-Abelian fundamental group
- Algebraic Gromov–Witten invariants
- Kähler hyperbolicity and variations of Hodge structures
- Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians
- On some tensor representations of the Cremona group of the projective plane
- Hilbert schemes and simple singularities
- Bounds for Seshadri constants
- Degenerate double covers of the projective plane
- The geometry underlying mirror symmetry
- Duality of polarized K3 surfaces
- On symplectic invariants of algebraic varieties coming from crepant contractions
- The Bogomolov–Pantev resolution, an expository account
- Mordell–Weil lattices for higher genus fibration over a curve
- Symplectic Gromov–Witten invariants
- A generic Torelli theorem for the quintic
- Flops, Type III contractions and Gromov–Witten invariants on Calabi–Yau threefolds
Mordell–Weil lattices for higher genus fibration over a curve
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Foreword
- Birational Calabi–Yau n-folds have equal Betti numbers
- A Calabi–Yau threefold with non-Abelian fundamental group
- Algebraic Gromov–Witten invariants
- Kähler hyperbolicity and variations of Hodge structures
- Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians
- On some tensor representations of the Cremona group of the projective plane
- Hilbert schemes and simple singularities
- Bounds for Seshadri constants
- Degenerate double covers of the projective plane
- The geometry underlying mirror symmetry
- Duality of polarized K3 surfaces
- On symplectic invariants of algebraic varieties coming from crepant contractions
- The Bogomolov–Pantev resolution, an expository account
- Mordell–Weil lattices for higher genus fibration over a curve
- Symplectic Gromov–Witten invariants
- A generic Torelli theorem for the quintic
- Flops, Type III contractions and Gromov–Witten invariants on Calabi–Yau threefolds
Summary
Introduction, notation
Let K = k(C) be the function field of an algebraic curve C over an algebraically closed ground field k. Let Γ/K be a smooth projective curve of genus g > 0 with a k-rational point O ∈ Γ(K), and let J/K denote the Jacobian variety of Γ/K. Further let (τ, B) be the K/k:-trace of J (see §2 below and).
Then the Mordell-Weil theorem (in the function field case) states that the group of K-rational points J(K) modulo the subgroup τB(k) is a finitely generated Abelian group.
Now, given Γ/K, there is a smooth projective algebraic surface S with genus g fibration f : S → C which has Γ as its generic fibre and which is relatively minimal in the sense that no fibres contain an exceptional curve of the first kind (−1-curve). It is known that the correspondence Γ/K ↔ (S, f) is bijective up to isomorphisms (cf.).
The main purpose of this paper is to give the Mordell-Weil group M = J(K)/τB(k) (modulo torsion) the structure of Euclidean lattice via intersection theory on the algebraic surface S. The resulting lattice is the Mordell- Weil lattice (MWL) of the Jacobian variety J/K, which we sometimes call MWL of the curve Γ/K or of the fibration f : S → C.
For this, we first establish the relationship between the Mordell-Weil group and the Néron-Severi group NS(S) of S (Theorem 1, stated in §2 and proved in §3). Then (in §4) we introduce the structure of lattice on the Mordell-Weil group by defining a natural pairing in terms of the intersection pairing on NS(S).
- Type
- Chapter
- Information
- New Trends in Algebraic Geometry , pp. 359 - 374Publisher: Cambridge University PressPrint publication year: 1999
- 17
- Cited by