Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T20:53:59.142Z Has data issue: false hasContentIssue false

4 - Mathematical Models of Human Learning

Published online by Cambridge University Press:  20 April 2023

F. Gregory Ashby
Affiliation:
University of California, Santa Barbara
Hans Colonius
Affiliation:
Carl V. Ossietzky Universität Oldenburg, Germany
Ehtibar N. Dzhafarov
Affiliation:
Purdue University, Indiana
Get access

Summary

Although learning was a key focus during the early years of mathematical psychology, the cognitive revolution of the 1960s caused the field to languish for several decades. Two breakthroughs in neuroscience resurrected the field. The first was the discovery of long-term potentiation and long-term depression, which served as promising models of learning at the cellular level. The second was the discovery that humans have multiple learning and memory systems that each require a qualitatively different kind of model. Currently, the field is well represented at all of Marr’s three levels of analysis. Descriptive and process models of human learning are dominated by two different, but converging, approaches – one rooted in Bayesian statistics and one based on popular machine-learning algorithms. Implementational models are in the form of neural networks that mimic known neuroanatomy and account for learning via biologically plausible models of synaptic plasticity. Models of all these types are reviewed, and advantages and disadvantages of the different approaches are considered.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×