Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T09:55:53.148Z Has data issue: false hasContentIssue false

Section 3 - Intervention

Published online by Cambridge University Press:  25 October 2024

Simon Gerhand
Affiliation:
Hywel Dda Health Board, NHS Wales
Get access
Type
Chapter
Information
The Neuropsychology of Dementia
A Clinician's Manual
, pp. 131 - 158
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aguirre, E., Woods, R. T., Spector, A., & Orrell, M. (2013). Cognitive stimulation for dementia: A systematic review of the evidence of effectiveness from randomised controlled trials. Ageing Research Reviews, 12 (1), 253–62.CrossRefGoogle ScholarPubMed
Amieva, H., Robert, P. H., Grandoulier, A. S., et al. (2016). Group and individual cognitive therapies in Alzheimer’s disease: The ETNA3 randomized trial. International Psychogeriatrics, 28 (5), 707–17.CrossRefGoogle ScholarPubMed
Baher-Fuchs, A., Clare, L., & Woods, B. (2013). Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia. Cochrane Database of Systematic Reviews, 6: CD003260.Google Scholar
Brown, D. (2006). Tricks of the Mind. London: Transworld Publishers.Google Scholar
Clare, L., & Woods, B. (2001). A role for cognitive rehabilitation in dementia care. Neuropsychological Rehabilitation, 11 (3–4), 193–6.CrossRefGoogle Scholar
Clare, L., & Woods, R. T. (2004). Cognitive training and cognitive rehabilitation for people with early-stage Alzheimer’s disease: A review. Neuropsychological Rehabilitation, 14 (4), 385401.CrossRefGoogle Scholar
Clare, L., Linden, D. E., Woods, R. T., et al. (2010). Goal-oriented cognitive rehabilitation for people with early-stage Alzheimer disease: A single-blind randomized controlled trial of clinical efficacy. The American Journal of Geriatric Psychiatry, 18 (10), 928–39.CrossRefGoogle ScholarPubMed
Ebbinghaus, H. (1885). Memory: A Contribution to Experimental Psychology. New York: Dover.Google Scholar
Gates, N., Sachdev, P., Fiatarone Singh, M. & Valenzuela, M. (2011). Cognitive and memory training in adults at risk of dementia: A systematic review. BMC Geriatrics, 11 (1), 114.CrossRefGoogle ScholarPubMed
Gates, N., & Valenzuela, M. (2010). Cognitive exercise and its role in cognitive function in older adults. Current Psychiatry Reports, 12, 20–7.CrossRefGoogle ScholarPubMed
Gitlin, L. N., Liebman, J., & Winter, L. (2003). Are environmental interventions effective in the management of Alzheimer’s disease and related disorders? A synthesis of the evidence. Alzheimer’s Care Today, 4 (2), 85107.Google Scholar
Glisky, E. L., Schacter, D. L., & Tulving, E. (1986). Learning and retention of computer-related vocabulary in memory-impaired patients: Method of vanishing cues. Journal of Clinical and Experimental Neuropsychology, 8 (3), 292312.CrossRefGoogle ScholarPubMed
Guo, J. L., Tsai, Y. Y., Liao, J. Y., Tu, H. M., & Huang, C. M. (2014). Interventions to reduce the number of falls among older adults with/without cognitive impairment: an exploratory meta‐analysis. International Journal of Geriatric Psychiatry, 29 (7), 661–9.CrossRefGoogle ScholarPubMed
Hill, N. T., Mowszowski, L., Naismith, S. L., et al. (2017). Computerized cognitive training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. American Journal of Psychiatry, 174 (4), 329–40.CrossRefGoogle ScholarPubMed
Huntley, J. D., Gould, R. L., Liu, K., Smith, M., & Howard, R. J. (2015). Do cognitive interventions improve general cognition in dementia? A meta-analysis and meta-regression. BMJ Open, 5 (4), e005247.CrossRefGoogle ScholarPubMed
Kessels, R. P., & Haan, E. H. (2003). Implicit learning in memory rehabilitation: A meta-analysis on errorless learning and vanishing cues methods. Journal of Clinical and Experimental Neuropsychology, 25 (6), 805–14.CrossRefGoogle ScholarPubMed
Landauer, T. K., & Bjork, R. A. (1978). Optimal rehearsal patterns and name learning. In Gruneberg, M. M., Morris, P. E., & Sykes, R. N. (Eds.), Practical Aspects of Memory (pp. 625632). London: Academic Press.Google Scholar
Lauriks, S., Reinersmann, A., Van der Roest, H.G., et al. (2007). Review of ICT-based services for identified unmet needs in people with dementia. Ageing Research Reviews, 6 (3), 223–46.CrossRefGoogle ScholarPubMed
Luria, A. (1968). Mind of a Mnemonist. Cambridge, MA; Harvard University Press.Google Scholar
Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 8197.CrossRefGoogle ScholarPubMed
Mowszowski, L., Batchelor, J., & Naismith, S. L. (2010). Early intervention for cognitive decline: Can cognitive training be used as a selective prevention technique? International Psychogeriatrics, 22 (4), 537–48.CrossRefGoogle ScholarPubMed
Nairne, J. S. (1986). Active and passive processing during primary rehearsal. The American Journal of Psychology, 99 (3), 301–14.CrossRefGoogle Scholar
Owen, A. M., Hampshire, A., Grahn, J. A., et al. (2010). Putting brain training to the test. Nature, 465 (7299), 775–8.CrossRefGoogle ScholarPubMed
Padilla, R. (2011). Effectiveness of interventions designed to modify the activity demands of the occupations of self-care and leisure for people with Alzheimer’s disease and related dementias. The American Journal of Occupational Therapy, 65 (5), 523–31.Google ScholarPubMed
Quoteinvestigator.com. (n.d.). Absence of evidence is not evidence of absence. https://quoteinvestigator.com/2019/09/17/absence/#f+436457+1+10.Google Scholar
Rebok, G. W., Ball, K., Guey, L. T., et al. (2014). Ten-year effects of the ACTIVE cognitive training trial on cognition and everyday functioning in older adults. Journal of the American Geriatrics Society, 62 (1), 1624.CrossRefGoogle ScholarPubMed
Sagan, C. (1977). The Dragons of Eden: Speculations on the Evolution of Human Intelligence. New York; Random House.Google Scholar
Spector, A., Thorgrimsen, L., Woods, B., et al. (2003). Efficacy of an evidence-based cognitive stimulation therapy programme for people with dementia: Randomised controlled trial. The British Journal of Psychiatry, 183 (3), 248–54.CrossRefGoogle ScholarPubMed
Taulbee, L. R., & Folsom, J. C. (1966). Reality orientation for geriatric patients. Psychiatric Services, 17 (5), 133–5.CrossRefGoogle ScholarPubMed
Wilson, B. (2009). Memory Rehabilitation: Integrating Theory and Practice. New York: The Guilford Press.CrossRefGoogle Scholar
Wilson, B. A., Baddeley, A., Evans, J., & Shiel, A. (1994). Errorless learning in the rehabilitation of memory impaired people. Neuropsychological Rehabilitation, 4 (3), 307–26.CrossRefGoogle Scholar
Zhang, H., Huntley, J., Bhome, R. et al. (2019). Effect of computerised cognitive training on cognitive outcomes in mild cognitive impairment: A systematic review and meta-analysis. BMJ Open, 9 (8), e027062.CrossRefGoogle ScholarPubMed

References

Buckley, J., & Saltpeter, S. (2015). A risk-benefit assessment of dementia medications: Systematic review of the evidence. Drugs and Ageing, 32 (6), 453–67.CrossRefGoogle ScholarPubMed
Castelli, M. S., McGonigle, P., & Hornby, P. J. (2019). The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacology Research & Perspectives, 7 (6), e00535.CrossRefGoogle ScholarPubMed
Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11 (3), 315–35.CrossRefGoogle ScholarPubMed
Cummings, J. L., Morstorf, T., & Zhong, K. (2014). Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimer’s Research & Therapy, 6 (4), 17.Google ScholarPubMed
Cummings, J. L., & Fox, N. (2017). Defining disease modifying therapy for Alzheimer’s disease. Journal of Prevention of Alzheimer’s Disease, 4 (2), 109–15.Google ScholarPubMed
Fink, H. A., Linskens, E. J., MacDonald, R., et al. (2020). Benefits and harms of prescription drugs and supplements for treatment of clinical Alzheimer-type dementia: A systematic review and meta-analysis. Annals of Internal Medicine, 172(10), 656–68.CrossRefGoogle Scholar
Folstein, M., Folsten, S., & McHugh, P. (1975). Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12, 189–98.Google Scholar
Gaspar, R. C., Villarreal, S. A., Bowles, N., et al. (2010). Oligomers of beta-amyloid are sequestered into and seed new plaques in the brains of an AD mouse model. Experimental Neurology, 223 (2), 394400.CrossRefGoogle ScholarPubMed
Gazzina, S., Manes, M. A., Padovani, A., & Borroni, B. (2017). Clinical and biological phenotypes of frontotemporal dementia: Perspectives for disease modifying therapies. European Journal of Pharmacology, 817, 7685.CrossRefGoogle ScholarPubMed
Ghezzi, L., Scarpini, E., & Galimberti, D. (2013). Disease-modifying drugs in Alzheimer’s disease. Drug Design, Development and Therapy, 1471–9.Google Scholar
Giacobinni, E. (2001). Selective inhibitors of butyrylcholinesterase: A valid alternative for therapy of Alzheimer’s disease. Drugs and Ageing, 18, 891–8.CrossRefGoogle Scholar
Grossberg, G. T. (2003). Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Current Therapeutic Research, 64 (4), 216–35.CrossRefGoogle Scholar
Hanseeuw, B. J., Betensky, R. A., Jacobs, H. I., et al. (2019). Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study. JAMA Neurology, 76 (8), 915–24.CrossRefGoogle ScholarPubMed
Holmes, C., Boche, D., Wilkinson, D., et al. (2008). Long-term effects of Aβ42 immunisation in Alzheimer’s disease: Follow-up of a randomised, placebo-controlled phase I trial. The Lancet, 372 (9634), 216–23.CrossRefGoogle ScholarPubMed
Howard, R., McShane, R., Lindesay, J., et al. (2015). Nursing home placement in the Donepezil and Memantine in Moderate to Severe Alzheimer’s Disease (DOMINO-AD) trial: Secondary and post-hoc analyses. The Lancet Neurology, 14 (12), 11711181.CrossRefGoogle ScholarPubMed
Ito, K., Ahadieh, S., Corrigan, B., et al. (2010). Disease progression meta-analysis model in Alzheimer’s disease. Alzheimer’s & Dementia, 6 (1), 3953.CrossRefGoogle ScholarPubMed
Kaduszkiewicz, H., Zimmermann, T., Beck-Bornholdt, H. P., & van den Bussche, H. (2005). Cholinesterase inhibitors for patients with Alzheimer’s disease: Systematic review of randomised clinical trials. British Medical Journal, 331 (7512), 321–7.CrossRefGoogle ScholarPubMed
Karlawish, J. H. (2004). Donepezil delay to nursing home placement study is flawed. Journal of the American Geriatric Society, 52, 845CrossRefGoogle Scholar
Knight, R., Khondoker, M., Magill, N., Stewart, R., & Landau, S. (2018). A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dementia and Geriatric Cognitive Disorders, 45(3–4), 131–51.CrossRefGoogle ScholarPubMed
Lalli, G., Schott, J. M., Hardy, J., & De Strooper, B. (2021). Aducanumab: A new phase in therapeutic development for Alzheimer’s disease?. EMBO Molecular Medicine, 13 (8), e14781.CrossRefGoogle ScholarPubMed
Lipton, S. A. (2005). The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: Low-affinity, uncompetitive antagonism. Current Alzheimer Research, 2 (2), 155–65.CrossRefGoogle ScholarPubMed
Liu, K. Y., Schneider, L. S., & Howard, R. (2021) The need to show minimum clinically important differences in Alzheimer’s disease trials. Lancet Psychiatry, 8 (11), 1013–16.CrossRefGoogle ScholarPubMed
Lockwood, P., Ewy, W., Hermann, D., & Holford, N. (2006). Application of clinical trial simulation to compare proof-of-concept study designs for drugs with a slow onset of effect: An example in Alzheimer’s disease. Pharmaceutical Research, 23 (9), 2050–9.CrossRefGoogle ScholarPubMed
Matsunaga, S., Kishi, T., Yasue, I., & Iwata, N. (2016). Cholinesterase inhibitors for Lewy body disorders: A meta-analysis. International Journal of Neuropsychopharmacology, 19 (2), 115.CrossRefGoogle Scholar
McHardy, S. F., Wang, H. Y. L., McCowen, S. V., & Valdez, M. C. (2017). Recent advances in acetylcholinesterase inhibitors and reactivators: An update on the patent literature (2012–2015). Expert Opinion on Therapeutic Patents, 27 (4), 455–76.CrossRefGoogle ScholarPubMed
McShane, R., Westby, M. J., & Roberts, E. (2019). Memantine for dementia. Cochrane Database Syst Rev. 2019 Mar 20; 3 (3): CD003154.Google ScholarPubMed
Moreta, M. P. G., Burgos-Alonso, N., Torrecilla, M., Marco-Contelles, J., & Bruzos-Cidón, C. (2021). Efficacy of acetylcholinesterase inhibitors on cognitive function in Alzheimer’s disease. Review of Reviews. Biomedicines, 9 (11), 1689.Google ScholarPubMed
National Institute for Health and Care Excellence (2018). Donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease. www.nice.org.uk/guidance/ta217/chapter/1-Guidance.Google Scholar
National Institute for Health and Clinical Excellence (2009). Donepezil, galantamine, rivastigmine (review) and memantine for the treatment of Alzheimer’s disease (amended); NICE technology appraisal guidance 111. National Institute for Health and Clinical Excellence: London, UK.Google Scholar
Nordberg, A., Ballard, C., Bullock, R., Darreh-Shori, T., & Somogyi, M. (2013). A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. The Primary Care Companion for CNS Disorders, 15 (2), 26731.CrossRefGoogle ScholarPubMed
O’Brien, J. T., Holmes, C., Jones, M., et al. (2017). Clinical practice with anti-dementia drugs: A revised (third) consensus statement from the British Association for Psychopharmacology. Journal of Psychopharmacology, 31 (2), 147–68.CrossRefGoogle ScholarPubMed
Rédaction, P. (2018). Médicaments de la maladie d’Alzheimer: Enfin non remboursables en France! Revue Prescrire, 38, 12.Google Scholar
Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. The American Journal of Psychiatry, 141, 1356–64. http://dx.doi.org/10.1176/ajp.141.11.1356.Google ScholarPubMed
Schneider, L. S., & Qizilbash, N. (2004). Delay in nursing home placement with donepezil. Journal of the American Geriatric Society, 52, 1024–6.CrossRefGoogle ScholarPubMed
Sims, J. R., Zimmer, J. A., Evans, C. D., et al. (2023). Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA, 330(6), 512–27.CrossRefGoogle ScholarPubMed
Therneau, T. M., Knopman, D. S., Lowe, V. J., et al. (2021). Relationships between β-amyloid and tau in an elderly population: An accelerated failure time model. NeuroImage, 242, 118440.CrossRefGoogle Scholar
Thomas, S., & Grossberg, G. (2009). Memantine: A review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clinical Interventions in Aging, 4, 367–77.Google ScholarPubMed
Walsh, S., Merrick, R., Milne, R. & Brayne, C. (2021). Aducanumab for Alzheimer’s disease? British Medical Journal, 374, n1682.CrossRefGoogle ScholarPubMed
Wessels, A. M., Siemers, E. R., Yu, P., et al. (2015). A combined measure of cognition and function for clinical trials: The integrated Alzheimer’s Disease Rating Scale (iADRS). The Journal of Prevention of Alzheimer’s disease, 2 (4), 227.Google ScholarPubMed
World Health Organization (2022). Clinical Trials. www.who.int/health-topics/clinical-trials/#tab=tab_1.Google Scholar
Yang, T., Li, S., Xu, H., Walsh, D. M., Selkoe, D. J. (2017). Large soluble oligomers of amyloid-protein from Alzheimer’s brain are far less neuroactive than the smaller oligomers to which they dissociate. Journal of Neuroscience, 37 (1), 152–63.CrossRefGoogle Scholar

References

Abbasi, J. Interest in the ketogenic diet grows for weight loss and type 2 diabetes. (2018). JAMA, 319 (3), 215217.CrossRefGoogle ScholarPubMed
Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R. and Petersen, R. C. (2011). Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clinic Proceedings, 86 (9), 876–84.CrossRefGoogle ScholarPubMed
Almeida, O. P., Hankey, G. J., Yeap, B. B., Golledge, J., & Flicker, L. (2017). Depression as a modifiable factor to decrease the risk of dementia. Translational Psychiatry, 7 (5), e1117–e1117.CrossRefGoogle ScholarPubMed
Andrieu, S., Guyonnet, S., Coley, N., et al. (2017). Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. The Lancet Neurology, 16 (5), 377–89.CrossRefGoogle ScholarPubMed
Bartels, C., Wagner, M., Wolfsgruber, S., et al. (2018). Impact of SSRI therapy on risk of conversion from mild cognitive impairment to Alzheimer’s dementia in individuals with previous depression. American Journal of Psychiatry, 175 (3), 232–41.CrossRefGoogle Scholar
Bennett, S., & Thomas, A. J. (2014). Depression and dementia: Cause, consequence or coincidence?. Maturitas, 79 (2), 184190.CrossRefGoogle ScholarPubMed
Bezabhe, W. M., Bereznicki, L. R., Radford, J., et al. (2022). Oral anticoagulant treatment and the risk of dementia in patients with atrial fibrillation: A population-based cohort study. Journal of the American Heart Association, 11 (7), e023098.CrossRefGoogle ScholarPubMed
Bredesen, D. (2017). The End of Alzheimer’s Programme: The Practical Plan to Prevent and Reverse Cognitive Decline at Any Age. London: Vermillion.Google Scholar
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimer’s & Dementia, 3 (3), 186–91.Google ScholarPubMed
Bubu, O. M., Brannick, M., Mortimer, J., et al. (2017). Sleep, cognitive impairment, and Alzheimer’s disease: A systematic review and meta-analysis. Sleep, 40 (1), zsw032.CrossRefGoogle ScholarPubMed
Butters, M. A., Becker, J. T., Nebes, R. D., et al. (2000). Changes in cognitive functioning following treatment of late-life depression. American Journal of Psychiatry, 157 (12), 1949–54.CrossRefGoogle ScholarPubMed
Choi, D., Choi, S., & Park, S. M. (2018). Effect of smoking cessation on the risk of dementia: A longitudinal study. Annals of Clinical and Translational Neurology, 5 (10), 1192–9.CrossRefGoogle ScholarPubMed
Conklin, H. W. (1922). Cause and treatment of epilepsy. Journal of the American Osteopathy Association, 26, 1114Google Scholar
Cunningham, E. L., Todd, S. A., Passmore, P., Bullock, R., & McGuinness, B. (2021). Pharmacological treatment of hypertension in people without prior cerebrovascular disease for the prevention of cognitive impairment and dementia. Cochrane Database of Systematic Reviews, 5 (5), CD004034. https://doi.org/10.1002/14651858.CD004034.pub4.Google ScholarPubMed
Dahl, A. K., Löppönen, M., Isoaho, R., Berg, S., & Kivelä, S. L. (2008). Overweight and obesity in old age are not associated with greater dementia risk: Journal of the American Geriatrics Society, 56 (12), 2261–6.CrossRefGoogle Scholar
Dalya, T., & Mastroleob, I. (2022). The first survivors of Alzheimer’s: How patients recovered life and hope in their own words by Dale Bredesen, Avery, 2021, 272 pp. Journal of Alzheimer’s Disease, 86, 4952.Google Scholar
Forbes, S. C., Holroyd-Leduc, J. M., Poulin, M. J., & Hogan, D. B. (2015). Effect of nutrients, dietary supplements and vitamins on cognition: A systematic review and meta-analysis of randomized controlled trials. Canadian Geriatrics Journal, 18 (4), 231.CrossRefGoogle ScholarPubMed
Fratiglioni, L., & Wang, H. X. (2007). Brain reserve hypothesis in dementia. Journal of Alzheimers Disease, 12 (1), 1122.CrossRefGoogle ScholarPubMed
Fratiglioni, L., Wang, H. X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet, 355, 1315–19.CrossRefGoogle ScholarPubMed
Friberg, L., & Rosenqvist, M. (2018). Less dementia with oral anticoagulation in atrial fibrillation. European Heart Journal, 39 (6), 453–60.CrossRefGoogle ScholarPubMed
Hachinski, V., Einhäupl, K., Ganten, D., et al. (2019). Preventing dementia by preventing stroke: The Berlin Manifesto. Alzheimer’s & Dementia, 15(7), 961–84.CrossRefGoogle ScholarPubMed
Hassing, L. B., Dahl, A. K., Thorvaldsson, V., et al. (2009). Overweight in midlife and risk of dementia: A 40-year follow-up study. International Journal of Obesity, 33 (8), 893–8.CrossRefGoogle ScholarPubMed
Hellmuth, J. (2020). Can we trust The End of Alzheimer’s? The Lancet. Neurology, 19 (5), 389.Google Scholar
Hellmuth, J., Rabinovici, G. D., & Miller, B. L. (2019). The rise of pseudomedicine for dementia and brain health. JAMA, 321 (6), 543–4.CrossRefGoogle ScholarPubMed
Huang, X., Zhao, X., Li, B., et al. (2022). Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: A systematic review and network meta-analysis. Journal of Sport and Health Science, 11, 212–23CrossRefGoogle ScholarPubMed
Hulse, G. K., Lautenschlager, N. T., Tait, R. J., & Almeida, O. P. (2005). Dementia associated with alcohol and other drug use. International Psychogeriatrics, 17 (s1), S109S127.CrossRefGoogle ScholarPubMed
Iwagami, M., Qizilbash, N., Gregson, J., et al. (2021). Blood cholesterol and risk of dementia in more than 1.8 million people over two decades: A retrospective cohort study. The Lancet Healthy Longevity, 2 (8), e498e506.CrossRefGoogle ScholarPubMed
Karp, A., Paillard-Borg, S., Wang, H. X., et al. (2006). Mental, physical and social components in leisure activities equally contribute to decrease dementia risk. Dementia and Geriatric Cognitive Disorders, 21 (2), 6573.CrossRefGoogle ScholarPubMed
Koenig, A. M., Mechanic-Hamilton, D., Xie, S. X., et al. (2017). Effects of the insulin sensitizer metformin in Alzheimer disease: Pilot data from a randomized placebo-controlled crossover study. Alzheimer Disease & Associated Disorders, 31(2), 107–13.CrossRefGoogle ScholarPubMed
Kroon, E., Kuhns, L., & Cousijn, J. (2021). The short-term and long-term effects of cannabis on cognition: Recent advances in the field. Current Opinion in Psychology, 38, 4955.CrossRefGoogle ScholarPubMed
Kutlu, M. G., & Gould, T. J. (2015). Nicotinic receptors, memory, and hippocampus. The Neurobiology and Genetics of Nicotine and Tobacco, 23, 137–63.CrossRefGoogle ScholarPubMed
Lim, A. S., Kowgier, M., Yu, L., Buchman, A. S., & Bennett, D. A. (2013). Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons. Sleep, 36 (7), 1027–32.CrossRefGoogle ScholarPubMed
Livingston, G., Huntley, J., Sommerlad, A., et al. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396 (10248), 413–46.CrossRefGoogle ScholarPubMed
Ma, Y., Ajnakina, O., Steptoe, A., & Cadar, D. (2020). Higher risk of dementia in English older individuals who are overweight or obese. International Journal of Epidemiology, 49 (4), 1353–65.CrossRefGoogle ScholarPubMed
Mander, B. A., Winer, J. R., & Walker, M. P. (2017). Sleep and human aging. Neuron, 94(1), 1936.CrossRefGoogle ScholarPubMed
Meier, M. H., Caspi, A. R., Knodt, A., et al. (2022). Long-term cannabis use and cognitive reserves and hippocampal volume in midlife. American Journal of Psychiatry, 179 (5), 362–74.CrossRefGoogle ScholarPubMed
Moroshko, I., Brennan, L., & O’Brien, P. (2011). Predictors of dropout in weight loss interventions: A systematic review of the literature. Obesity Reviews, 12 (11), 912–34.CrossRefGoogle Scholar
Morris, M. C., Tangney, C. C., Wang, Y., et al. (2015). MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s & Dementia, 11(9), 1007–14.CrossRefGoogle ScholarPubMed
Ngandu, T., Lehtisalo, J., Solomon, A., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. The Lancet, 385 (9984), 2255–63.CrossRefGoogle Scholar
Ott, A., Breteler, M. M., De Bruyne, M. C., et al. (1997). Atrial fibrillation and dementia in a population-based study: The Rotterdam Study. Stroke, 28 (2), 316–21.CrossRefGoogle Scholar
Ott, A., Stolk, R. P., Hofman, A., et al. (1996). Association of diabetes mellitus and dementia: The Rotterdam Study. Diabetologia, 39, 1392–7.CrossRefGoogle ScholarPubMed
Peprah, K., & McCormack, S. (2019). Medical cannabis for the treatment of dementia: a review of clinical effectiveness and guidelines. Review from Canadian Agency for Drugs and Technologies in Health, Ottawa (ON). www.ncbi.nlm.nih.gov/books/NBK546328/.Google Scholar
Peters, R., Peters, J., Warner, J., Beckett, N., & Bulpitt, C. (2008). Alcohol, dementia and cognitive decline in the elderly: A systematic review. Age and Ageing, 37(5), 505–12.CrossRefGoogle ScholarPubMed
Phillips, M. C., Deprez, L. M., Mortimer, G., et al. (2021). Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alzheimer’s Research & Therapy, 13 (1), 112.Google ScholarPubMed
Scherrer, J. F., Morley, J. E., Salas, J., et al. (2019). Association between metformin initiation and incident dementia among African American and white veterans’ health administration patients. The Annals of Family Medicine, 17(4), 352–62.CrossRefGoogle ScholarPubMed
Schultz, B. G., Patten, D. K., & Berlau, D. J. (2018). The role of statins in both cognitive impairment and protection against dementia: A tale of two mechanisms. Translational Neurodegeneration, 7, 111.CrossRefGoogle ScholarPubMed
Sierra, C. (2020). Hypertension and the risk of dementia. Frontiers in Cardiovascular Medicine, 7, 5.CrossRefGoogle ScholarPubMed
Skoog, I., Nilsson, L., Persson, G., et al. (1996). 15-year longitudinal study of blood pressure and dementia. The Lancet, 347 (9009), 1141–5.CrossRefGoogle ScholarPubMed
Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20 (3)(suppl 2), S69S74.CrossRefGoogle ScholarPubMed
van Charante, E. P. M., Richard, E., Eurelings, L. S., et al. (2016). Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): A cluster-randomised controlled trial. The Lancet, 388(10046), 797805.CrossRefGoogle Scholar
Wagstaff, L., Mitton, M., Arvik, B., & Doraiswamy, P. (2003). Statin-associated memory loss: Analysis of 60 case reports and review of the literature. Pharmacotherapy, 23, 871–80.CrossRefGoogle ScholarPubMed
Walker, M. (2017). Why We Sleep. Allen Lane.Google Scholar
Wang, H. X., Karp, A., Winblad, B., & Fratiglioni, L. (2002). Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: A longitudinal study from the Kungsholmen Project. American Journal of Epidemiology, 155, 1081–7.CrossRefGoogle ScholarPubMed
Wiegmann, C., Mick, I., Brandl, E. J., Heinz, A., & Gutwinski, S. (2020). Alcohol and dementia – what is the link? A systematic review. Neuropsychiatric Disease and Treatment, 16 8799.CrossRefGoogle ScholarPubMed
Williams, B. D., Pendleton, N., & Chandola, T. (2020). Cognitively stimulating activities and risk of probable dementia or cognitive impairment in the English Longitudinal Study of Ageing. SSM – Population Health, 12, 100656.CrossRefGoogle ScholarPubMed
Wong, W. B., Lin, V. W., Boudreau, D., & Devine, E. B. (2013). Statins in the prevention of dementia and Alzheimer’s disease: A meta‐analysis of observational studies and an assessment of confounding. Pharmacoepidemiology and Drug Safety, 22(4), 345–58.CrossRefGoogle Scholar
Zhong, G., Wang, Y., Zhang, Y., Guo, J. J., & Zhao, Y. (2015). Smoking is associated with an increased risk of dementia: A meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PloS One, 10 (3), e0118333.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Intervention
  • Simon Gerhand, Hywel Dda Health Board, NHS Wales
  • Book: The Neuropsychology of Dementia
  • Online publication: 25 October 2024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Intervention
  • Simon Gerhand, Hywel Dda Health Board, NHS Wales
  • Book: The Neuropsychology of Dementia
  • Online publication: 25 October 2024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Intervention
  • Simon Gerhand, Hywel Dda Health Board, NHS Wales
  • Book: The Neuropsychology of Dementia
  • Online publication: 25 October 2024
Available formats
×