Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T03:44:43.388Z Has data issue: false hasContentIssue false

Chapter 8 - Prognostication in Neuroinfectious Disease

from Part I - Disease-Specific Prognostication

Published online by Cambridge University Press:  14 November 2024

David M. Greer
Affiliation:
Boston University School of Medicine and Boston Medical Center
Neha S. Dangayach
Affiliation:
Icahn School of Medicine at Mount Sinai and Mount Sinai Health System
Get access

Summary

Patients with neurological infections are often critically ill, requiring cardiopulmonary support and prolonged admission to the Neurointensive Care Unit (Neuro-ICU). In recent years, the pathogens and manifestations of neurological infections have expanded in the setting of both immunosuppressive medications and globalization. Despite advances in antimicrobial therapy, however, the morbidity and mortality of these infections remains high. Outcomes following neurological infections are variable, determined by host factors, pathogen factors, and the specific syndrome. In this chapter, we will review outcomes following neurological infections of the central nervous system (CNS) in critically ill patients, focusing on the most commonly encountered diagnoses, including meningitis, abscess, and encephalitis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LaPenna, PA, Roos, KL. Bacterial infections of the central nervous system. Sem Neurol. 2019;39(03):334–42.Google ScholarPubMed
World Health Organization. Defeating meningitis by 2030: developing a global roadmap. 2019.Google Scholar
Thigpen, MC, Whitney, SG, Messonnier, NE, et al. Bacterial meningitis in the United States, 1998–2007. N Engl J Med. 2011;364(21):2016–25.CrossRefGoogle ScholarPubMed
Durand, M, Calderwood, S, Weber, D, et al. Acute bacterial meningitis in adults: a review of 493 episodes. N Engl J Med. 1993;328:21–8.CrossRefGoogle ScholarPubMed
Buchholz, G, Koedel, U, Pfister, H-W, Kastenbauer, S, Klein, M. Dramatic reduction of mortality in pneumococcal meningitis. Crit Care. 2016;20(1):312.CrossRefGoogle ScholarPubMed
Bijlsma, MW, Brouwer, MC, Kasanmoentalib, ES, et al. Community-acquired bacterial meningitis in adults in the Netherlands, 2006–14: a prospective cohort study. Lancet Infect Dis. 2016;16(3):339–47.CrossRefGoogle ScholarPubMed
Glimåker, M, Brink, M, Naucler, P, Sjölin, J. Betamethasone and dexamethasone in adult community-acquired bacterial meningitis: a quality registry study from 1995 to 2014. Clin Microbiol Infect. 2016;22(9):814.e1–814.e7.CrossRefGoogle ScholarPubMed
Gudina, EK, Tesfaye, M, Wieser, A, Pfister, H-W, Klein, M. Outcome of patients with acute bacterial meningitis in a teaching hospital in Ethiopia: a prospective study. PLoS One. 2018;13(7):e0200067.CrossRefGoogle Scholar
Wall, EC, Mukaka, M, Scarborough, M, et al. Prediction of outcome from adult bacterial meningitis in a high-hiv-seroprevalence, resource-poor setting using the Malawi Adult Meningitis Score (MAMS). Clin Infect Dis. 2017;64(4):413–19.Google Scholar
Zunt, JR, Kassebaum, NJ, Blake, N, et al. Global, regional, and national burden of meningitis, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(12):1061–82.CrossRefGoogle Scholar
Edmond, K, Clark, A, Korczak, VS, et al. Global and regional risk of disabling sequelae from bacterial meningitis: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(5):317–28.CrossRefGoogle ScholarPubMed
Wiebe, R, Crast, FW, Hall, R, Bass, J. Clinical factors relating to prognosis of bacterial meningitis. South Med J. 1972;65(3):257–64.CrossRefGoogle ScholarPubMed
Bohr, V, Hansen, B, Jessen, O, et al. Eight hundred and seventy-five cases of bacterial meningitis. Part I of a three-part series: clinical data, prognosis, and the role of specialised hospital departments. J Infect. 1983;7(1):2130.CrossRefGoogle ScholarPubMed
Pfister, H-W. Spectrum of complications during bacterial meningitis in adults: results of a prospective clinical study. Arch Neurol. 1993;50(6):575.CrossRefGoogle ScholarPubMed
Cabellos, C, Verdaguer, R, Olmo, M, et al. Community-acquired bacterial meningitis in elderly patients: experience over 30 years. Medicine. 2009;88(2):115–19.CrossRefGoogle ScholarPubMed
Lai, W-A, Chen, S-F, Tsai, N-W, et al. Clinical characteristics and prognosis of acute bacterial meningitis in elderly patients over 65: a hospital-based study. BMC Geriatr. 2011;11(1):91.CrossRefGoogle ScholarPubMed
Weisfelt, M, de Gans, J, van der Ende, A, van de Beek, D. Community-acquired bacterial meningitis in alcoholic patients. PLoS One. 2010;5(2):e9102.CrossRefGoogle ScholarPubMed
van Veen KEB, , Brouwer, MC, van der Ende, A, van de Beek, D. Bacterial meningitis in diabetes patients: a population-based prospective study. Sci Rep. 2016;6(1):36996.CrossRefGoogle ScholarPubMed
van de Beek D, , Cabellos, C, Dzupova, O, et al. ESCMID guideline: diagnosis and treatment of acute bacterial meningitis. Clin Microbiol Infect. 2016;22:S3762.CrossRefGoogle ScholarPubMed
Aronin, SI. Community-acquired bacterial meningitis: risk stratification for adverse clinical outcome and effect of antibiotic timing. Ann Intern Med. 1998;129(11):862.CrossRefGoogle ScholarPubMed
Lebel, MH, McCracken, GH Jr. Delayed cerebrospinal fluid sterilization and adverse outcome of bacterial meningitis in infants and children. Infect Dis Newsletter. 1990;9(1):78.Google Scholar
Schaad, U, Suter, S, Gianella-Borradori, A, et al. A comparison of ceftriaxone and cefuroxime for the treatment of bacterial meningitis in children. N Engl J Med. 1990;322(3):141–7.CrossRefGoogle ScholarPubMed
Tunkel, AR, Hartman, BJ, Kaplan, SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267–84.CrossRefGoogle ScholarPubMed
Lucas, MJ, Brouwer, MC, van der Ende, A, van de Beek, D. Outcome in patients with bacterial meningitis presenting with a minimal Glasgow Coma Scale score. Neurol Neuroimmunol Neuroinflamm. 2014;1(1):e9.CrossRefGoogle ScholarPubMed
van de Beek, D, de Gans, J, Spanjaard, L, et al. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med. 2004;351(18):1849–59.CrossRefGoogle ScholarPubMed
Flores-Cordero, JM, Amaya-Villar, R, Rincón-Ferrari, MD, et al. Acute community-acquired bacterial meningitis in adults admitted to the intensive care unit: clinical manifestations, management and prognostic factors. Inten Care Med. 2003;29(11):1967–73.CrossRefGoogle Scholar
Bijlsma, MW, Brouwer, MC, Bossuyt, PM, et al. Risk scores for outcome in bacterial meningitis: Systematic review and external validation study. J Infect. 2016;73(5):393401.CrossRefGoogle ScholarPubMed
Schutte, C-M, van der Meyden, CH. A prospective study of Glasgow Coma Scale (GCS), age, CSF-neutrophil count, and CSF-protein and glucose levels as prognostic indicators in 100 adult patients with meningitis. J Infect. 1998;37(2):112–15.CrossRefGoogle ScholarPubMed
van Ettekoven, CN, Brouwer, MC, Bijlsma, MW, Wijdicks, EFM, van de Beek, D. The FOUR score as predictor of outcome in adults with bacterial meningitis. Neurology. 2019;92(22):e2522–6.CrossRefGoogle ScholarPubMed
Wijdicks, EFM, Bamlet, WR, Maramattom, BV, Manno, EM, McClelland, RL. Validation of a new coma scale: the FOUR score. Ann Neurol. 2005;58(4):585–93.CrossRefGoogle ScholarPubMed
Lu, C-H, Huang, C-R, Chang, W-N, et al. Community-acquired bacterial meningitis in adults: the epidemiology, timing of appropriate antimicrobial therapy, and prognostic factors. Clin Neurol Neurosurg. 2002;104(4):352–8.CrossRefGoogle ScholarPubMed
Zoons, E, Weisfelt, M, de Gans, J, Spanjaard, L. Seizures in adults with bacterial meningitis. Neurology. 2008;70(22):2109–15.CrossRefGoogle ScholarPubMed
Larsen, FTBD, Brandt, CT, larsen, L, et al. Risk factors and prognosis of seizures in adults with community-acquired bacterial meningitis in Denmark: observational cohort studies. BMJ Open. 2019;9(7):e030263.CrossRefGoogle ScholarPubMed
Kastenbauer, S, Pfister, H-W. Pneumococcal meningitis in adults: spectrum of complications and prognostic factors in a series of 87 cases. Brain. 2003;126(5):1015–25.CrossRefGoogle Scholar
Schut, ES, Lucas, MJ, Brouwer, MC, et al. Cerebral infarction in adults with bacterial meningitis. Neurocrit Care. 2012;16(3):421–7.CrossRefGoogle ScholarPubMed
Pfister, H-W, Borasio, GD, Dirnagl, U, Bauer, M, Einhaupl, KM. Cerebrovascular complications of bacterial meningitis in adults. Neurology. 1992;42(8):1497.CrossRefGoogle ScholarPubMed
Shulman, JG, Cervantes-Arslanian, AM. Infectious etiologies of stroke. Semin Neurol. 2019;39(4):482–94.Google ScholarPubMed
Boelman, C, Shroff, M, Yau, I, et al. Antithrombotic therapy for secondary stroke prevention in bacterial meningitis in children. J Pediatr. 2014;165(4):799806.CrossRefGoogle ScholarPubMed
Misra, UK, Kalita, J, Nair, PP. Role of aspirin in tuberculous meningitis: a randomized open label placebo controlled trial. J Neurol Sci. 2010;293(1–2):1217.CrossRefGoogle ScholarPubMed
Pugin, D, Copin, J-C, Goodyear, M-C, Landis, T, Gasche, Y. Persisting vasculitis after pneumococcal meningitis. Neurocrit Care. 2006;4(3):237–40.CrossRefGoogle ScholarPubMed
Czartoski, T. Postinfectious vasculopathy with evolution to moyamoya syndrome. J NeurolNeurosurgPsychiatry. 2005;76(2):256–9.Google ScholarPubMed
Ries, S, Schminke, U, Fassbender, K, et al. Cerebrovascular involvement in the acute phase of bacterial meningitis. J Neurol. 1996;244(1):51–5.CrossRefGoogle Scholar
Sporrborn, JL, Knudsen, GB, Sølling, M, et al. Brain ventricular dimensions and relationship to outcome in adult patients with bacterial meningitis. BMC Infect Dis. 2015;15(1):367.CrossRefGoogle ScholarPubMed
Soemirien Kasanmoentalib, E, Brouwer, MC, van der Ende, A, van de Beek, D. Hydrocephalus in adults with community-acquired bacterial meningitis. Neurology. 2010;75(10):918–23.CrossRefGoogle ScholarPubMed
Bodilsen, J, Schønheyder, HC, Nielsen, H. Hydrocephalus is a rare outcome in community-acquired bacterial meningitis in adults: a retrospective analysis. BMC Infect Dis. 2013;13(1):321.CrossRefGoogle ScholarPubMed
Wang, K-W, Chang, W-N, Chang, H-W, Wang, H-C, Lu, C-H. Clinical relevance of hydrocephalus in bacterial meningitis in adults. Surg Neurol. 2005;64(1):61–5.CrossRefGoogle ScholarPubMed
Mook-Kanamori, BB, Geldhoff, M, van der Poll, T, van de Beek, D. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev. 2011;24(3):557–91.CrossRefGoogle ScholarPubMed
Brouwer, MC, McIntyre, P, Prasad, K, van de Beek, D. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev. 2015;2015(9):CD004405Google ScholarPubMed
Tariq, A, Aguilar-Salinas, P, Hanel, RA, Naval, N, Chmayssani, M. The role of ICP monitoring in meningitis. Neurosurg Focus. 2017;43(5):E7.CrossRefGoogle ScholarPubMed
Wall, EC, Ajdukiewicz, KM, Bergman, H, Heyderman, RS, Garner, P. Osmotic therapies added to antibiotics for acute bacterial meningitis. Cochrane Database Syst Rev. 2018;2(2):CD008806.Google ScholarPubMed
Lindvall, P, Ahlm, C, Ericsson, M, et al. Reducing intracranial pressure may increase survival among patients with bacterial meningitis. Clin Infect Dis. 2004;38:384–90.CrossRefGoogle ScholarPubMed
Grande, P-O, Myhre, EB, Nordstrom, C-H, Schliamser, S. Treatment of intracranial hypertension and aspects on lumbar dural puncture in severe bacterial meningitis. Acta Anaesthesiol Scand. 2002;46(3):264–70.CrossRefGoogle ScholarPubMed
Kumar, R, Singhi, S, Singhi, P, et al. Randomized controlled trial comparing cerebral perfusion pressure–targeted therapy versus intracranial pressure–targeted therapy for raised intracranial pressure due to acute cns infections in children. Crit Care Med. 2014;42(8):1775–87.CrossRefGoogle ScholarPubMed
Glimåker, M, Johansson, B, Halldorsdottir, H, et al. Neuro-intensive treatment targeting intracranial hypertension improves outcome in severe bacterial meningitis: an intervention-control study. PLoS One. 2014;9(3):e91976.CrossRefGoogle ScholarPubMed
Weisfelt, M, van de Beek, D, Spanjaard, L, Reitsma, JB, de Gans, J. A risk score for unfavorable outcome in adults with bacterial meningitis. Ann Neurol. 2008;63(1):90–7.CrossRefGoogle ScholarPubMed
Sader, E, Moore, J, Cervantes-Arslanian, AM. Neurosurgical Infections. Semin Neurol. 2019;39:18.Google ScholarPubMed
Weisfelt, M, van de Beek, D, Spanjaard, L, de Gans, J. Nosocomial bacterial meningitis in adults: a prospective series of 50 cases. J Hosp Infect. 2007;66(1):71–8.CrossRefGoogle ScholarPubMed
Sonabend, AM, Korenfeld, Y, Crisman, C, et al. Prevention of ventriculostomy-related infections with prophylactic antibiotics and antibiotic-coated external ventricular drains: a systematic review. Neurosurgery. 2011;68(4):9961005.CrossRefGoogle ScholarPubMed
Lyke, KE, Obasanjo, OO, Williams, MA, et al. Ventriculitis Complicating Use of Intraventricular Catheters in Adult Neurosurgical Patients. Clin Infect Dis. 2001;33(12):2028–33.CrossRefGoogle ScholarPubMed
Brouwer, MC, Tunkel, AR, McKhann, GM, van de Beek, D. Brain abscess. N Eng J Med. 2014;371(5):447–56.CrossRefGoogle ScholarPubMed
Kastenbauer, S, Pfister, H-W, Wispelwey, B, Scheld, WM. Brain abscess. In Infections of the Central Nervous System. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2004:479507.Google Scholar
Widdrington, JD, Bond, H, Schwab, U, et al. Pyogenic brain abscess and subdural empyema: presentation, management, and factors predicting outcome. Infection. 2018;46(6):785–92.CrossRefGoogle ScholarPubMed
Brouwer, MC, Coutinho, JM, van de Beek, D. Clinical characteristics and outcome of brain abscess: systematic review and meta-analysis. Neurology. 2014;82(9):806–13.CrossRefGoogle ScholarPubMed
Glaser, CA, Gilliam, S, Schnurr, D, et al. In search of encephalitis etiologies: diagnostic challenges in the California Encephalitis Project, 1998–2000. Clin Infect Dis. 2003;36(6):731–42.CrossRefGoogle ScholarPubMed
Tunkel, AR, Glaser, CA, Bloch, KC, et al. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2008;47(3):303–27.CrossRefGoogle ScholarPubMed
Chaudhuri, A, Kennedy, PGE. Diagnosis and treatment of viral encephalitis. Postgrad Med J. 2002;78(924):575–83.CrossRefGoogle ScholarPubMed
Thakur, KT, Motta, M, Asemota, AO, et al. Predictors of outcome in acute encephalitis. Neurology. 2013;81(9):793800.CrossRefGoogle ScholarPubMed
Fowler, A, Stodberg, T, Eriksson, M, Wickstrom, R. Long-term outcomes of acute encephalitis in childhood. Pediatrics. 2010;126(4):e828–35.CrossRefGoogle ScholarPubMed
Mailles, A, Stahl, J. Infectious encephalitis in France in 2007: a national prospective study. Clin Infect Dis. 2009;49(12):1838–47.CrossRefGoogle ScholarPubMed
Lutters, B, Foley, P, Koehler, PJ. The centennial lesson of encephalitis lethargica. Neurology. 2018;90(12):563–7.CrossRefGoogle ScholarPubMed
Granerod, J, Tam, CC, Crowcroft, NS, et al. Challenge of the unknown: a systematic review of acute encephalitis in non-outbreak situations. Neurology. 2010;75(10):924–32.CrossRefGoogle ScholarPubMed
World Health Organization. WHO Expert Consultation on Rabies: WHO TRS No. 982. Second report. World Health Organization technical report series. 2013.Google Scholar
Whitley, RJ. Herpes simplex virus infections of the central nervous system: encephalitis and neonatal herpes. Drugs. 1991;42(3):406–27.CrossRefGoogle ScholarPubMed
Whitley, RJ. Herpes simplex encephalitis: adolescents and adults. Antiviral Res. 2006;71(2–3):141–8.CrossRefGoogle ScholarPubMed
Whitley, RJ, Alford, CA, Hirsch, MS, et al. Vidarabine versus acyclovir therapy in herpes simplex encephalitis. N Engl J Med. 1986;314(3):144–9.CrossRefGoogle ScholarPubMed
Sköldenberg, B, Alestig, K, Burman, L, et al. Acyclovir versus vidarabine in herpes simplex encephalitis. Randomised multicentre study in consecutive Swedish patients. Lancet. 1984;2(8405):707–11.Google ScholarPubMed
Raschilas, F, Wolff, M, Delatour, F, et al. Outcome of and prognostic factors for herpes simplex encephalitis in adult patients: results of a multicenter study. Clin Infect Dis. 2002;35(3):254–60.CrossRefGoogle ScholarPubMed
Hjalmarsson, A, Blomqvist, P, Skoldenberg, B. Herpes simplex encephalitis in Sweden, 1990–2001: incidence, morbidity, and mortality. Clin Infect Dis. 2007;445(7):875–80.Google Scholar
Grydeland, H, Walhovd, KB, Westlye, LT, et al. Amnesia following herpes simplex encephalitis: diffusion-tensor imaging uncovers reduced integrity of normal-appearing white matter. Radiology. 2010;257(3):7481.CrossRefGoogle ScholarPubMed
Gordon, B, Selnes, OA, Hart, J, Hanley, DF, Whitley, RJ. Long-term cognitive sequelae of acyclovir-treated herpes simplex encephalitis. Arch Neurol. 1990;47(6):646–7.CrossRefGoogle ScholarPubMed
Hart, RP, Kwentus, JA, Frazier, RB, Hormel, TL. Natural history of Klüver-Bucy syndrome after treated herpes encephalitis. South Med J. 1986;79(11):1376–8.CrossRefGoogle ScholarPubMed
Sutter, R, Kaplan, PW, Cervenka, MC, et al. Electroencephalography for diagnosis and prognosis of acute encephalitis. Clin Neurophysiol. 2015;126(8):1524–31.CrossRefGoogle ScholarPubMed
Armangue, T, Spatola, M, Vlagea, A, et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 2018;17(9):760–72.CrossRefGoogle ScholarPubMed
Kleinschmidt-Demasters, BK, Amlie-Lefond, C, Gilden, DH. The patterns of varicella zoster virus encephalitis. Hum Pathol. 1996;27(9):927–38.CrossRefGoogle ScholarPubMed
Fleisher, G, Henry, W, Mcsorley, M, Arbeter, A, Plotkin, S. Life-threatening complications of varicella. Am J Dis Child. 1981;135(10):896–9.Google ScholarPubMed
Preblud, SR. Age-specific risks of varicella complications. Pediatrics. 1981;68(1):1417.CrossRefGoogle ScholarPubMed
Lin, HC, Chien, CW, Der, Ho J. Herpes zoster ophthalmicus and the risk of stroke: a population-based follow-up study. Neurology. 2010;74(10):792–7.CrossRefGoogle ScholarPubMed
Sreenivasan, N, Basit, S, Wohlfahrt, J, et al. The short- and long-term risk of stroke after herpes zoster – a nationwide population-based cohort study. PLoS One. 2013;8(7):e69156.CrossRefGoogle Scholar
Langan, SM, Minassian, C, Smeeth, L, Thomas, SL. Risk of stroke following herpes zoster: A self-controlled case-series study. Clin Infect Dis. 2014;58(11):1497–503.CrossRefGoogle ScholarPubMed
Rottenstreich, A, Oz, ZK, Oren, I. Association between viral load of varicella zoster virus in cerebrospinal fluid and the clinical course of central nervous system infection. Diagn Microbiol Infect Dis. 2014;79(2):174–7.CrossRefGoogle ScholarPubMed
Becerra, JCL, Sieber, R, Martinetti, G, et al. Infection of the central nervous system caused by varicella zoster virus reactivation: a retrospective case series study. Int J Infect Dis. 2013;17(7):e529–34.CrossRefGoogle ScholarPubMed
De Broucker, T, Mailles, A, Chabrier, S, et al. Acute varicella zoster encephalitis without evidence of primary vasculopathy in a case-series of 20 patients. Clin Microbiol Infect. 2012;18(8):808–19.CrossRefGoogle Scholar
Lyons, JL. Viral meningitis and encephalitis. Continuum (Minneap Minn). 2018;24(5):1284–97.Google Scholar
Nash, D, Mostashari, F, Fine, A, et al. The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med. 2001;344(24):1807–14.CrossRefGoogle ScholarPubMed
Sejvar, JJ, Haddad, MB, Tierney, BC, et al. Neurologic manifestations and outcome of West Nile virus infection. JAMA. 2003;290(4):511–15.CrossRefGoogle ScholarPubMed
Carson, PJ, Konewko, P, Wold, KS, et al. Long-term clinical and neuropsychological outcomes of West Nile virus infection. Clin Infect Dis. 2006;43(6):723–30.CrossRefGoogle ScholarPubMed
Haaland, KY, Sadek, J, Pergam, S, et al. Mental status after West Nile virus infection. Emerg Infects Dis. 2006;12(8):1620–2.Google ScholarPubMed
Bode, A V., Sejvar, JJ, Pape, WJ, Campbell, GL, Marfin, AA. West Nile virus disease: a descriptive study of 228 patients hospitalized in a 4-county region of Colorado in 2003. Clin Infect Dis. 2006;42(9):1234–40.CrossRefGoogle Scholar
Sejvar, JJ, Haddad, MB, Tierney, BC, et al. Neurologic manifestations and outcome of West Nile virus infection. JAMA. 2003;290(4):511–15.CrossRefGoogle ScholarPubMed
Lannuzel, A, Fergé, J-L, Lobjois, Q, et al. Long-term outcome in neuroZika: when biological diagnosis matters. Neurology. 2019;92(21):e2406e2420.CrossRefGoogle ScholarPubMed
Piantadosi, A, Rubin, DB, McQuillen, DP, et al. Emerging cases of Powassan virus Encephalitis in New England: clinical presentation, imaging, and review of the literature. Clin Infect Dis. 2015;62(6):707–13.Google ScholarPubMed
Ebel, GD. Update on Powassan virus: emergence of a North American tick-borne flavivirus. Annu Rev Entomol. 2010;55:95110.CrossRefGoogle ScholarPubMed
Sejvar, JJ. Zika virus and other emerging arboviral central nervous system infections. Continuum (Minneap Minn). 2018;24(5):1512–34.Google ScholarPubMed
Kalita, J, Misra, UK. EEG in Japanese encephalitis: a clinico-radiological correlation. Electroencephalogr Clin Neurophysiol. 1998;105(3):238–43.Google Scholar
Kalita, J, Misra, UK. Markedly severe dystonia in Japanese encephalitis. Mov Disord. 2000;15(6):1168–72.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Misra, UK, Kalita, J. Spectrum of movement disorders in encephalitis. J Neurol. 2010;257(12):2052–8.CrossRefGoogle ScholarPubMed
Jang, H, Boltz, DA, Webster, RG, Smeyne, RJ. Viral parkinsonism. Biochim Biophy Acta. 2009;1792(7):714–21.Google ScholarPubMed
Murgod, UA, Muthane, UB, Ravi, V, Radhesh, S, Desai, A. Persistent movement disorders following Japanese encephalitis. Neurology. 2001;57(12):2313–15.CrossRefGoogle ScholarPubMed
Misra, UK, Kalita, J. Prognosis of Japanese encephalitis patients with dystonia compared to those with parkinsonian features only. Postgrad Med J. 2002;78(918):238–41.CrossRefGoogle ScholarPubMed
Patel, M, Lee, AD, Redd, SB, et al. Increase in measles cases – United States, January 1–April 26, 2019. MMWR Morb Mortal Wkly Rep. 2019;68(17):402–4.Google Scholar
Fisher, DL, Defres, S, Solomon, T. Measles-induced encephalitis. QJM. 2015;108(3):177–82.CrossRefGoogle ScholarPubMed
Baldolli, A, Dargère, S, Cardineau, E, et al. Measles inclusion-body encephalitis (MIBE) in a immunocompromised patient. J Clin Virol. 2016;81:43–6.CrossRefGoogle Scholar
Freeman, AF. A new complication of stem cell transplantation: measles inclusion body encephalitis. Pediatrics. 2004;114(5):e657–60.CrossRefGoogle ScholarPubMed
Anlar, B. Subacute sclerosing panencephalitis and chronic viral encephalitis. Handb Clin Neurol. 2013;112:1183–9.CrossRefGoogle ScholarPubMed
Johnson, RT. Measles encephalomyelitis clinical and immunologic studies. Pediatr Infect Dis J. 1984;310(3):137–41.Google ScholarPubMed
Tenembaum, S, Chamoles, N, Fejerman, N. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology. 2002;59(8):1224–31.CrossRefGoogle ScholarPubMed
Cohen, HA, Ashkenazi, A, Nussinovitch, M, et al. Mumps-associated acute cerebellar ataxia. Am J Dis Child. 1992;146(8):930–1.Google ScholarPubMed
Koskiniemi, M, Donner, M, Pettay, O. Clinical appearance and outcome in mumps encephalitis in children. Acta Pædiatr Scand. 1983;72(4):603–9.CrossRefGoogle ScholarPubMed
Pun, BT, Badenes, R, Heras, LA, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. 2021;9:239–50.CrossRefGoogle ScholarPubMed
Cervantes-Arslanian, AM, Venkata, C, Anand, P, et al. Neurologic manifestations of severe acute respiratory syndrome coronavirus 2 infection in hospitalized patients during the first year of the COVID-19 pandemic. Crit Care Explor. 2022;4(4):e0686.CrossRefGoogle ScholarPubMed
Pilotto, A, Masciocchi, S, Volonghi, I, et al. Clinical presentation and outcomes of severe acute respiratory syndrome coronavirus 2-related encephalitis: the ENCOVID multicenter study. J Infect Dis. 2021;223:2837.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×