Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:42:15.212Z Has data issue: false hasContentIssue false

Chapter 19 - Prognostication in Chronic Critical Illness: Frailty, Geriatrics, Prior Severe Neurological Comorbidities

from Part II - Other Topics in Neuroprognostication

Published online by Cambridge University Press:  14 November 2024

David M. Greer
Affiliation:
Boston University School of Medicine and Boston Medical Center
Neha S. Dangayach
Affiliation:
Icahn School of Medicine at Mount Sinai and Mount Sinai Health System
Get access

Summary

The advancement of medical science over the past several decades, while increasing the ability to preserve life among patients who are critically ill, has led to a new and increasing problem of patients who fail to recover full function. Hospitalized patients can be intensive care-dependent, such that they are unable to survive without receiving critical care, for more than a few days. Such patients have been described in the literature as having chronic critical illness,[1–6] persistently critically ill,[7,8] chronically medically complex,[9] requiring prolonged mechanical ventilation,[10–13] or long-stay patients.[14–16] The term “chronically critically ill” was introduced by Girard and Raffin in 1985.[17] They studied patients who survived an initial episode of critical illness but remained dependent on intensive care without recovering. Patients with chronic critical illness are an identifiable group of intensive care unit (ICU) patients with definable characteristics, have substantial stress associated with their care, and have poor perceived long-term outcomes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nelson, J.E., Cox, C.E., Hope, A.A., Carson, S.S. Chronic critical illness. Am J Respir Crit Care Med 2010;182(4):446–54.CrossRefGoogle ScholarPubMed
Sjoding, M.W., Cooke, C.R. Chronic critical illness: a growing legacy of successful advances in critical care. Crit Care Med 2015; 43(2):476–7.CrossRefGoogle ScholarPubMed
Kahn, J.M., Werner, R.M., David, G., et al. Effectiveness of long-term acute care hospitalization in elderly patients with chronic critical illness. Med Care 2013;51(1):410.CrossRefGoogle ScholarPubMed
Carson, S.S., Bach, P.B. The epidemiology and costs of chronic critical illness. Crit Care Clin 2002;18(3):461–76.CrossRefGoogle ScholarPubMed
Kahn, J.M., Le, T., Angus, D.C., et al. The epidemiology of chronic critical illness in the United States. Crit Care Med 2015;43(2):282–7.CrossRefGoogle ScholarPubMed
Cox, C.E. Persistent systemic inflammation in chronic critical illness. Respir Care 2012;57(6):859–64; discussion 64–6.CrossRefGoogle ScholarPubMed
Iwashyna, T.J., Hodgson, C.L., Pilcher, D., Bailey, M., Bellomo, R. Persistent critical illness characterised by Australian and New Zealand ICU clinicians. Crit Care Resusc 2015;17(3):153–8.Google ScholarPubMed
Iwashyna, T.J., Hodgson, C.L., Pilcher, D., et al. Towards defining persistent critical illness and other varieties of chronic critical illness. Crit Care Resusc 2015;17(3):215–18.Google ScholarPubMed
Kandilov, A., Ingber, I.M., Morley, M, et al. Chronically critically ill population payment recommendations (CCIP-PR): final report. RTI Project No. 0212355.000.010. RTI International. March 2014.Google Scholar
Hough, C.L., Caldwell, E.S., Cox, C.E., et al. Development and validation of a mortality prediction model for patients receiving 14 days of mechanical ventilation. Crit Care Med 2015;43(11):2339–45.CrossRefGoogle ScholarPubMed
Chelluri, L., Mendelsohn, A.B., Belle, S.H., et al. Hospital costs in patients receiving prolonged mechanical ventilation: does age have an impact? Crit Care Med 2003;31(6):1746–51.CrossRefGoogle ScholarPubMed
Kahn, J.M. Improving outcomes in prolonged mechanical ventilation: a road map. Lancet Respir Med 2015;3(7):501–2.CrossRefGoogle ScholarPubMed
Damuth, E., Mitchell, J.A., Bartock, J.L., Roberts, B.W., Trzeciak, S. Long-term survival of critically ill patients treated with prolonged mechanical ventilation: a systematic review and meta-analysis. Lancet Respir Med 2015;3(7):544–53.CrossRefGoogle ScholarPubMed
Hughes, M., MacKirdy, F.N., Norrie, J. Grant, I.S. Outcome of long-stay intensive care patients. Intensive Care Med 2001;27(4):779–82.CrossRefGoogle ScholarPubMed
Kramer, A.A., Zimmerman, J.E. A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay. BMC Med Inform Decis Mak 2010;10:27.CrossRefGoogle ScholarPubMed
Arabi, Y., Venkatesh, S., Haddad, S., Al Shimemeri, A. Al Malik, S. A prospective study of prolonged stay in the intensive care unit: predictors and impact on resource utilization. Int J Qual Health Care 2002;14(5):403–10.CrossRefGoogle ScholarPubMed
Girard, K., Raffin, T.A. The chronically critically ill: to save or let die? Respir Care 1985;30(5):339–47.Google ScholarPubMed
Iwashyna, T.J., Hodgson, C.L., Pilcher, D., et al. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study. Lancet Respir Med 2016;4(7):566–73.CrossRefGoogle ScholarPubMed
Cox, C.E., Carson, S.S., Holmes, G.M., Howard, A. Carey, T.S. Increase in tracheostomy for prolonged mechanical ventilation in North Carolina, 1993–2002. Crit Care Med 2004;32(11):2219–26.CrossRefGoogle ScholarPubMed
Scheinhorn, D.J., Hassenpflug, M.S., Votto, J.J., et al. Ventilator-dependent survivors of catastrophic illness transferred to 23 long-term care hospitals for weaning from prolonged mechanical ventilation. Chest 2007;131(1):7684.CrossRefGoogle ScholarPubMed
Hollander, J.M., Mechanick, J.I. Nutrition support and the chronic critical illness syndrome. Nutr Clin Pract 2006;21(6):587604.CrossRefGoogle ScholarPubMed
Nelson, J.E., Tandon, N., Mercado, A.F., et al. Brain dysfunction: another burden for the chronically critically ill. Arch Intern Med 2006;166(18):1993–9.CrossRefGoogle ScholarPubMed
Van den Berghe, G., de Zegher, F., Veldhuis, J.D., et al. The somatotropic axis in critical illness: effect of continuous growth hormone (GH)-releasing hormone and GH-releasing peptide-2 infusion. J Clin Endocrinol Metab 1997;82(2):590–9.Google ScholarPubMed
Van den Berghe, G., de Zegher, F., Veldhuis, J.D., et al. Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol (Oxf) 1997;47(5):599612.CrossRefGoogle ScholarPubMed
Scheinhorn, D.J., Hassenpflug, M.S., Votto, J.J., et al. Post-ICU mechanical ventilation at 23 long-term care hospitals: a multicenter outcomes study. Chest 2007;131(1):8593.CrossRefGoogle ScholarPubMed
Carasa, M., Polycarpe, M. Caring for the chronically critically ill patient: establishing a wound- healing program in a respiratory care unit. Am J Surg 2004;188(1A Suppl):1821.CrossRefGoogle Scholar
Carson, S.S., Kahn, J.M., Hough, C.L., et al. A multicenter mortality prediction model for patients receiving prolonged mechanical ventilation. Crit Care Med 2012;40(4):1171–6.CrossRefGoogle ScholarPubMed
Carson, S.S., Garrett, J., Hanson, L.C., et al. A prognostic model for one-year mortality in patients requiring prolonged mechanical ventilation. Crit Care Med 2008;36(7):2061–9.CrossRefGoogle ScholarPubMed
Su, Y.Y., Li, X., Li, S.J., et al. Predicting hospital mortality using APACHE II scores in neurocritically ill patients: a prospective study. J Neurol 2009;256(9):1427–33.CrossRefGoogle ScholarPubMed
Su, Y., Wang, M., Liu, Y., et al. Module modified acute physiology and chronic health evaluation II: predicting the mortality of neuro-critical disease. Neurol Res 2014;36(12):1099–105.CrossRefGoogle ScholarPubMed
Navarrete-Navarro, P., Rivera-Fernandez, R., Lopez-Mutuberria, M.T., et al. Outcome prediction in terms of functional disability and mortality at 1 year among ICU-admitted severe stroke patients: a prospective epidemiological study in the south of the European Union (Evascan Project, Andalusia, Spain). Intensive Care Med 2003;29(8):1237–44.CrossRefGoogle ScholarPubMed
Huang, K.B., Ji, Z., Wu, Y.M., et al. The prediction of 30-day mortality in patients with primary pontine hemorrhage: a scoring system comparison. Eur J Neurol 2012;19(9):1245–50.CrossRefGoogle ScholarPubMed
Tsai, C.L., Chu, H., Peng, G.S., et al. Preoperative APACHE II and GCS scores as predictors of outcomes in patients with malignant MCA infarction after decompressive hemicraniectomy. Neurol India 2012;60(6):608–12.Google ScholarPubMed
Szklener, S., Melges, A., Korchut, A., et al. Predictive model for patients with poor-grade subarachnoid haemorrhage in 30-day observation: a 9-year cohort study. BMJ Open 2015;5(6):e007795.CrossRefGoogle ScholarPubMed
Claassen, J., Bernardini, G.L., Kreiter, K., et al. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale revisited. Stroke 2001;32(9):2012–20.CrossRefGoogle Scholar
Lantigua, H., Ortega-Gutierrez, S., Schmidt, J.M., et al. Subarachnoid hemorrhage: who dies, and why? Crit Care 2015;19:309.CrossRefGoogle ScholarPubMed
Teasdale, G.M., Drake, C.G., Hunt, W., et al. A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry 1988;51(11):1457.CrossRefGoogle ScholarPubMed
Schuiling, W.J., Dennesen, P.J., Rinkel, G.J. Extracerebral organ dysfunction in the acute stage after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2005;3(1):110.CrossRefGoogle ScholarPubMed
Gruber, A., Reinprecht, A., Gorzer, H., et al. Pulmonary function and radiographic abnormalities related to neurological outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 1998;88(1):2837.CrossRefGoogle ScholarPubMed
Lee, V.H., Oh, J.K., Mulvagh, S.L., Wijdicks, E.F. Mechanisms in neurogenic stress cardiomyopathy after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2006;5(3):243–9.CrossRefGoogle ScholarPubMed
Claassen, J., Vu, A., Kreiter, K.T., et al. Effect of acute physiologic derangements on outcome after subarachnoid hemorrhage. Crit Care Med 2004;32(3):832–8.CrossRefGoogle ScholarPubMed
Park, S.K., Chun, H.J., Kim, D.W., et al. Acute Physiology and Chronic Health Evaluation II and Simplified Acute Physiology Score II in predicting hospital mortality of neurosurgical intensive care unit patients. J Korean Med Sci 2009;24(3):420–6.CrossRefGoogle Scholar
Gao, Q., Yuan, F., Yang, X.A., et al. Development and validation of a new score for predicting functional outcome of neurocritically ill patients: the INCNS score. CNS Neurosci Ther 2020;26(1):21–9.CrossRefGoogle Scholar
Balestreri, M., Czosnyka, M., Chatfield, D.A., et al. Predictive value of Glasgow Coma Scale after brain trauma: change in trend over the past ten years. J Neurol Neurosurg Psychiatry 2004;75(1):161–2.Google ScholarPubMed
Marshall, L.F., Gautille, T., Klauber, M.R., et al.: The outcome of severe closed head injury. J Neurosurg (Suppl) 75:2836, 1991.CrossRefGoogle Scholar
Tsao, J.W., Hemphill, J.C., 3rd, Johnston, S.C., Smith, W.S., Bonovich, D.C. Initial Glasgow Coma Scale score predicts outcome following thrombolysis for posterior circulation stroke. Arch Neurol 2005;62(7):1126–9.CrossRefGoogle ScholarPubMed
Hemphill, J.C., 3rd, Bonovich, D.C., Besmertis, L., Manley, G.T., Johnston, S.C. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke 2001;32(4):891–7.CrossRefGoogle Scholar
Lahiri, S., Mayer, S.A., Fink, M.E., et al. Mechanical ventilation for acute stroke: a multi-state population-based study. Neurocrit Care 2015;23(1):2832.CrossRefGoogle ScholarPubMed
Roch, A., Michelet, P., Jullien, A.C., et al. Long-term outcome in intensive care unit survivors after mechanical ventilation for intracerebral hemorrhage. Crit Care Med 2003;31(11):2651–6.CrossRefGoogle ScholarPubMed
Lerolle, N., Trinquart, L., Bornstain, C., et al. Increased intensity of treatment and decreased mortality in elderly patients in an intensive care unit over a decade. Crit Care Med 2010;38(1):5964.CrossRefGoogle Scholar
Heyland, D.K., Garland, A., Bagshaw, S.M., et al. Recovery after critical illness in patients aged 80 years or older: a multi-center prospective observational cohort study. Intensive Care Med 2015;41(11):1911–20.CrossRefGoogle ScholarPubMed
Rockwood, K., Song, X., MacKnight, C., et al. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005;173(5):489–95.CrossRefGoogle ScholarPubMed
Rajabali, N., Rolfson, D., Bagshaw, S.M. Assessment and utility of frailty measures in critical illness, cardiology, and cardiac surgery. Can J Cardiol 2016;32(9):1157–65.CrossRefGoogle ScholarPubMed
Evans, S.J., Sayers, M., Mitnitski, A., Rockwood, K. The risk of adverse outcomes in hospitalized older patients in relation to a frailty index based on a comprehensive geriatric assessment. Age Ageing 2014;43(1):127–32.CrossRefGoogle ScholarPubMed
Bagshaw, M., Majumdar, S.R., Rolfson, D.B., et al. A prospective multicenter cohort study of frailty in younger critically ill patients. Crit Care 2016;20(1):175.CrossRefGoogle ScholarPubMed
Muscedere, J., Waters, B., Varambally, A., et al. The impact of frailty on intensive care unit outcomes: a systematic review and meta-analysis. Intensive Care Med 2017;43(8):1105–22.CrossRefGoogle ScholarPubMed
Joseph, B., Pandit, V., Zangbar, B., et al. Superiority of frailty over age in predicting outcomes among geriatric trauma patients: a prospective analysis. JAMA Surg 2014;149(8):766–72.CrossRefGoogle ScholarPubMed
Robinson, T.N., Eiseman, B., Wallace, J.I., et al. Redefining geriatric preoperative assessment using frailty, disability and co-morbidity. Ann Surg 2009;250(3):449–55.CrossRefGoogle ScholarPubMed
Leng, S., Chaves, P., Koenig, K., Walston, J. Serum interleukin-6 and hemoglobin as physiological correlates in the geriatric syndrome of frailty: a pilot study. J Am Geriatr Soc 2002;50(7):1268–71.CrossRefGoogle ScholarPubMed
Chen, X., Mao, G., Leng, S.X. Frailty syndrome: an overview. Clin Interv Aging 2014;9:433–41.Google ScholarPubMed
Hubbard, R.E., O’Mahony, M.S., Savva, G.M., Calver, B.L., Woodhouse, K.W. Inflammation and frailty measures in older people. J Cell Mol Med 2009;13(9B):3103–9.CrossRefGoogle ScholarPubMed
Collerton, J., Martin-Ruiz, C., Davies, K., et al. Frailty and the role of inflammation, immunosenescence and cellular ageing in the very old: cross-sectional findings from the Newcastle 85+ Study. Mech Ageing Dev 2012;133(6):456–66.CrossRefGoogle Scholar
Leng, S.X., Tian, X., Matteini, A., et al. IL-6-independent association of elevated serum neopterin levels with prevalent frailty in community-dwelling older adults. Age Ageing 2011;40(4):475–81.CrossRefGoogle ScholarPubMed
De Fanis, U., Wang, G.C., Fedarko, N.S., et al. T-lymphocytes expressing CC chemokine receptor-5 are increased in frail older adults. J Am Geriatr Soc 2008;56(5):904–8.CrossRefGoogle ScholarPubMed
Qu, T., Yang, H., Walston, J.D., Fedarko, N.S., Leng, S.X. Upregulated monocytic expression of CXC chemokine ligand 10 (CXCL-10) and its relationship with serum interleukin-6 levels in the syndrome of frailty. Cytokine 2009;46(3):319–24.CrossRefGoogle ScholarPubMed
Schmaltz, H.N., Fried, L.P., Xue, Q.L., et al. Chronic cytomegalovirus infection and inflammation are associated with prevalent frailty in community-dwelling older women. J Am Geriatr Soc 2005;53(5):747–54.CrossRefGoogle ScholarPubMed
Jeejeebhoy, K.N. Malnutrition, fatigue, frailty, vulnerability, sarcopenia and cachexia: overlap of clinical features. Curr Opin Clin Nutr Metab Care 2012;15(3):213–19.CrossRefGoogle ScholarPubMed
Baldwin, M.R., Reid, M.C., Westlake, A.A., et al. The feasibility of measuring frailty to predict disability and mortality in older medical intensive care unit survivors. J Crit Care 2014;29(3):401–8.CrossRefGoogle ScholarPubMed
Fried, L.P., Tangen, C.M., Walston, J., et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001;56(3):M146–56.CrossRefGoogle ScholarPubMed
Mitnitski, A.B., Graham, J.E., Mogilner, A.J., Rockwood, K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr 2002;2:1.CrossRefGoogle ScholarPubMed
Rockwood, K., Andrew, M., Mitnitski, A. A comparison of two approaches to measuring frailty in elderly people. J Gerontol A Biol Sci Med Sci 2007;62(7):738–43.CrossRefGoogle ScholarPubMed
Vina, J., Tarazona-Santabalbina, F.J., Perez-Ros, P., et al. Biology of frailty: modulation of ageing genes and its importance to prevent age-associated loss of function. Mol Aspects Med 2016;50:88108.CrossRefGoogle ScholarPubMed
Leng, S.X., Cappola, A.R., Andersen, R.E., et al. Serum levels of insulin-like growth factor-I (IGF-I) and dehydroepiandrosterone sulfate (DHEA-S), and their relationships with serum interleukin-6, in the geriatric syndrome of frailty. Aging Clin Exp Res 2004;16(2):153–7.CrossRefGoogle ScholarPubMed
Puts, M.T., Visser, M., Twisk, J.W., Deeg, D.J., Lips, P. Endocrine and inflammatory markers as predictors of frailty. Clin Endocrinol (Oxf) 2005;63(4):403–11.CrossRefGoogle ScholarPubMed
Cawthon, P.M., Ensrud, K.E., Laughlin, G.A., et al. Sex hormones and frailty in older men: the osteoporotic fractures in men (MrOS) study. J Clin Endocrinol Metab 2009;94(10):3806–15.CrossRefGoogle ScholarPubMed
Joseph, C., Kenny, A.M., Taxel, P., et al. Role of endocrine-immune dysregulation in osteoporosis, sarcopenia, frailty and fracture risk. Mol Aspects Med 2005;26(3):181201.CrossRefGoogle ScholarPubMed
Travison, T.G., Nguyen, A.H., Naganathan, V., et al. Changes in reproductive hormone concentrations predict the prevalence and progression of the frailty syndrome in older men: the concord health and ageing in men project. J Clin Endocrinol Metab 2011;96(8):2464–74.CrossRefGoogle ScholarPubMed
Cesari, M., Penninx, B.W., Pahor, M., et al. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 2004;59(3):242–8.CrossRefGoogle ScholarPubMed
Barzilay, J.I., Blaum, C., Moore, T., et al. Insulin resistance and inflammation as precursors of frailty: the Cardiovascular Health Study. Arch Intern Med 2007;167(7):635–41.CrossRefGoogle ScholarPubMed
Calvani, R., Marini, F., Cesari, M., et al. Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachexia Sarcopenia Muscle 2015;6(4):278–86.CrossRefGoogle ScholarPubMed
Brummel, N.E., Bell, S.P., Girard, T.D., et al. Frailty and subsequent disability and mortality among patients with critical illness. Am J Respir Crit Care Med 2017;196(1):6472.CrossRefGoogle ScholarPubMed
Jackson, J.C., Pandharipande, P.P., Girard, T.D., et al. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study. Lancet Respir Med 2014;2(5):369–79.CrossRefGoogle ScholarPubMed
Bagshaw, S.M., Stelfox, H.T., McDermid, R.C., et al. Association between frailty and short- and long-term outcomes among critically ill patients: a multicentre prospective cohort study. CMAJ 2014;186(2):E95102.CrossRefGoogle Scholar
Bagshaw, S.M., Stelfox, H.T., Johnson, J.A., et al. Long-term association between frailty and health-related quality of life among survivors of critical illness: a prospective multicenter cohort study. Crit Care Med 2015;43(5):973–82.CrossRefGoogle ScholarPubMed
Le Maguet, P., Roquilly, A., Lasocki, S., et al. Prevalence and impact of frailty on mortality in elderly ICU patients: a prospective, multicenter, observational study. Intensive Care Med 2014;40(5):674–82.Google ScholarPubMed
Flaatten, H., De Lange, D.W., Morandi, A., et al. The impact of frailty on ICU and 30-day mortality and the level of care in very elderly patients (>/= 80 years). Intensive Care Med 2017;43(12):1820–8.CrossRefGoogle ScholarPubMed
Kizilarslanoglu, M.C., Civelek, R., Kilic, M.K., et al. Is frailty a prognostic factor for critically ill elderly patients? Aging Clin Exp Res 2017;29(2):247–55.CrossRefGoogle ScholarPubMed
Hope, A.A., Gong, M.N., Guerra, C., Wunsch, H. Frailty before critical illness and mortality for elderly Medicare beneficiaries. J Am Geriatr Soc 2015;63(6):1121–8.CrossRefGoogle ScholarPubMed
Hemphill, J.C., 3rd, Farrant, M., Neill, T.A., Jr. Prospective validation of the ICH score for 12-month functional outcome. Neurology 2009;73(14):1088–94.CrossRefGoogle ScholarPubMed
Herridge, M.S., Cheung, A.M., Tansey, C.M., et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 2003;348(8):683–93.CrossRefGoogle ScholarPubMed
Herridge, M.S., Tansey, C.M., Matte, A., et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011;364(14):1293–304.CrossRefGoogle ScholarPubMed
Ehlenbach, W.J., Hough, C.L., Crane, P.K., et al. Association between acute care and critical illness hospitalization and cognitive function in older adults. JAMA 2010;303(8):763–70.Google ScholarPubMed
McDermid, R.C., Stelfox, H.T., Bagshaw, S.M. Frailty in the critically ill: a novel concept. Crit Care 2011;15(1):301.CrossRefGoogle ScholarPubMed
Dudek, F.E., Tasker, J.G., Wuarin, J.P. Intrinsic and synaptic mechanisms of hypothalamic neurons studied with slice and explant preparations. J Neurosci Methods 1989;28(1–2):5969.CrossRefGoogle ScholarPubMed
Latham, N.K., Harris, B.A., Bean, J.F., et al. Effect of a home-based exercise program on functional recovery following rehabilitation after hip fracture: a randomized clinical trial. JAMA 2014;311(7):700–8.CrossRefGoogle ScholarPubMed
Abizanda, P., Lopez, M.D., Garcia, V.P., et al. Effects of an oral nutritional supplementation plus physical exercise intervention on the physical function, nutritional status, and quality of life in frail institutionalized older adults: the ACTIVNES study. J Am Med Dir Assoc 2015;16(5):439 e9e16.CrossRefGoogle ScholarPubMed
Fragala, M.S., Dam, T.T., Barber, V., et al. Strength and function response to clinical interventions of older women categorized by weakness and low lean mass using classifications from the Foundation for the National Institute of Health sarcopenia project. J Gerontol A Biol Sci Med Sci 2015;70(2):202–9.CrossRefGoogle ScholarPubMed
Schweickert, W.D., Pohlman, M.C., Pohlman, A.S., et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009;373(9678):1874–82.CrossRefGoogle ScholarPubMed
Burtin, C., Clerckx, B., Robbeets, C., et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009;37(9):2499–505.CrossRefGoogle ScholarPubMed
Segers, J., Hermans, G., Bruyninckx, F., et al. Feasibility of neuromuscular electrical stimulation in critically ill patients. J Crit Care 2014;29(6):1082–8.CrossRefGoogle ScholarPubMed
Kho, M.E., Truong, A.D., Zanni, J.M., et al. Neuromuscular electrical stimulation in mechanically ventilated patients: a randomized, sham-controlled pilot trial with blinded outcome assessment. J Crit Care 2015;30(1):32–9.CrossRefGoogle ScholarPubMed
Puthucheary, Z.A., Rawal, J., McPhail, M., et al. Acute skeletal muscle wasting in critical illness. JAMA 2013;310(15):1591–600.CrossRefGoogle ScholarPubMed
Cohen, S., Nathan, J.A., Goldberg, A.L. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 2015;14(1):5874.CrossRefGoogle ScholarPubMed
Leitner, L.M., Wilson, R.J., Yan, Z. Godecke, A. Reactive oxygen species/nitric oxide mediated inter-organ communication in skeletal muscle wasting diseases. Antioxid Redox Signal 2017;26(13):700–17.CrossRefGoogle ScholarPubMed
Haidet, A.M., Rizo, L., Handy, C., et al. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci U S A 2008;105(11):4318–22.CrossRefGoogle ScholarPubMed
Doig, G.S., Simpson, F., Sweetman, E.A., et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA 2013;309(20):2130–8.CrossRefGoogle ScholarPubMed
Hermans, G., Casaer, M.P., Clerckx, B., et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med 2013;1(8):621–9.CrossRefGoogle ScholarPubMed
Takala, J., Ruokonen, E., Webster, N.R., et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 1999;341(11):785–92.CrossRefGoogle ScholarPubMed
Schulman, R.C., Mechanick, J.I. Metabolic and nutrition support in the chronic critical illness syndrome. Respir Care 2012;57(6):958–77; discussion 77–8.CrossRefGoogle ScholarPubMed
Van den Berghe, G. Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol 2000;143(1):113.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×