Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T14:24:59.625Z Has data issue: false hasContentIssue false

Part II - Neuromuscular Cases

Published online by Cambridge University Press:  29 November 2024

Jessica E. Hoogendijk
Affiliation:
University Medical Center Utrecht
Marianne de Visser
Affiliation:
Amsterdam University Medical Center
Pieter A. van Doorn
Affiliation:
Erasmus MC, University Medical Center, Rotterdam
Erik H. Niks
Affiliation:
Leiden University Medical Center
Get access
Type
Chapter
Information
Neuromuscular Disease
A Case-Based Approach
, pp. 69 - 270
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Chiò, A, Moglia, C, Canosa, A, et al. Association of copresence of pathogenic variants related to amyotrophic lateral sclerosis and prognosis. Neurology 2023;101(1):e83e93. doi: 10.1212/WNL.0000000000207367. Epub 2023 May 18. PMID: 37202167; PMCID: PMC10351316.CrossRefGoogle ScholarPubMed
Dharmadasa, T, Scaber, J, Edmond, E, et al. Genetic testing in motor neurone disease. Pract Neurol 2022;22(2):107116. doi: 10.1136/practneurol-2021-002989. Epub 2022 Jan 13. PMID: 35027459; PMCID: PMC8938673.CrossRefGoogle ScholarPubMed
van Es, MA, Hardiman, O, Chio, A, et al. Amyotrophic lateral sclerosis. Lancet 2017;390(10107):20842098. doi: 10.1016/S0140-6736(17)31287-4. Epub 2017 May 25. PMID: 28552366.Google Scholar
Govaarts, R, Beeldman, E, Kampelmacher, MJ, et al. The frontotemporal syndrome of ALS is associated with poor survival. J Neurol 2016;263(12):24762483. doi: 10.1007/s00415-016-8290-1. Epub 2016 Sep 26. PMID: 27671483; PMCID: PMC5110703.CrossRefGoogle ScholarPubMed
Van Damme, P, Al-Chalabi A, Andersen PM, Chiò A, Couratier P, De Carvalho M, Hardiman O, Kuźma-Kozakiewicz M, Ludolph A, McDermott CJ, Mora JS, Petri S, Probyn K, Reviers E, Salachas F, Silani V, Tysnes OB, van den Berg LH, Villanueva G, Weber M. European Academy of Neurology (EAN) guideline on the management of amyotrophic lateral sclerosis in collaboration with European Reference Network for Neuromuscular Diseases (ERN EURO-NMD). Eur J Neurol. 2024 Jun;31(6):e16264. doi: 10.1111/ene.16264. Epub 2024 Mar 12. PMID: 38470068.CrossRefGoogle ScholarPubMed
Oliver, D, Radunovic, A, Allen, A, McDermott, C. The development of the UK National Institute of Health and Care Excellence evidence-based clinical guidelines on motor neurone disease. Amyotroph Lateral Scler Frontotemporal Degener 2017;18 (5-6):313323. doi: 10.1080/21678421.2017.1304558. Epub 2017 May 17. PMID: 28513234.CrossRefGoogle ScholarPubMed
Shefner, JM, Al-Chalabi, A, Baker, MR, et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol 2020;131(8):19751978. doi: 10.1016/j.clinph.2020.04.005. Epub 2020 Apr 19. PMID: 32387049.CrossRefGoogle ScholarPubMed

Suggested Reading

Hassan, A, Mittal, SO, Hu, WT, et al. Natural history of ‘pure’ primary lateral sclerosis. Neurology 2021;96(17):e2231e2238. doi: 10.1212/WNL.0000000000011771. Epub 2021 Feb 26. PMID: 33637635; PMCID: PMC8166429.CrossRefGoogle ScholarPubMed
Schito, P, Russo, T, Domi, T, et al. Clinical features and biomarkers to differentiate primary and amyotrophic lateral sclerosis in patients with an upper motor neuron syndrome. Neurology 2023;101(8):352356CrossRefGoogle ScholarPubMed
Shribman, S, Reid, E, Crosby, AH, Houlden, H, Warner, TT. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 2019;18(12):11361146. doi: 10.1016/S1474-4422(19)30235-2. Epub 2019 Jul 31. PMID: 31377012.CrossRefGoogle ScholarPubMed
Turner, MR, Barohn, RJ, Corcia, P, et al.; Delegates of the 2nd International PLS Conference; Mitsumoto, H. Primary lateral sclerosis: consensus diagnostic criteria. J Neurol Neurosurg Psychiatry 2020;91(4):373377. doi: 10.1136/jnnp-2019-322541. Epub 2020 Feb 6. PMID: 32029539; PMCID: PMC7147236.CrossRefGoogle ScholarPubMed

Suggested Reading

Kim, WK, Liu, X, Sandner, J, et al. Study of 962 patients indicates progressive muscular atrophy is a form of ALS. Neurology 2009;73(20):16861692. doi: 10.1212/WNL.0b013e3181c1dea3. PMID: 19917992; PMCID: PMC2788803.CrossRefGoogle ScholarPubMed
Liewluck, T, Saperstein, DS. Progressive muscular atrophy. Neurol Clin 2015;33(4):761773. doi: 10.1016/j.ncl.2015.07.005. PMID: 26515620.CrossRefGoogle ScholarPubMed
Pugdahl, K, Camdessanché, JP, Cengiz, B, et al. Gold Coast diagnostic criteria increase sensitivity in amyotrophic lateral sclerosis. Clin Neurophysiol 2021;132(12):31833189. doi: 10.1016/j.clinph.2021.08.014. Epub 2021 Sep 8. PMID: 34544646.CrossRefGoogle ScholarPubMed
Wijesekera, LC, Mathers, S, Talman, P, et al. Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 2009;72(12):10871094. doi: 10.1212/01.wnl.0000345041.83406.a2. PMID: 19307543; PMCID: PMC2821838.CrossRefGoogle ScholarPubMed

Suggested Reading

Lay, S, Gudlavalleti, A, Sharma, S. Hirayama disease. In StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2023 Jan–. PMID: 29763088.Google Scholar

Suggested Reading

Breza, M, Koutsis, G. Kennedy’s disease (spinal and bulbar muscular atrophy): a clinically oriented review of a rare disease. J Neurol 2019;266(3):565573. doi: 10.1007/s00415-018-8968-7. Epub 2018 Jul 13. PMID: 30006721.CrossRefGoogle ScholarPubMed
Hashizume, A, Fischbeck, KH, Pennuto, M, Fratta, P, Katsuno, M. Disease mechanism, biomarker and therapeutics for spinal and bulbar muscular atrophy (SBMA). J Neurol Neurosurg Psychiatry 2020;91(10):10851091. doi: 10.1136/jnnp-2020-322949. PMID: 32934110.CrossRefGoogle ScholarPubMed
Pradat, PF, Bernard, E, Corcia, P, et al.; French Kennedy’s Disease Writing Group. The French national protocol for Kennedy’s disease (SBMA): consensus diagnostic and management recommendations. Orphanet J Rare Dis 2020;15(1):90. doi: 10.1186/s13023-020-01366-z. PMID: 32276665; PMCID: PMC7149864.CrossRefGoogle ScholarPubMed

Suggested Reading

Baranello, G, Darras, BT, Day, JW, et al.; FIREFISH Working Group. Risdiplam in type 1 spinal muscular atrophy. N Engl J Med 2021;384(10):915923. doi: 10.1056/NEJMoa2009965. Epub 2021 Feb 24. PMID: 33626251.CrossRefGoogle ScholarPubMed
Finkel, RS, Mercuri, E, Darras, BT, et al.; ENDEAR Study Group. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017;377(18):17231732. doi: 10.1056/NEJMoa1702752. PMID: 29091570.CrossRefGoogle ScholarPubMed
Finkel, RS, Mercuri, E, Meyer, OH, et al.; SMA Care Group. Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul Disord 2018;28(3):197207. doi: 10.1016/j.nmd.2017.11.004. Epub 2017 Nov 23. PMID: 29305137.CrossRefGoogle ScholarPubMed
Kirschner, J, Butoianu, N, Goemans, N, et al. European ad-hoc consensus statement on gene replacement therapy for spinal muscular atrophy. Eur J Paediatr Neurol 2020;28:3843. doi: 10.1016/j.ejpn.2020.07.001. Epub 2020 Jul 9. PMID: 32763124; PMCID: PMC7347351.CrossRefGoogle ScholarPubMed
Mendell, JR, Al-Zaidy, S, Shell, R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017;377(18):17131722. doi: 10.1056/NEJMoa1706198. PMID: 29091557.CrossRefGoogle ScholarPubMed
Mercuri, E, Finkel, RS, Muntoni, F, et al.; SMA Care Group. Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018;28(2):103115. doi: 10.1016/j.nmd.2017.11.005. Epub 2017 Nov 23. PMID: 29290580.CrossRefGoogle ScholarPubMed

Suggested Reading

Mercuri, E, Finkel, RS, Muntoni, F, et al.; SMA Care Group. Diagnosis and management of spinal muscular atrophy: part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018;28(2):103115. doi: 10.1016/j.nmd.2017.11.005. Epub 2017 Nov 23. PMID: 29290580.CrossRefGoogle ScholarPubMed
Mercuri, E, Darras, BT, Chiriboga, CA, et al.; CHERISH Study Group. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 2018;378(7):625635. doi: 10.1056/NEJMoa1710504. PMID: 29443664.CrossRefGoogle ScholarPubMed
Oskoui, M, Day, JW, Deconinck, N, et al.; SUNFISH Working Group. Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). J Neurol 2023;270(5):25312546. doi: 10.1007/s00415-023-11560-1. Epub 2023 Feb 3. Erratum in: J Neurol. 2023 Apr 18;: PMID: 36735057; PMCID: PMC9897618.CrossRefGoogle ScholarPubMed
Stam, M, Wijngaarde, CA, Bartels, B, et al. Randomized double-blind placebo-controlled crossover trial with pyridostigmine in spinal muscular atrophy types 2-4. Brain Commun 2022;5(1):fcac324. doi: 10.1093/braincomms/fcac324. PMID: 36632180; PMCID: PMC9825780.CrossRefGoogle ScholarPubMed
Wijngaarde, CA, Stam, M, Otto, LAM, et al. Muscle strength and motor function in adolescents and adults with spinal muscular atrophy. Neurology 2020;95(14):e1988e1998. doi: 10.1212/WNL.0000000000010540. Epub 2020 Jul 30. PMID: 32732299.CrossRefGoogle ScholarPubMed

Suggested Reading

Koopman, FS, Beelen, A, Gilhus, NE, de Visser, M, Nollet, F. Treatment for postpolio syndrome. Cochrane Database Syst Rev 2015;(5):CD007818. doi: 10.1002/14651858.CD007818.pub3. PMID: 25984923.Google Scholar
Li Hi, Shing S, Chipika, RH, Finegan, E, et al. Post-polio syndrome: more than just a lower motor neuron disease. Front Neurol 2019;10:773. doi: 10.3389/fneur.2019.00773. PMID: 31379723; PMCID: PMC6646725.CrossRefGoogle Scholar
Murphy, OC, Messacar, K, Benson, L, et al.; AFM working group. Acute flaccid myelitis: cause, diagnosis, and management. Lancet 2021;397(10271):334346. doi: 10.1016/S0140-6736(20)32723-9. Epub 2020 Dec 23. PMID: 33357469; PMCID: PMC7909727.CrossRefGoogle ScholarPubMed
Patel, H, Sander, B, Nelder, MP. Long-term sequelae of West Nile virus-related illness: a systematic review. Lancet Infect Dis 2015;15(8):951959. doi: 10.1016/S1473-3099(15)00134-6. Epub 2015 Jul 7. PMID: 26163373.CrossRefGoogle ScholarPubMed

Suggested Reading

Doets, AY, Lingsma, HF, Walgaard, C, et al.; IGOS Consortium. Predicting outcome in Guillain-Barré syndrome: international validation of the modified Erasmus GBS Outcome Score. Neurology 2022;98(5):e518e532. doi: 10.1212/WNL.0000000000013139. Epub 2021 Dec 22. PMID: 34937789; PMCID: PMC8826467.Google Scholar
Doets, AY, Walgaard, C, Lingsma, HF, et al.; IGOS Consortium. International validation of the Erasmus Guillain-Barré Syndrome Respiratory Insufficiency Score. Ann Neurol 2022;91(4):521531. doi: 10.1002/ana.26312. Epub 2022 Feb 21. PMID: 35106830; PMCID: PMC9306880.Google Scholar
van Doorn, PA, Van den Bergh PYK, Hadden RDM et al. European Academy of Neurology/Peripheral Nerve Society Guideline on diagnosis and treatment of Guillain-Barré syndrome. Eur J Neurol. 2023 Dec;30(12):3646–3674. doi: 10.1111/ene.16073. Epub 2023 Oct 10. PMID: 37814552; J Peripher Nerv Syst. 2023 Dec;28(4):535–563. doi: 10.1111/jns.12594. Epub ahead of print 2023 Oct 10 PMID: 37814552Google Scholar
Leonhard, SE, Mandarakas, MR, Gondim, FAA, et al. Diagnosis and management of Guillain-Barré syndrome in ten steps. Nat Rev Neurol 2019;15(11):671683. doi: 10.1038/s41582-019-0250-9. Epub 2019 Sep 20. PMID: 31541214; PMCID: PMC6821638.Google Scholar
Walgaard, C, Jacobs, BC, Lingsma, HF, et al.; Dutch GBS Study Group. Second intravenous immunoglobulin dose in patients with Guillain-Barré syndrome with poor prognosis (SID-GBS): a double-blind, randomised, placebo-controlled trial. Lancet Neurol 2021;20(4):275283. doi: 10.1016/S1474-4422(20)30494-4. Epub 2021 Mar 17. PMID: 33743237.Google Scholar
Walgaard, C, Lingsma, HF, Ruts, L, et al. Early recognition of poor prognosis in Guillain-Barré syndrome. Neurology 2011;76(11):968975. doi: 10.1212/WNL.0b013e3182104407. PMID: 21403108; PMCID: PMC3059137.Google Scholar
Willison, HJ, Jacobs, BC, van Doorn, PA. Guillain-Barré syndrome. Lancet. 2016 Aug 13;388(10045):717727. doi: 10.1016/S0140-6736(16)00339-1. Epub 2016 Mar 2. PMID: 26948435.Google Scholar

Suggested Reading

Adrichem, ME, Lucke, IM, Vrancken, AFJE, et al. Withdrawal of intravenous immunoglobulin in chronic inflammatory demyelinating polyradiculoneuropathy. Brain 2022;145(5):1641-1652. doi: 10.1093/brain/awac054. PMID: 35139161; PMCID: PMC9166547.Google Scholar
Van den Bergh, PYK, van Doorn, PA, Hadden, RDM, et al. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint Task Force-Second revision. J Peripher Nerv Syst. 2021 Sep;26(3):242268. doi: 10.1111/jns.12455. Epub 2021 Jul 30. Erratum in: J Peripher Nerv Syst 2022;27(1):94. Erratum in: Eur J Neurol. 2022 Apr;29(4):1288. PMID: 34085743.Bottom of FormGoogle Scholar
Oaklander, AL, Lunn, MP, Hughes, RA, et al. Treatments for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): an overview of systematic reviews. Cochrane Database Syst Rev 2017;1(1):CD010369. doi: 10.1002/14651858.CD010369.pub2. PMID: 28084646; PMCID: PMC5468847.Google Scholar

Suggested Reading

Carroll, AS, Lunn, MPT. Paraproteinaemic neuropathy: MGUS and beyond. Pract Neurol 2021;21(6):492503. doi: 10.1136/practneurol-2020-002837. Epub 2021 Jul 19. PMID: 34282034.Google Scholar
Chaganti, S, Hannaford, A, Vucic, S. Rituximab in chronic immune mediated neuropathies: a systematic review. Neuromuscul Disord 2022;32(8):621627. doi: 10.1016/j.nmd.2022.05.013. Epub 2022 May 24. PMID: 35672205.Google Scholar
Lunn, MP, Nobile-Orazio, E. Immunotherapy for IgM anti-myelin-associated glycoprotein paraprotein-associated peripheral neuropathies. Cochrane Database Syst Rev 2016;10(10):CD002827. doi: 10.1002/14651858.CD002827.pub4. PMID: 27701752; PMCID: PMC6457998.Google Scholar
Parisi, M, Dogliotti, I, Clerico, M, et al. Efficacy of rituximab in anti-myelin-associated glycoprotein demyelinating polyneuropathy: Clinical, hematological and neurophysiological correlations during 2 years of follow-up. Eur J Neurol 2022;29(12):36113622. doi: 10.1111/ene.15553. Epub 2022 Sep 25. PMID: 36083713; PMCID: PMC9825860.Google Scholar
Sommer, C, Carroll, AS, Koike, H, et al. Nerve biopsy in acquired neuropathies. J Peripher Nerv Syst 2021;26 Suppl 2:S21S41. doi: 10.1111/jns.12464. Epub 2021 Sep 14. PMID: 34523188.Google Scholar
Taams, NE, Drenthen, J, Hanewinckel, R, Ikram, MA, van Doorn, PA. Prevalence and risk factor profiles for chronic axonal polyneuropathy in the general population. Neurology 2022:10.1212/WNL.0000000000201168. doi: 10.1212/WNL.0000000000201168. Epub ahead of print. PMID: 36008153.Google Scholar
Vallat, JM, Duchesne, M, Corcia, P, et al. The wide spectrum of pathophysiologic mechanisms of paraproteinemic neuropathy. Neurology 2021;96(5):214225. doi: 10.1212/WNL.0000000000011324. Epub 2020 Dec 4. PMID: 33277411.Google Scholar

Suggested Reading

Bou Zerdan, M, George, TI, Bunting, ST, Chaulagain, CP. Recent advances in the treatment and supportive care of POEMS syndrome. J Clin Med 2022;11(23):7011. doi: 10.3390/jcm11237011. PMID: 36498588; PMCID: PMC9741379.Google Scholar
Dispenzieri, A. POEMS syndrome: 2019 update on diagnosis, risk-stratification, and management. Am J Hematol 2019;94(7):812827. doi: 10.1002/ajh.25495. Epub 2019 May 23. PMID: 31012139.Google Scholar
D’Sa, S, Khwaja, J, Keddie, S, et al. Comprehensive diagnosis and management of POEMS syndrome. Hemasphere 2022;6(11):e796. doi: 10.1097/HS9.0000000000000796. PMID: 36340912; PMCID: PMC9624442.Google Scholar
Khouri, J, Nakashima, M, Wong, S. Update on the diagnosis and treatment of POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes) syndrome: a review. JAMA Oncol 2021;7(9):13831391. doi: 10.1001/jamaoncol.2021.0586. PMID: 34081097.Google Scholar
Kim, YR. Update on the POEMS syndrome. Blood Res 2022;57(S1):2731. doi: 10.5045/br.2022.2022001. PMID: 35483922; PMCID: PMC9057663.Google Scholar

Suggested Reading

Collins, MP, Dyck, PJB, Hadden, RDM. Update on classification, epidemiology, clinical phenotype and imaging of the nonsystemic vasculitic neuropathies. Curr Opin Neurol 2019;32(5):684695. doi: 10.1097/WCO.0000000000000727. PMID: 31313704.Google Scholar
Gwathmey, KG, Tracy, JA, Dyck, PJB. Peripheral nerve vasculitis: classification and disease associations. Neurol Clin 2019;37(2):303333. doi: 10.1016/j.ncl.2019.01.013. Epub 2019 Mar 18. PMID: 30952411.Google Scholar
Koike, H, Nishi, R, Ohyama, K, et al. ANCA-associated vasculitic neuropathies: a review. Neurol Ther 2022;11(1):2138. doi: 10.1007/s40120-021-00315-7. Epub 2022 Jan 19. PMID: 35044596; PMCID: PMC8857368.Google Scholar

Suggested Reading

Chan, ACY, Kumar, S, Tan, G, et al. Expanding the genetic causes of small-fiber neuropathy: SCN genes and beyond. Muscle Nerve 2023;67(4):259271. doi: 10.1002/mus.27752. Epub 2022 Nov 30. PMID: 36448457.Google Scholar
Devigili, G, Cazzato, D, Lauria, G. Clinical diagnosis and management of small fiber neuropathy: an update on best practice. Expert Rev Neurother 2020;20(9):967980. doi: 10.1080/14737175.2020.1794825. Epub 2020 Jul 23. PMID: 32654574.Google Scholar
Geerts, M, de Greef, BTA, Sopacua, M, et al. Intravenous immunoglobulin therapy in patients with painful idiopathic small fiber neuropathy. Neurology 2021;96(20):e2534e2545. doi: 10.1212/WNL.0000000000011919. Epub 2021 Mar 25. PMID: 33766992; PMCID: PMC8205474.Google Scholar
Hoeijmakers, JGJ, Merkies, ISJ, Faber, CG. Small fiber neuropathies: expanding their etiologies. Curr Opin Neurol 2022;35(5):545552. doi: 10.1097/WCO.0000000000001103. Epub 2022 Aug 11. PMID: 35950732.Google Scholar
Sopacua, M, Hoeijmakers, JGJ, Merkies, ISJ, et al. Small-fiber neuropathy: expanding the clinical pain universe. J Peripher Nerv Syst 2019;24(1):1933. doi: 10.1111/jns.12298. Epub 2019 Jan 8. PMID: 30569495.Google Scholar
Terkelsen, AJ, Karlsson, P, Lauria, G, et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 2017;16(11):934944. doi: 10.1016/S1474-4422(17)30329-0. Erratum in: Lancet Neurol. 2017 Dec;16(12):954. PMID: 29029847.Google Scholar

Suggested Reading

Amato, AA, Ropper, AH. Sensory ganglionopathy. i 2020;383(17):16571662. doi: 10.1056/NEJMra2023935. PMID: 33085862.Google Scholar
Antoine, JC. Sensory neuronopathies, diagnostic criteria and causes. Curr Opin Neurol 2022;35(5):553561. doi: 10.1097/WCO.0000000000001105. Epub 2022 Aug 11. PMID: 35950727.Google Scholar
Camdessanché, JP, Jousserand, G, Ferraud, K, et al. The pattern and diagnostic criteria of sensory neuronopathy: a case-control study. Brain 2009;132:17231733. doi: 10.1093/brain/awp136. Epub 2009 Jun 8. PMID: 19506068; PMCID: PMC2702838.Google Scholar
Fargeot, G, Echaniz-Laguna, A. Sensory neuronopathies: new genes, new antibodies and new concepts. J Neurol Neurosurg Psychiatry 2021;jnnp-2020-325536. doi: 10.1136/jnnp-2020-325536. Epub ahead of print. PMID: 33563795.Google Scholar
Graus, F, Vogrig, A, Muñiz-Castrillo, S, et al. Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm 2021;8(4):e1014. doi: 10.1212/NXI.0000000000001014. PMID: 34006622; PMCID: PMC8237398.Google Scholar
Titulaer, MJ, Soffietti, R, Dalmau, J, et al.; European Federation of Neurological Societies.Screening for tumours in paraneoplastic syndromes: report of an EFNS task force. Eur J Neurol 2011;18(1):19–e3. doi: 10.1111/j.1468-1331.2010.03220.x. Epub 2010 Sep 29. PMID: 20880069; PMCID: PMC3086523.Google Scholar

Suggested Reading

Collins, MP, Hadden, RD. The nonsystemic vasculitic neuropathies. Nat Rev Neurol 2017;13(5):302316. doi: 10.1038/nrneurol.2017.42. PMID: 28447661.Google Scholar
Herraets, IJT, Goedee, HS, Telleman, JA, et al. High-resolution ultrasound in patients with Wartenberg’s migrant sensory neuritis, a case-control study. Clin Neurophysiol 2018;129(1):232237. doi: 10.1016/j.clinph.2017.10.040. Epub 2017 Nov 21. PMID: 29202391.Google Scholar
Stork, AC, van der Meulen, MF, van der Pol, WL, et al. Wartenberg’s migrant sensory neuritis: a prospective follow-up study. J Neurol 2010;257(8):13441348. doi: 10.1007/s00415-010-5530-7. Epub 2010 Mar 31. PMID: 20354714; PMCID: PMC2910306.Google Scholar

Suggested Reading

Joint Task Force of the EFNS and the PNS. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society – first revision. J Peripher Nerv Syst 2010;15(4):295301. doi: 10.1111/j.1529-8027.2010.00290.x. PMID: 21199100.Google Scholar
Keddie, S, Eftimov, F, van den Berg, LH, et al. Immunoglobulin for multifocal motor neuropathy. Cochrane Database Syst Rev 2022;1(1):CD004429. doi: 10.1002/14651858.CD004429.pub3. PMID: 35015296; PMCID: PMC8751207.Google Scholar
Oudeman, J, Eftimov, F, Strijkers, GJ, et al. Diagnostic accuracy of MRI and ultrasound in chronic immune-mediated neuropathies. Neurology 2020;94(1):e62e74. doi: 10.1212/WNL.0000000000008697. Epub 2019 Dec 11. PMID: 31827006.Google Scholar
Telleman, JA, Herraets, IJ, Goedee, HS, van Asseldonk, JT, Visser, LH. Ultrasound scanning in the diagnosis of peripheral neuropathies. Pract Neurol 2021;21(3):186195. doi: 10.1136/practneurol-2020-002645. Epub 2021 Feb 4. PMID: 33541914.Google Scholar
Vlam, L, van der Pol, WL, Cats, EA, et al. Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies. Nat Rev Neurol 2011;8(1):4858. doi: 10.1038/nrneurol.2011.175. PMID: 22105211.Google Scholar
Yeh, WZ, Dyck, PJ, van den Berg, LH, Kiernan, MC, Taylor, BV. Multifocal motor neuropathy: controversies and priorities. J Neurol Neurosurg Psychiatry 2020;91(2):140148. doi: 10.1136/jnnp-2019-321532. Epub 2019 Sep 11. PMID: 31511307.Google Scholar

Suggested Reading

De Wel, B, Claeys, KG. Neuromuscular hyperexcitability syndromes. Curr Opin Neurol 2021;34(5):714720. doi: 10.1097/WCO.0000000000000963. PMID: 34914668.Google Scholar
Sawlani, K, Katirji, B. Peripheral nerve hyperexcitability syndromes. Continuum (Minneap Minn) 2017;23(5, Peripheral Nerve and Motor Neuron Disorders):14371450. doi: 10.1212/CON.0000000000000520. PMID: 28968370.Google Scholar

Suggested Reading

IJspeert, J, Janssen, RMJ, van Alfen, N. Neuralgic amyotrophy. Curr Opin Neurol 2021;34(5):605612. doi: 10.1097/WCO.0000000000000968. PMID: 34054111.Google Scholar
Janssen, RMJ, Lustenhouwer, R, Cup, EHC, et al. Effectiveness of an outpatient rehabilitation programme in patients with neuralgic amyotrophy and scapular dyskinesia: a randomised controlled trial. J Neurol Neurosurg Psychiatry 2023;94(6):474481. doi: 10.1136/jnnp-2022-330296. Epub 2023 Jan 25. PMID: 36697215.Google Scholar
Klein, CJ, Barbara, DW, Sprung, J, Dyck, PJ, Weingarten, TN. Surgical and postpartum hereditary brachial plexus attacks and prophylactic immunotherapy. Muscle Nerve 2013;47(1):2327. doi: 10.1002/mus.23462. Epub 2012 Oct 5. PMID: 23042485; PMCID: PMC3528817.Google Scholar
van Eijk, JJJ, Dalton, HR, Ripellino, P, et al. Clinical phenotype and outcome of hepatitis E virus-associated neuralgic amyotrophy. Neurology 2017;89(9):909917. doi: 10.1212/WNL.0000000000004297. Epub 2017 Aug 2. PMID: 28768846.Google Scholar

Suggested Reading

Feldman, EL, Callaghan, BC, Pop-Busui, R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019;5(1):41. doi: 10.1038/s41572-019-0092-1. PMID: 31197153.Google Scholar
Izenberg, A, Perkins, BA, Bril, V. Diabetic neuropathies. Semin Neurol 2015;35(4):424430. doi: 10.1055/s-0035-1558972. Epub 2015 Oct 6. PMID: 26502765.Google Scholar
Ng, PS, Dyck, PJ, Laughlin, RS, et al. Lumbosacral radiculoplexus neuropathy: incidence and the association with diabetes mellitus. Neurology 2019;92(11):e1188e1194. doi: 10.1212/WNL.0000000000007020. Epub 2019 Feb 13. PMID: 30760636; PMCID: PMC6511105.Google Scholar

Suggested Reading

Hamel, J, Logigian, EL. Acute nutritional axonal neuropathy. Muscle Nerve 2018;57(1):3339. doi: 10.1002/mus.25702. Epub 2017 Jun 19. PMID: 28556429.Google Scholar
Hanewinckel, R, van Oijen, M, Ikram, MA, van Doorn, PA. The epidemiology and risk factors of chronic polyneuropathy. Eur J Epidemiol 2016;31(1):520. doi: 10.1007/s10654-015-0094-6. Epub 2015 Dec 23. PMID: 26700499; PMCID: PMC4756033.Google Scholar
Julian, T, Glascow, N, Syeed, R, Zis, P. Alcohol-related peripheral neuropathy: a systematic review and meta-analysis. J Neurol 2019;266(12):29072919. doi: 10.1007/s00415-018-9123-1. Epub 2018 Nov 22. PMID: 30467601; PMCID: PMC6851213.Google Scholar

Suggested Reading

Hanewinckel, R, van Oijen, M, Ikram, MA, van Doorn, PA. The epidemiology and risk factors of chronic polyneuropathy. Eur J Epidemiol 2016 Jan;31(1):520. doi: 10.1007/s10654-015-0094-6. Epub 2015 Dec 23. PMID: 26700499; PMCID: PMC4756033.Google Scholar
Hanewinckel, R, van Oijen, M, Taams, NE, et al. Diagnostic value of symptoms in chronic polyneuropathy: the Erasmus Polyneuropathy Symptom Score. J Peripher Nerv Syst 2019;24(3):235241. doi: 10.1111/jns.12328. Epub 2019 Jul 9. PMID: 31172622.Google Scholar
Taams, NE, Drenthen, J, Hanewinckel, R, Ikram, MA, van Doorn, PA. Prevalence and risk factor profiles for chronic axonal polyneuropathy in the general population. Neurology 2022:10.1212/WNL.0000000000201168. doi: 10.1212/WNL.0000000000201168. Epub ahead of print. PMID: 36008153.Google Scholar
Visser, NA, Notermans, NC, Linssen, RS, van den Berg LH, , Vrancken, AF. Incidence of polyneuropathy in Utrecht, the Netherlands. Neurology 2015;84(3):259264. doi: 10.1212/WNL.0000000000001160. Epub 2014 Dec 12. PMID: 25503982.Google Scholar
Vrancken, AF, Franssen, H, Wokke, JH, Teunissen, LL, Notermans, NC. Chronic idiopathic axonal polyneuropathy and successful aging of the peripheral nervous system in elderly people. Arch Neurol 2002;59(4):533–340. doi: 10.1001/archneur.59.4.533. PMID: 11939887.Google Scholar

Suggested Reading

Kress, JP, Hall, JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med 2014;370(17):16261635. doi: 10.1056/NEJMra1209390. PMID: 24758618.Google Scholar
Vanhorebeek, I, Latronico, N, Van den Berghe, G. ICU-acquired weakness. Intensive Care Med 2020;46(4):637653. doi: 10.1007/s00134-020-05944-4. Epub 2020 Feb 19. PMID: 32076765; PMCID: PMC7224132.Google Scholar

Suggested Reading

Orr, CF, Ahlskog, JE. Frequency, characteristics, and risk factors for amiodarone neurotoxicity. Arch Neurol 2009;66(7):865869. doi: 10.1001/archneurol.2009.96. PMID: 19597088.Google Scholar
Peters, J, Staff, NP. Update on toxic neuropathies. Curr Treat Options Neurol 2022;24(5):203216. doi: 10.1007/s11940-022-00716-5. Epub 2022 Apr 6. PMID: 36186669; PMCID: PMC9518699.Google Scholar
Smyth, D, Kramarz, C, Carr, AS, Rossor, AM, Lunn, MP. Toxic neuropathies: a practical approach. Pract Neurol 2023;23(2):120130. doi: 10.1136/pn-2022-003444. Epub 2023 Jan 25. PMID: 36697225.Google Scholar
Stähli, BE, Schwab, S. Amiodarone-induced skin hyperpigmentation. QJM 2011;104(8):723724. doi: 10.1093/qjmed/hcq131. Epub 2010 Jul 30. PMID: 20675394.Google Scholar
Vassallo, P, Trohman, RG. Prescribing amiodarone: an evidence-based review of clinical indications. JAMA 2007;298(11):13121322. doi: 10.1001/jama.298.11.1312. PMID: 17878423.Google Scholar

Suggested Reading

Dutta, A, Hunter, JV, Vallejo, JG. Bannwarth syndrome: a rare manifestation of pediatric Lyme neuroborreliosis. Pediatr Infect Dis J 2021;40(11):e442e444. doi: 10.1097/INF.0000000000003245. PMID: 34636801.Google Scholar
Garcia-Monco, JC, Benach, JL. Lyme neuroborreliosis: clinical outcomes, controversy, pathogenesis, and polymicrobial infections. Ann Neurol 2019;85(1):2131. doi: 10.1002/ana.25389. PMID: 30536421; PMCID: PMC7025284.Google Scholar
Kortela, E, Kanerva, MJ, Puustinen, J, et al. Oral doxycycline compared to intravenous ceftriaxone in the treatment of Lyme neuroborreliosis: a multicenter, equivalence, randomized, open-label trial. Clin Infect Dis 2021;72(8):13231331. doi: 10.1093/cid/ciaa217. PMID: 32133487.Google Scholar
Nordberg, CL, Bodilsen, J, Knudtzen, FC, et al.; DASGIB study group.Lyme neuroborreliosis in adults: a nationwide prospective cohort study. Ticks Tick Borne Dis 2020;11(4):101411. doi: 10.1016/j.ttbdis.2020.101411. Epub 2020 Feb 24. PMID: 32178995.Google Scholar
van Samkar, A, Bruinsma, RA, Vermeeren, YM, et al. Clinical characteristics of Lyme neuroborreliosis in Dutch children and adults. Eur J Pediatr 2023;182(3):11831189. doi: 10.1007/s00431-022-04749-5. Epub 2023 Jan 6. PMID: 36607413.Google Scholar

Suggested Reading

Giesel, LM, Hökerberg, YHM, Pitta, IJR, et al. Clinical prediction rules for the diagnosis of neuritis in leprosy. BMC Infect Dis 2021;21(1):858. doi: 10.1186/s12879-021-06545-2. PMID: 34425777; PMCID: PMC8381570.Google Scholar
Tomaselli, PJ, Dos Santos, DF, Dos Santos, ACJ, et al. Primary neural leprosy: clinical, neurophysiological and pathological presentation and progression. Brain 2022;145(4):14991506. doi: 10.1093/brain/awab396. PMID: 34664630.Google Scholar
World Health Organization. Towards Zero Leprosy: Global Leprosy (Hansen’s Disease) Strategy 2021–2030. (who.int). Jan 27, 2023. ISBN: 978 92 9022 850 9Google Scholar

Suggested Reading

Bird, TD. Charcot-Marie-Tooth hereditary neuropathy overview. 1998 Sep 28 [updated 2023 Feb 23]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301532.Google Scholar
Corrado, B, Ciardi, G, Bargigli, C. Rehabilitation management of the Charcot-Marie-Tooth syndrome: a systematic review of the literature. Medicine (Baltimore) 2016;95(17):e3278. doi: 10.1097/MD.0000000000003278. PMID: 27124017; PMCID: PMC4998680.Google Scholar
Klein, CJ. Charcot-Marie-Tooth disease and other hereditary neuropathies. Continuum (Minneap Minn) 2020;26(5):12241256. doi: 10.1212/CON.0000000000000927. Erratum in: Continuum (Minneap Minn). 2021 Feb 1;27(1):289. PMID: 33003000.Google Scholar
Kramarz, C, Rossor, AM. Neurological update: hereditary neuropathies. J Neurol 2022;269(9):51875191. doi: 10.1007/s00415-022-11164-1. Epub 2022 May 21. PMID: 35596796; PMCID: PMC9363318.Google Scholar
Nagappa, M, Sharma, S, Taly, AB. Charcot-Marie-Tooth disease. 2022 Aug 22. In StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2023 Jan–. PMID: 32965834.Google Scholar
Zambon, AA, Pini, V, Bosco, L, et al. Early onset hereditary neuronopathies: an update on non-5q motor neuron diseases. Brain 2023;146(3):806822. doi: 10.1093/brain/awac452. PMID: 36445400; PMCID: PMC9976982.Google Scholar

Suggested Reading

Abati, E, Manini, A, Velardo, D, et al. Clinical and genetic features of a cohort of patients with MFN2-related neuropathy. Sci Rep 2022;12(1):6181. doi: 10.1038/s41598-022-10220-0. PMID: 35418194; PMCID: PMC9008012.Google Scholar
Cortese, A, Zhu Y, Rebelo AP et al. Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nat Genet. 2020 May;52(5):473-481. doi: 10.1038/s41588-020-0615–4. Epub 2020 May 4.Google Scholar

Suggested Reading

Farrugia, PR, Bednar, D, Oitment, C. Charcot arthropathy of the spine. J Am Acad Orthop Surg 2022;30(21):e1358e1365. doi: 10.5435/JAAOS-D-22-00212. Epub 2022 Aug 25. PMID: 36007201.Google Scholar
Fridman, V, Suriyanarayanan, S, Novak, P, et al. Randomized trial of L-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology 2019;92(4):e359e370. doi: 10.1212/WNL.0000000000006811. Epub 2019 Jan 9. PMID: 30626650; PMCID: PMC6345118.Google Scholar
González-Duarte, A, Cotrina-Vidal, M, Kaufmann, H, Norcliffe-Kaufmann, L. Familial dysautonomia. Clin Auton Res 2023;33(3):269280. doi: 10.1007/s10286-023-00941-1. Epub 2023 May 19. PMID: 37204536.Google Scholar
Schwartzlow, C, Kazamel, M. Hereditary sensory and autonomic neuropathies: adding more to the classification. Curr Neurol Neurosci Rep 2019;19(8):52. doi: 10.1007/s11910-019-0974-3. PMID: 31222456.Google Scholar
Sethi, PK, Sethi, NK. Charcot joint. Ann Neurol 2022;91(3):436437. doi: 10.1002/ana.26310. Epub 2022 Feb 10. PMID: 35084055Google Scholar

Suggested Reading

Aimo, A, Castiglione, V, Rapezzi, C, et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol 2022;19(10):655667. doi: 10.1038/s41569-022-00683-z. Epub 2022 Mar 23. PMID: 35322226.Google Scholar
Carroll, A, Dyck, PJ, de Carvalho, M, et al. Novel approaches to diagnosis and management of hereditary transthyretin amyloidosis. J Neurol Neurosurg Psychiatry 2022;93(6):668678. doi: 10.1136/jnnp-2021-327909. Epub 2022 Mar 7. PMID: 35256455; PMCID: PMC9148983.Google Scholar
Gillmore, JD, Gane, E, Taubel, J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021;385(6):493502. doi: 10.1056/NEJMoa2107454. Epub 2021 Jun 26. PMID: 34215024.Google Scholar
Kaku, M, Berk, JL. Neuropathy associated with systemic amyloidosis. Semin Neurol 2019;39(5):578588. doi: 10.1055/s-0039-1688994. Epub 2019 Oct 22. PMID: 31639841.Google Scholar
Magrinelli, F, Fabrizi, GM, Santoro, L, et al. Pharmacological treatment for familial amyloid polyneuropathy. Cochrane Database Syst Rev 2020;4(4):CD012395. doi: 10.1002/14651858.CD012395.pub2. PMID: 32311072; PMCID: PMC7170468.Google Scholar
Plante-Bordeneuve, V. Transthyretin familial amyloid polyneuropathy: an update. J Neurol 2018;265(4):976983. doi: 10.1007/s00415-017-8708-4. Epub 2017 Dec 16. PMID: 29249054.Google Scholar
Wisniowski, B, Wechalekar, A. Confirming the diagnosis of amyloidosis. Acta Haematol 2020;143(4):312321. doi: 10.1159/000508022. Epub 2020 Jun 16. PMID: 32544917.Google Scholar

Suggested Reading

Doughty, CT, Guidon, AC. Diagnostic testing for ocular myasthenia gravis: stronger together. Neurology 2020;95(13):563564. doi: 10.1212/WNL.0000000000010616. Epub 2020 Aug 11. PMID: 32788244.Google Scholar
Gilhus, NE. Myasthenia gravis can have consequences for pregnancy and the developing child. Front Neurol 2020;11:554. doi: 10.3389/fneur.2020.00554. PMID: 32595594; PMCID: PMC7304249.Google Scholar
Gilhus, NE, Tzartos, S, Evoli, A, et al. Myasthenia gravis. Nat Rev Dis Primers 2019;5(1):30. doi: 10.1038/s41572-019-0079-y. PMID: 31048702.Google Scholar
Menon, D, Bril, V. Pharmacotherapy of generalized myasthenia gravis with special emphasis on newer biologicals. Drugs 2022;82(8):865887. doi: 10.1007/s40265-022-01726-y. Epub 2022 May 31. PMID: 35639288; PMCID: PMC9152838.Google Scholar
Narayanaswami, P, Sanders, DB, Wolfe, G, et al. International consensus guidance for management of myasthenia gravis: 2020 Update. Neurology 2021;96(3):114122. doi: 10.1212/WNL.0000000000011124. Epub 2020 Nov 3. PMID: 33144515; PMCID: PMC7884987.Google Scholar
Vanoli, F, Mantegazza, R. Current drug treatment of myasthenia gravis. Curr Opin Neurol 2023;36(5):410415. doi: 10.1097/WCO.0000000000001196. Epub 2023 Aug 30. PMID: 37678337.Google Scholar
Verschuuren, JJ, Palace, J, Murai, H, et al. Advances and ongoing research in the treatment of autoimmune neuromuscular junction disorders. Lancet Neurol 2022;21(2):189202. doi: 10.1016/S1474-4422(21)00463-4. Erratum in: Lancet Neurol 2022 Mar;21(3):e3. PMID: 35065041.Google Scholar

Suggested Reading

Brauner, S, Eriksson-Dufva, A, Hietala, MA, et al. Comparison between rituximab treatment for new-onset generalized myasthenia gravis and refractory generalized myasthenia gravis. JAMA Neurol 2020;77:974981. doi: 10.1001/jamaneurol.2020.0851.Google Scholar
Gilhus, NE. Myasthenia gravis can have consequences for pregnancy and the developing child. Front Neurol 2020 Jun 12;11:554. doi: 10.3389/fneur.2020.00554. PMID: 32595594; PMCID: PMC7304249.Google Scholar
Cao, M, Koneczny, I, Vincent, A. Myasthenia gravis with antibodies against muscle specific kinase: an update on clinical features, pathophysiology and treatment. Front Mol Neurosci 2020;13:159. doi: 10.3389/fnmol.2020.00159Google Scholar
Narayanaswami, P, Sanders, DB, Wolfe, G, et al. International consensus guidance for management of myasthenia gravis: 2020 update. Neurology 2021;96:114122. doi:10.1212/WNL.0000000000011124Google Scholar
Verschuuren, JJ, Palace, J, Murai, H, et al. Advances and ongoing research in the treatment of autoimmune neuromuscular junction disorders. Lancet Neurol 2022;21(2):189202. doi: 10.1016/S1474-4422(21)00463-4. Erratum in: Lancet Neurol. 2022 Mar;21(3):e3. PMID: 35065041.Google Scholar

Suggested Reading

Astaras, C, de Micheli, R, Moura, B, Hundsberger, T, Hottinger, AF. Neurological adverse events associated with immune checkpoint inhibitors: diagnosis and management. Curr Neurol Neurosci Rep 2018;18(1):3. doi: 10.1007/s11910-018-0810-1. PMID: 29392441.Google Scholar
Huang, YT, Chen, YP, Lin, WC, Su, WC, Sun, YT. Immune checkpoint inhibitor-induced myasthenia gravis. Front Neurol 2020;11:634. doi: 10.3389/fneur.2020.00634. PMID: 32765397; PMCID: PMC7378376.Google Scholar
Narayanaswami, P, Sanders, DB, Wolfe, G, et al. International consensus guidance for management of myasthenia gravis: 2020 Update. Neurology 2021;96(3):114122. doi: 10.1212/WNL.0000000000011124. Epub 2020 Nov 3. PMID: 33144515; PMCID: PMC7884987.Google Scholar
Rossi, S, Gelsomino, F, Rinaldi, R, et al. Peripheral nervous system adverse events associated with immune checkpoint inhibitors. J Neurol 2023;270(6):29752986. doi: 10.1007/s00415-023-11625-1. Epub 2023 Feb 17. PMID: 36800019; PMCID: PMC10188572.Google Scholar
Safa, H, Johnson, DH, Trinh, VA, et al. Immune checkpoint inhibitor related myasthenia gravis: single center experience and systematic review of the literature. J Immunother Cancer 2019;7(1):319. doi: 10.1186/s40425-019-0774-y. PMID: 31753014; PMCID: PMC6868691.Google Scholar
Schneider, BJ, Naidoo J, Santomasso BD et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J Clin Oncol. 2021 Dec 20;39(36):4073–4126. doi: 10.1200/JCO.21.01440. Epub 2021 Nov 1. Erratum in: J Clin Oncol. 2022 Jan 20;40(3):315. PMID: 34724392.Google Scholar

Suggested Reading

Huijbers, MG, Marx, A, Plomp, JJ, et al. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022;21(2):163175. doi: 10.1016/S1474-4422(21)00357-4. PMID: 35065039.Google Scholar
Kesner, VG, Oh, SJ, Dimachkie, MM, Barohn, RJ. Lambert-Eaton myasthenic syndrome. Neurol Clin 2018;36(2):379394. doi: 10.1016/j.ncl.2018.01.008. PMID: 29655456; PMCID: PMC6690495.Google Scholar
Titulaer, MJ, Lang, B, Verschuuren, JJ. Lambert-Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol 2011;10(12):10981107. doi: 10.1016/S1474-4422(11)70245-9. PMID: 22094130.Google Scholar
Titulaer, MJ, Maddison, P, Sont, JK, et al. Clinical Dutch-English Lambert-Eaton myasthenic syndrome (LEMS) tumor association prediction score accurately predicts small-cell lung cancer in the LEMS. J Clin Oncol 2011;29(7):902908. doi: 10.1200/JCO.2010.32.0440. Epub 2011 Jan 18. PMID: 21245427.Google Scholar
Verschuuren, JJ, Palace, J, Murai, H, et al. Advances and ongoing research in the treatment of autoimmune neuromuscular junction disorders. Lancet Neurol 2022;21(2):189202. doi: 10.1016/S1474-4422(21)00463-4. Erratum in: Lancet Neurol. 2022 Mar;21(3):e3. PMID: 35065041.Google Scholar

Suggested Reading

Finlayson, S, Morrow, JM, Rodriguez Cruz, PM, et al. Muscle magnetic resonance imaging in congenital myasthenic syndromes. Muscle Nerve 2016;54(2):211219. doi: 10.1002/mus.25035. Epub 2016 Feb 22. PMID: 26789134; PMCID: PMC4982021.Google Scholar
Kao, JC, Milone, M, Selcen, D, et al. Congenital myasthenic syndromes in adult neurology clinic: a long road to diagnosis and therapy. Neurology 2018;91(19):e1770e1777. doi: 10.1212/WNL.0000000000006478. Epub 2018 Oct 5. PMID: 30291185; PMCID: PMC6251603.Google Scholar
Ohno, K, Ohkawara, B, Shen, XM, Selcen, D, Engel, AG. Clinical and pathologic features of congenital myasthenic syndromes caused by 35 genes-a comprehensive review. Int J Mol Sci 2023;24(4):3730. doi: 10.3390/ijms24043730. PMID: 36835142; PMCID: PMC9961056.Google Scholar
Ramdas, S, Beeson, D. Congenital myasthenic syndromes: where do we go from here? Neuromuscul Disord 2021;31(10):943954. doi: 10.1016/j.nmd.2021.07.400. PMID: 34736634.Google Scholar

Suggested Reading

Birnkrant, DJ, Bushby, K, Bann, CM, et al.; DMD Care Considerations Working Group.Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018;17(3):251267. doi: 10.1016/S1474-4422(18)30024-3. Epub 2018 Feb 3. Erratum in: Lancet Neurol. 2018 Apr 4: PMID: 29395989; PMCID: PMC5869704.Google Scholar
Birnkrant, DJ, Bushby, K, Bann, CM, et al.; DMD Care Considerations Working Group.Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol 2018;17(4):347361. doi: 10.1016/S1474-4422(18)30025-5. Epub 2018 Feb 3. PMID: 29395990; PMCID: PMC5889091.Google Scholar
Birnkrant, DJ, Bushby, K, Bann, CM, et al.; DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol 2018;17(5):445455.Google Scholar
Duan, D, Goemans, N, Takeda, S, Mercuri, E, Aartsma-Rus, A. Duchenne muscular dystrophy. Nat Rev Dis Primers 2021;7(1):13. doi: 10.1038/s41572-021-00248-3. PMID: 33602943.Google Scholar

Suggested Reading

Darras, BT, Urion, DK, Ghosh, PS. Dystrophinopathies. 2000 Sep 5 [updated 2022 Jan 20]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301298.Google Scholar
Fratter, C, Dalgleish, R, Allen, SK, et al. EMQN best practice guidelines for genetic testing in dystrophinopathies. Eur J Hum Genet 2020;28(9):11411159. doi: 10.1038/s41431-020-0643-7. Epub 2020 May 18. PMID: 32424326; PMCID: PMC7608854.Google Scholar
Papa, AA, D’Ambrosio, P, Petillo, R, Palladino, A, Politano, L. Heart transplantation in patients with dystrophinopathic cardiomyopathy: review of the literature and personal series. Intractable Rare Dis Res 2017;6(2):95101. doi: 10.5582/irdr.2017.01024. PMID: 28580208; PMCID: PMC5451754.Google Scholar
Straub, V, Guglieri, M. An update on Becker muscular dystrophy. Curr Opin Neurol 2023;36(5):450454. doi: 10.1097/WCO.0000000000001191. Epub 2023 Aug 21. PMID: 37591308; PMCID: PMC10487383.Google Scholar
Tasca, G, Iannaccone, E, Monforte, M, et al. Muscle MRI in Becker muscular dystrophy. Neuromuscul Disord 2012;22 Suppl 2:S100-6. doi: 10.1016/j.nmd.2012.05.015. PMID: 22980760.Google Scholar

Suggested Reading

Goselink, RJM, Mul, K, van Kernebeek, CR, et al. Early onset as a marker for disease severity in facioscapulohumeral muscular dystrophy. Neurology 2019;92(4):e378e385. doi: 10.1212/WNL.0000000000006819. Epub 2018 Dec 19. PMID: 30568007; PMCID: PMC6345117.Google Scholar
Mul, K, Berggren, KN, Sills, MY, et al. Effects of weakness of orofacial muscles on swallowing and communication in FSHD. Neurology 2019;92(9):e957e963. doi: 10.1212/WNL.0000000000007013. Epub 2019 Jan 25. PMID: 30804066; PMCID: PMC6404471.Google Scholar
Mul, K. Facioscapulohumeral muscular dystrophy. Continuum (Minneap Minn) 2022;28(6):17351751. doi: 10.1212/CON.0000000000001155. PMID: 36537978.Google Scholar
Vincenten, SCC, Van Der Stoep, N, Paulussen, ADC, et al. Facioscapulohumeral muscular dystrophy-Reproductive counseling, pregnancy, and delivery in a complex multigenetic disease. Clin Genet 2022;101(2):149160. doi: 10.1111/cge.14031. Epub 2021 Aug 1. PMID: 34297364; PMCID: PMC9291192.Google Scholar

Suggested Reading

Ashizawa, T, Gagnon, C, Groh, WJ, et al. Consensus-based care recommendations for adults with myotonic dystrophy type 1. Neurol Clin Pract 2018;8(6):507520. doi: 10.1212/CPJ.0000000000000531. PMID: 30588381; PMCID: PMC6294540.Google Scholar
Bird, TD. Myotonic dystrophy type 1. 1999 Sep 17 [updated 2021 Mar 25]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301344Google Scholar
Wahbi, K, Furling, D. Cardiovascular manifestations of myotonic dystrophy. Trends Cardiovasc Med 2020;30(4):232238. doi: 10.1016/j.tcm.2019.06.001. Epub 2019 Jun 13. PMID: 31213350.Google Scholar

Suggested Reading

Meola, G. Myotonic dystrophy type 2: the 2020 update. Acta Myol 2020;39(4):222234. doi: 10.36185/2532-1900-026. PMID: 33458578; PMCID: MC7783423.Google Scholar
Schoser, B, Montagnese, F, Bassez, G, et al.; Myotonic Dystrophy Foundation. Consensus-based care recommendations for adults with myotonic dystrophy type 2. Neurol Clin Pract 2019;9(4):343353. doi: 10.1212/CPJ.0000000000000645. PMID: 31583190; PMCID: PMC6745739.Google Scholar
Wenninger, S, Montagnese, F, Schoser, B. Core clinical phenotypes in myotonic dystrophies. Front Neurol 2018;9:303. doi: 10.3389/fneur.2018.00303. PMID: 29770119; PMCID: PMC5941986.Google Scholar

Suggested Reading

Barp, A, Laforet, P, Bello, L, Tasca, G, et al. European muscle MRI study in limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A). J Neurol 2020;267(1):45-56. doi: 10.1007/s00415-019-09539-y. Epub 2019 Sep 25. PMID: 31555977.Google Scholar
Johnson, NE, Statland, JM. The limb-girdle muscular dystrophies. Continuum (Minneap Minn) 2022;28(6):16981714. doi: 10.1212/CON.0000000000001178. PMID: 36537976.Google Scholar
Liewluck, T, Milone, M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018;58(2):167177. doi: 10.1002/mus.26077. Epub 2018 Feb 7. PMID: 29350766.Google Scholar
Lostal, W, Urtizberea, JA, Richard, I ; Calpain 3 study group. 233rd ENMC International Workshop: clinical trial readiness for calpainopathies, Naarden, the Netherlands, 15-17 September 2017. Neuromuscul Disord 2018;28(6):540549. doi: 10.1016/j.nmd.2018.03.010. Epub 2018 Mar 28. PMID: 29655529.Google Scholar
Spinazzi, M, Poupiot, J, Cassereau, J, et al. Late-onset camptocormia caused by a heterozygous in-frame CAPN3 deletion. Neuromuscul Disord 2021;31(5):450455. doi: 10.1016/j.nmd.2021.02.012. Epub 2021 Feb 14. PMID: 33741228.Google Scholar
Straub, V, Murphy, A, Udd, B ; LGMD workshop study group.229th ENMC International Workshop: limb girdle muscular dystrophies – nomenclature and reformed classification Naarden, the Netherlands, 17-19 March 2017. Neuromuscul Disord 2018;28(8):702710. doi: 10.1016/j.nmd.2018.05.007. Epub 2018 May 24. PMID: 30055862.Google Scholar

Suggested Reading

Bönnemann, CG, Wang, CH, Quijano-Roy, S, et al.; Members of International Standard of Care Committee for Congenital Muscular Dystrophies.Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014;24(4):289311. doi: 10.1016/j.nmd.2013.12.011. Epub 2014 Jan 9. PMID: 24581957; PMCID: PMC5258110.Google Scholar
Ten Dam, L, Frankhuizen, WS, Linssen, WHJP, et al. Autosomal recessive limb-girdle and Miyoshi muscular dystrophies in the Netherlands: The clinical and molecular spectrum of 244 patients. Clin Genet 2019;96(2):126133. doi: 10.1111/cge.13544. Epub 2019 May 6. PMID: 30919934.Google Scholar
Murphy, LB, Schreiber-Katz, O, Rafferty, K, et al. Global FKRP registry: observations in more than 300 patients with limb girdle muscular dystrophy R9. Ann Clin Transl Neurol 2020;7(5):757766. doi: 10.1002/acn3.51042. Epub 2020 Apr 28. PMID: 32342672; PMCID: PMC7261761.Google Scholar
Ortiz-Cordero, C, Azzag, K, Perlingeiro, RCR. Fukutin-related protein: from pathology to treatments. Trends Cell Biol 2021;31(3):197210. doi: 10.1016/j.tcb.2020.11.003. Epub 2020 Dec 1. PMID: 33272829; PMCID: PMC8657196.Google Scholar

Suggested Reading

Delbaere, S, Dhooge, T, Syx, D, et al. Novel defects in collagen XII and VI expand the mixed myopathy/Ehlers-Danlos syndrome spectrum and lead to variant-specific alterations in the extracellular matrix. Genet Med. 2020 Jan;22(1):112123. doi: 10.1038/s41436-019-0599-6. Epub 2019 Jul 5. PMID: 31273343.Google Scholar
Foley, AR, Quijano-Roy, S, Collins, J, et al. Natural history of pulmonary function in collagen VI-related myopathies. Brain. 2013 Dec;136(Pt 12):36253633. doi: 10.1093/brain/awt284. Epub 2013 Nov 22. PMID: 24271325; PMCID: PMC3859224.Google Scholar
Foley, AR, Mohassel, P, Donkervoort, S, Bolduc, V, Bönnemann, CG. Collagen VI-related dystrophies. 2004 Jun 25 [updated 2021 Mar 11]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301676.Google Scholar
Jöbsis, GJ, Boers, JM, Barth, PG, de Visser, M. Bethlem myopathy: a slowly progressive congenital muscular dystrophy with contractures. Brain. 1999 Apr;122 (Pt 4):649655. doi: 10.1093/brain/122.4.649. PMID: 10219778.Google Scholar
Salim, R, Dahlqvist, JR, Khawajazada, T, et al. Characteristic muscle signatures assessed by quantitative MRI in patients with Bethlem myopathy. J Neurol. 2020 Aug;267(8):24322442. doi: 10.1007/s00415-020-09860-x. Epub 2020 May 3. PMID: 32363432.Google Scholar

Suggested Reading

Argov, Z, de Visser, M. Dysphagia in adult myopathies. Neuromuscul Disord 2021;31(1):520. doi: 10.1016/j.nmd.2020.11.001. Epub 2020 Nov 13. PMID: 33334661.Google Scholar
Brisson, JD, Gagnon, C, Brais, B, Côté, I, Mathieu, J. A study of impairments in oculopharyngeal muscular dystrophy. Muscle Nerve 2020;62(2):201207. doi: 10.1002/mus.26888. Epub 2020 May 22. PMID: 32270505.Google Scholar
Eura, N, Noguchi, S, Ogasawara, M, et al.; OPDM/OPMD Image Study Group. Characteristics of the muscle involvement along the disease progression in a large cohort of oculopharyngodistal myopathy compared to oculopharyngeal muscular dystrophy. J Neurol 2023 Dec;270(12):59885998. doi: 10.1007/s00415-023-11906-9. Epub 2023. PMID: 37634163.Google Scholar
Kim, HJ, Mohassel, P, Donkervoort, S, et al. Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nat Commun 2022;13(1):2306. doi: 10.1038/s41467-022-30015-1. PMID: 35484142; PMCID: PMC9050844.Google Scholar
Richard, P, Trollet, C, Stojkovic, T, et al.; Neurologists of French Neuromuscular Reference Centers CORNEMUS and FILNEMUS. Correlation between PABPN1 genotype and disease severity in oculopharyngeal muscular dystrophy.Neurology 2017;88(4):359365. doi: 10.1212/WNL.0000000000003554. Epub 2016 Dec 23. PMID: 28011929; PMCID: PMC5272966.Google Scholar
Trollet, C, Boulinguiez, A, Roth, F, et al. Oculopharyngeal muscular dystrophy. 2001 Mar 8 [updated 2020 Oct 22]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301305.Google Scholar

Suggested Reading

Bonne, G, Leturcq, F, Ben, Yaou, R. Emery-Dreifuss muscular dystrophy. 2004 Sep 29 [updated 2019 Aug 15]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301609.Google Scholar
Heller, SA, Shih, R, Kalra, R, Kang, PB. Emery-Dreifuss muscular dystrophy. Muscle Nerve 2020;61(4):436448. doi: 10.1002/mus.26782. Epub 2019 Dec 28. PMID: 31840275; PMCID: PMC7154529.Google Scholar

Suggested Reading

Dubey, D, Beecher, G, Hammami, MB, et al. Identification of caveolae-associated protein 4 autoantibodies as a biomarker of immune-mediated rippling muscle disease in adults. JAMA Neurol 2022;79(8):808816. doi: 10.1001/jamaneurol.2022.1357. PMID: 35696196; PMCID: PMC9361081.Google Scholar
Scalco, RS, Gardiner, AR, Pitceathly, RD, et al. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies. Neuromuscul Disord 2016;26(8):504510. doi: 10.1016/j.nmd.2016.05.006. Epub 2016 May 11. PMID: 27312022.Google Scholar

Suggested Reading

Bugiardini, E, Morrow, JM, Shah, S, et al. The diagnostic value of MRI pattern recognition in distal myopathies. Front Neurol 2018;9:456. doi: 10.3389/fneur.2018.00456. PMID: 29997562; PMCID: PMC6028608.Google Scholar
El Sherif, R, Hussein, RS, Nishino, I.Boule du biceps’ in dysferlinopathy. Neurology 2020;94(2):8384. doi: 10.1212/WNL.0000000000008782. Epub 2019 Dec 10. PMID: 31822577.Google Scholar
Milone, M, Liewluck, T. The unfolding spectrum of inherited distal myopathies. Muscle Nerve 2019;59(3):283294. doi: 10.1002/mus.26332. Epub 2018 Nov 28. PMID: 30171629.Google Scholar
Moore, U, Gordish, H, Diaz-Manera, J, et al.; Jain COS Consortium.Miyoshi myopathy and limb girdle muscular dystrophy R2 are the same disease. Neuromuscul Disord 2021;31(4):265280. doi: 10.1016/j.nmd.2021.01.009. Epub 2021 Jan 21. PMID: 33610434.Google Scholar
Pegoraro, E, Mendell, JR, Straub, V, Díaz-Manera, J. Expanding the muscle imaging spectrum in dysferlinopathy: description of an outlier population from the classical MRI pattern. Neuromuscul Disord 2023;33(4):349357. doi: 10.1016/j.nmd.2023.02.007. Epub 2023 Mar 2. PMID: 36972667.Google Scholar
Savarese, M, Sarparanta, J, Vihola, A, et al. Panorama of the distal myopathies. Acta Myol 2020;39(4):245265. doi: 10.36185/2532-1900-028. PMID: 33458580; PMCID: PMC7783427.Google Scholar
ten Dam, L, Frankhuizen, WS, Linssen, WHJP, et al. Autosomal recessive limb-girdle and Miyoshi muscular dystrophies in the Netherlands: the clinical and molecular spectrum of 244 patients. Clin Genet 2019;96(2):126133. doi: 10.1111/cge.13544. Epub 2019 May 6. PMID: 30919934.Google Scholar

Suggested Reading

Mullen, J, Alrasheed, K, Mozaffar, T. GNE myopathy: history, etiology, and treatment trials. Front Neurol 2022;13:1002310. doi: 10.3389/fneur.2022.1002310. PMID: 36330422; PMCID: PMC9623016.Google Scholar
Savarese, M, Sarparanta, J, Vihola, A, et al. Panorama of the distal myopathies. Acta Myol 2020;39(4):245265. doi: 10.36185/2532-1900-028. PMID: 33458580; PMCID: PMC7783427.Google Scholar
Yoshioka, W, Nishino, I, Noguchi, S. Recent advances in establishing a cure for GNE myopathy. Curr Opin Neurol 2022;35(5):629636. doi: 10.1097/WCO.0000000000001090. Epub 2022 Aug 11. PMID: 35959526.Google Scholar

Suggested Reading

Carroll, LS, Walker, M, Allen, D, et al. Desminopathy presenting as late onset bilateral facial weakness, with diagnosis supported by lower limb MRI. Neuromuscul Disord 2021;31(3):249252. doi: 10.1016/j.nmd.2020.12.013. Epub 2021 Jan 8. PMID: 33546848.Google Scholar
Carvalho, AAS, Lacene, E, Brochier, G, et al. Genetic mutations and demographic, clinical, and morphological aspects of myofibrillar myopathy in a French cohort. Genet Test Mol Biomarkers 2018;22(6):374383. doi: 10.1089/gtmb.2018.0004. PMID: 29924655Google Scholar
Fichna, JP, Maruszak, A, Żekanowski, C. Myofibrillar myopathy in the genomic context. J Appl Genet 2018;59(4):431439. doi: 10.1007/s13353-018-0463-4. Epub 2018 Sep 10. PMID: 30203143.Google Scholar
Jungbluth, H. Myopathology in times of modern imaging. Neuropathol Appl Neurobiol 2017;43(1):2443. doi: 10.1111/nan.12385. PMID: 28111795.Google Scholar
Venturelli, N, Tordjman, M, Ammar, A, et al. Contribution of muscle MRI for diagnosis of myopathy. Rev Neurol (Paris) 2023;179(1-2):6180. doi: 10.1016/j.neurol.2022.12.002. Epub 2022 Dec 21. PMID: 36564254.Google Scholar
Wahbi, K, Béhin, A, Charron, P, et al. High cardiovascular morbidity and mortality in myofibrillar myopathies due to DES gene mutations: a 10-year longitudinal study. Neuromuscul Disord 2012;22(3):211218. doi: 10.1016/j.nmd.2011.10.019. Epub 2011 Dec 5. PMID: 22153487.Google Scholar

Suggested Reading

Dunø, M, Vissing, J. Myotonia congenita. 2005 Aug 3 [updated 2021 Feb 25]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301529.Google Scholar
Matthews, E, Holmes, S, Fialho, D. Skeletal muscle channelopathies: a guide to diagnosis and management. Pract Neurol 2021;21(3):196204. doi: 10.1136/practneurol-2020-002576. Epub 2021 Feb 9. PMID: 33563766.Google Scholar
Sekhon, DS, Vaqar, S, Gupta, V. Hyperkalemic periodic paralysis. 2023 May 8. In StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2023 Jan–. PMID: 33231989.Google Scholar
Siddamreddy, S, Dandu, VH. Thyrotoxic periodic paralysis. 2022 Jul 25. In StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2023 Jan–. PMID: 32809505.Google Scholar
Statland, JM, Fontaine, B, Hanna, MG, et al. Review of the diagnosis and treatment of periodic paralysis. Muscle Nerve 2018;57(4):522530. doi: 10.1002/mus.26009. Epub 2017 Nov 29. PMID: 29125635; PMCID: PMC5867231.Google Scholar
Veerapandiyan, A, Statland, JM, Tawil, R. Andersen-Tawil syndrome. 2004 Nov 22 [updated 2018 Jun 7]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301441.Google Scholar
Vicart, S, Franques, J, Bouhour, F, et al. Efficacy and safety of mexiletine in non-dystrophic myotonias: a randomised, double-blind, placebo-controlled, cross-over study. Neuromuscul Disord 2021;31(11):11241135. doi: 10.1016/j.nmd.2021.06.010. Epub 2021 Jun 27. PMID: 34702654.Google Scholar
Weber, F, Lehmann-Horn, F. Hypokalemic periodic paralysis. 2002 Apr 30 [updated 2018 Jul 26]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301512.Google Scholar

General Remarks and Suggested Reading

See Case 50.

Suggested Reading

Bolano-Diaz, C, Diaz-Manera, J. Therapeutic options for the management of Pompe disease: current challenges and clinical evidence in therapeutics and clinical risk management. Ther Clin Risk Manag 2022;18:10991115. doi: 10.2147/TCRM.S334232. PMID: 36536827; PMCID: PMC9759116.Google Scholar
Diaz-Manera, J, Kishnani, PS, Kushlaf, H, et al.; COMET Investigator Group. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): a phase 3, randomised, multicentre trial. Lancet Neurol 2021;20(12):10121026. PMID: 34800399.Google Scholar
Dimachkie, MM, Barohn, RJ, Byrne, B, et al.; NEO-EXT investigators.Long-term safety and efficacy of avalglucosidase alfa in patients with late-onset Pompe disease. Neurology 2022;99(5):e536e548. doi: 10.1212/WNL.0000000000200746. Epub ahead of print. PMID: 35618441; PMCID: PMC9421599.Google Scholar
Harlaar, L, Ciet, P, van Tulder, G, et al. Chest MRI to diagnose early diaphragmatic weakness in Pompe disease. Orphanet J Rare Dis 2021;16(1):21. doi: 10.1186/s13023-020-01627-x. PMID: 33413525; PMCID: PMC7789462.Google Scholar
Schoser, B, Laforet, P. Therapeutic thoroughfares for adults living with Pompe disease. Curr Opin Neurol 2022;35(5):645650. doi: 10.1097/WCO.0000000000001092. Epub 2022 Aug 8. PMID: 35942661.Google Scholar
Schoser, B, Roberts, M, Byrne, BJ, et al.; PROPEL Study Group. Safety and efficacy of cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo in late-onset Pompe disease (PROPEL): an international, randomised, double-blind, parallel-group, phase 3 trial. Lancet Neurol 2021;20(12):10271037. doi: 10.1016/S1474-4422(21)00331-8. Erratum in: Lancet Neurol 2023 Aug 9; PMID: 34800400.Google Scholar
van der Beek, NA, de Vries, JM, Hagemans, ML, et al. Clinical features and predictors for disease natural progression in adults with Pompe disease: a nationwide prospective observational study. Orphanet J Rare Dis 2012;7:88. doi: 10.1186/1750-1172-7-88. PMID: 23147228; PMCID: PMC3551719.Google Scholar
van der Ploeg, AT, Kruijshaar, ME, Toscano, A, et al.; European Pompe Consortium. European consensus for starting and stopping enzyme replacement therapy in adult patients with Pompe disease: a 10-year experience. Eur J Neurol 2017;24(6):768–e31. doi: 10.1111/ene.13285. Epub 2017 May 6. PMID: 28477382.Google Scholar
van der Ploeg, AT, Reuser, AJ. Pompe’s disease. Lancet 2008;372(9646):13421353. doi: 10.1016/S0140-6736(08)61555-X. PMID: 18929906.Google Scholar

Suggested Reading

Godfrey, R, Quinlivan, R. Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol 2016;12(7):393402. doi: 10.1038/nrneurol.2016.75. Epub 2016 May 27. PMID: 27231184.Google Scholar
Kazemi-Esfarjani, P, Skomorowska, E, Jensen, TD, Haller, RG, Vissing, J. A nonischemic forearm exercise test for McArdle disease. Ann Neurol 2002;52(2):153159. doi: 10.1002/ana.10263. PMID: 12210784.Google Scholar
Kruijt, N, van den Bersselaar, LR, Kamsteeg, EJ, et al. The etiology of rhabdomyolysis: an interaction between genetic susceptibility and external triggers. Eur J Neurol 2021;28(2):647659. doi: 10.1111/ene.14553. Epub 2020 Oct 25. PMID: 32978841; PMCID: PMC7821272.Google Scholar
Martín, MA, Lucia, A, Arenas, J, Andreu, AL. Glycogen storage disease type V. 2006 Apr 19 [updated 2019 Jun 20]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301518.Google Scholar
Nance, JR, Mammen, AL. Diagnostic evaluation of rhabdomyolysis. Muscle Nerve 2015;51(6):793810. doi: 10.1002/mus.24606. Epub 2015 Mar 14. PMID: 25678154; PMCID: PMC4437836.Google Scholar
Scalco, RS, Gardiner, AR, Pitceathly, RD, et al. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015;10:51. doi: 10.1186/s13023-015-0264-3. PMID: 25929793; PMCID: PMC4522153.Google Scholar
Stahl, K, Rastelli, E, Schoser, B. A systematic review on the definition of rhabdomyolysis. J Neurol 2020;267(4):877882. doi: 10.1007/s00415-019-09185-4. Epub 2019 Jan 7. PMID: 30617905.Google Scholar
Zutt, R, van der Kooi, AJ, Linthorst, GE, Wanders, RJ, de Visser, M. Rhabdomyolysis: review of the literature. Neuromuscul Disord 2014;24(8):651659. doi: 10.1016/j.nmd.2014.05.005. Epub 2014 May 21. PMID: 24946698. dGoogle Scholar

Suggested Reading

Kruijt, N, van den Bersselaar, LR, Kamsteeg, EJ, et al. The etiology of rhabdomyolysis: an interaction between genetic susceptibility and external triggers. Eur J Neurol 2021;28(2):647659. doi: 10.1111/ene.14553. Epub 2020 Oct 25. PMID: 32978841; PMCID: PMC7821272.Google Scholar
Merritt, JL 2nd, Norris, M, Kanungo, S. Fatty acid oxidation disorders. Ann Transl Med 2018;6(24):473. doi: 10.21037/atm.2018.10.57. PMID: 30740404; PMCID: PMC6331364.Google Scholar
Scalco, RS, Gardiner, AR, Pitceathly, RD, et al. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015;10:51. doi: 10.1186/s13023-015-0264-3. PMID: 25929793; PMCID: PMC4522153.Google Scholar
Wieser, T. Carnitine palmitoyltransferase II deficiency. 2004 Aug 27 [updated 2019 Jan 3]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301431.Google Scholar

Suggested Reading

Chinnery, PF. Primary mitochondrial disorders overview. 2000 Jun 8 [updated 2021 Jul 29]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301403.Google Scholar
Hathazi, D, Griffin, H, Jennings, MJ, et al. Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. EMBO J 2020;39(23):e105364. doi: 10.15252/embj.2020105364. Epub 2020 Oct 31. PMID: 33128823; PMCID: PMC7705457.Google Scholar
Heighton, JN, Brady, LI, Sadikovic, B, Bulman, DE, Tarnopolsky, MA. Genotypes of chronic progressive external ophthalmoplegia in a large adult-onset cohort. Mitochondrion 2019;49:227231. doi: 10.1016/j.mito.2019.09.002. Epub 2019 Sep 12. PMID: 31521625.Google Scholar
McClelland, C, Manousakis, G, Lee, MS. Progressive external ophthalmoplegia. Curr Neurol Neurosci Rep 2016;16(6):53. doi: 10.1007/s11910-016-0652-7. PMID: 27072953.Google Scholar
Orsucci, D, Caldarazzo Ienco, E, Rossi, A, Siciliano, G, Mancuso, M. Mitochondrial syndromes revisited. J Clin Med 2021;10(6):1249. doi: 10.3390/jcm10061249. PMID: 33802970; PMCID: PMC8002645.Google Scholar
Parikh, S, Karaa, A, Goldstein, A, et al. Diagnosis of ‘possible’ mitochondrial disease: an existential crisis. J Med Genet 2019;56(3):123130. doi: 10.1136/jmedgenet-2018-105800. Epub 2019 Jan 25. PMID: 30683676.Google Scholar
Quadir, A, Pontifex, CS, Lee Robertson, H, Labos, C, Pfeffer, G. Systematic review and meta-analysis of cardiac involvement in mitochondrial myopathy. Neurol Genet 2019;5(4):e339. doi: 10.1212/NXG.0000000000000339. PMID: 31403078; PMCID: PMC6659349.Google Scholar
Schon, KR, Ratnaike, T, van den Ameele, J, Horvath, R, Chinnery, PF. Mitochondrial diseases: a diagnostic revolution. Trends Genet 2020;36(9):702717. doi: 10.1016/j.tig.2020.06.009. Epub 2020 Jul 13. PMID: 32674947.Google Scholar

Suggested Reading

Claeys, KG. Congenital myopathies: an update. Dev Med Child Neurol 2020;62(3):297302. doi: 10.1111/dmcn.14365. Epub 2019 Oct 2. PMID: 31578728.Google Scholar
Dosi, C, Rubegni, A, Baldacci, J, et al. Using cluster analysis to overcome the limits of traditional phenotype-genotype correlations: the example of RYR1-related myopathies. Genes (Basel) 2023;14(2):298. doi: 10.3390/genes14020298. PMID: 36833224; PMCID: PMC9956305.Google Scholar
Kruijt, N, den Bersselaar, LV, Snoeck, M, et al. RYR1-related rhabdomyolysis: a spectrum of hypermetabolic states due to ryanodine receptor dysfunction. Curr Pharm Des 2022;28(1):214. doi: 10.2174/1381612827666210804095300. PMID: 34348614.Google Scholar
Lawal, TA, Todd, JJ, Witherspoon, JW, et al. Ryanodine receptor 1-related disorders: an historical perspective and proposal for a unified nomenclature. Skelet Muscle 2020;10(1):32. doi: 10.1186/s13395-020-00243-4. PMID: 33190635; PMCID: PMC7667763.Google Scholar
O’Connor, TN, van den Bersselaar, LR, Chen, YS, et al; RYR1 Myopathy Consortium.RYR-1-Related Diseases International Research Workshop: From Mechanisms To Treatments Pittsburgh, PA, U.S.A., 21-22 July 2022. J Neuromuscul Dis 2023;10(1):135154. doi: 10.3233/JND-221609. PMID: 36404556; PMCID: PMC10023165.Google Scholar
Papadimas, GK, Xirou, S, Kararizou, E, Papadopoulos, C. Update on congenital myopathies in adulthood. Int J Mol Sci 2020;21(10):3694. doi: 10.3390/ijms21103694. PMID: 32456280; PMCID: PMC7279481.Google Scholar
Sarkozy, A, Sa, M, Ridout, D, et al. Long-term natural history of pediatric dominant and recessive RYR1-related myopathy. Neurology 2023;101(15):e1495e1508. doi: 10.1212/WNL.0000000000207723. Epub 2023 Aug 29. PMID: 37643885.Google Scholar
Snoeck, M, van Engelen, BG, Küsters, B, et al. RYR1-related myopathies: a wide spectrum of phenotypes throughout life. Eur J Neurol 2015;22(7):10941112. doi: 10.1111/ene.12713. Epub 2015 May 11. PMID: 25960145.Google Scholar

Suggested Reading

Amburgey, K, Tsuchiya, E, de Chastonay, S, et al. A natural history study of X-linked myotubular myopathy. Neurology 2017;89(13):13551364. doi: 10.1212/WNL.0000000000004415. Epub 2017 Aug 25. PMID: 28842446; PMCID: PMC5649758.Google Scholar
Annoussamy, M, Lilien, C, Gidaro, T, et al. X-linked myotubular myopathy: a prospective international natural history study. Neurology 2019;92(16):e1852e1867. doi: 10.1212/WNL.0000000000007319. Epub 2019 Mar 22. PMID: 30902907; PMCID: PMC6550499.Google Scholar
Biancalana, V, Scheidecker, S, Miguet, M, et al. Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues. Acta Neuropathol 2017;134(6):889904. doi: 10.1007/s00401-017-1748-0. Epub 2017 Jul 6. PMID: 28685322.Google Scholar
D’Amico, A, Longo, A, Fattori, F, et al. Hepatobiliary disease in XLMTM: a common comorbidity with potential impact on treatment strategies. Orphanet J Rare Dis 2021;16(1):425. doi: 10.1186/s13023-021-02055-1. Erratum in: Orphanet J Rare Dis 2022;17(1):18. PMID: 34641930; PMCID: PMC851335.Google Scholar
Graham, RJ, Muntoni, F, Hughes, I, et al. Mortality and respiratory support in X-linked myotubular myopathy: a RECENSUS retrospective analysis. Arch Dis Child 2020;105(4):332338. doi: 10.1136/archdischild-2019-317910. Epub 2019 Sep 4. PMID: 31484632; PMCID: PMC7054136.Google Scholar
Shieh, PB, Kuntz, NL, Dowling, JJ, et al. Safety and efficacy of gene replacement therapy for X-linked myotubular myopathy (ASPIRO): a multinational, open-label, dose-escalation trial. Lancet Neurology 2023; 22 (12):11251139.Google Scholar

Suggested Reading

Ahmed, MI, Iqbal, M, Hussain, N. A structured approach to the assessment of a floppy neonate. J Pediatr Neurosci 2016;11(1):26. doi: 10.4103/1817-1745.181250. PMID: 27195025; PMCID: PMC4862282.Google Scholar
Laitila, J, Wallgren-Pettersson, C. Recent advances in nemaline myopathy. Neuromuscul Disord 2021;31(10):955967. doi: 10.1016/j.nmd.2021.07.012. Epub 2021 Jul 24. PMID: 34561123.Google Scholar
Nicolau, S, Milone M. Sporadic Late-Onset Nemaline Myopathy: Current Landscape. Curr Neurol Neurosci Rep. 2023 Nov;23(11):777–784. doi: 10.1007/s11910-023-01311-0. Epub 2023 Oct 19. PMID: 37856049. Google Scholar
Veneruso, M, Fiorillo, C, Broda, P, et al. The role of muscle biopsy in diagnostic process of infant hypotonia: from clinical classification to the genetic outcome. Front Neurol 2021;12:735488. doi: 10.3389/fneur.2021.735488. PMID: 34675869; PMCID: PMC8523832.Google Scholar

Suggested Reading

Bellutti Enders, F, Bader-Meunier, B, Baildam, E, et al. Consensus-based recommendations for the management of juvenile dermatomyositis. Ann Rheum Dis 2017;76(2):329340. doi: 10.1136/annrheumdis-2016-209247. Epub 2016 Aug 11. PMID: 27515057; PMCID: PMC5284351.Google Scholar
Liang, WC, Uruha, A, Suzuki, S, et al. Pediatric necrotizing myopathy associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies. Rheumatology (Oxford) 2017;56(2):287293. doi: 10.1093/rheumatology/kew386. Epub 2016 Nov 6. PMID: 27818386; PMCID: PMC5410926.Google Scholar
Pachman, LM, Nolan, BE, DeRanieri, D, Khojah, AM. Juvenile dermatomyositis: new clues to diagnosis and therapy. Curr Treatm Opt Rheumatol 2021;7(1):3962. doi: 10.1007/s40674-020-00168-5. Epub 2021 Feb 6. PMID: 34354904; PMCID: PMC8336914.Google Scholar
Wang, CH, Liang, WC. Pediatric immune-mediated necrotizing myopathy. Front Neurol 2023;14:1123380. doi: 10.3389/fneur.2023.1123380. PMID: 37021281; PMCID: PMC10067916.Google Scholar

Suggested Reading

Bhai, SF, Dimachkie, MM, de Visser, M. Is it really myositis? Mimics and pitfalls. Best Pract Res Clin Rheumatol 2022;36(2):101764. doi: 10.1016/j.berh.2022.101764. Epub 2022 Jun 23. PMID: 35752578.Google Scholar
Ezeofor, AJ, O’Connell, KA, Cobos, GA, et al. Distinctive cutaneous features of dermatomyositis in Black adults: a case series. JAAD Case Rep 2023;37:106109. doi: 10.1016/j.jdcr.2023.05.019. PMID: 37396484; PMCID: PMC10314225.Google Scholar
Gandiga, PC, Ghetie, D, Anderson, E, Aggrawal, R. Intravenous immunoglobulin in idiopathic inflammatory myopathies: a practical guide for clinical use. Curr Rheumatol Rep 2023;25(8):152168. doi: 10.1007/s11926-023-01105-w. Epub 2023 Jun 1. PMID: 37261663Google Scholar
Goswami, RP, Haldar, SN, Chatterjee, M, et al. Efficacy and safety of intravenous and subcutaneous immunoglobulin therapy in idiopathic inflammatory myopathy: a systematic review and meta-analysis. Autoimmun Rev 2022;21(2):102997. doi: 10.1016/j.autrev.2021.102997. Epub 2021 Nov 17. PMID: 34800685.Google Scholar
La Rocca, G, Ferro, F, Baldini, C, et al. Targeting intracellular pathways in idiopathic inflammatory myopathies: a narrative review. Front Med (Lausanne) 2023;10:1158768. doi: 10.3389/fmed.2023.1158768. PMID: 36993798; PMCID: PMC10040547.Google Scholar
Lundberg, IE, de Visser, M, Werth, VP. Classification of myositis. Nat Rev Rheumatol 2018;14(5):269278. doi: 10.1038/nrrheum.2018.41. Epub 2018 Apr 12. PMID: 29651121.Google Scholar
Mammen, AL, Allenbach, Y, Stenzel, W, Benveniste, O ; ENMC 239th Workshop Study Group. 239th ENMC International Workshop: classification of dermatomyositis, Amsterdam, the Netherlands, 14-16 December 2018. Neuromuscul Disord 2020;30(1):7092. doi: 10.1016/j.nmd.2019.10.005. Epub 2019 Oct 25. PMID: 31791867.Google Scholar
Oldroyd, AGS, Callen, JP, Chinoy, H, et al.; International Myositis Assessment and Clinical Studies Group Cancer Screening Expert Group; Aggarwal, R. International Guideline for Idiopathic Inflammatory Myopathy-Associated Cancer Screening: an International Myositis Assessment and Clinical Studies Group (IMACS) initiative. Nat Rev Rheumatol 2023;19(12):805817. doi: 10.1038/s41584-023-01045-w. Epub ahead of print. PMID: 37945774.Google Scholar
Tanboon, J, Nishino, I. Update on dermatomyositis. Curr Opin Neurol 2022;35(5):611621. doi: 10.1097/WCO.0000000000001091. Epub 2022 Aug 4. PMID: 35942671.Google Scholar

Suggested Reading

Allenbach, Y, Benveniste, O, Stenzel, W, Boyer, O. Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat Rev Rheumatol 2020;16(12):689701. doi: 10.1038/s41584-020-00515-9. Epub 2020 Oct 22. PMID: 33093664.Google Scholar
Allenbach, Y, Mammen, AL, Benveniste, O, Stenzel, W ; Immune-Mediated Necrotizing Myopathies Working Group. 224th ENMC International Workshop: clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, the Netherlands, 14-16 October 2016. Neuromuscul Disord 2018;28(1):8799. doi: 10.1016/j.nmd.2017.09.016. Epub 2017 Oct 23. PMID: 29221629.Google Scholar
Lim, J, Rietveld, A, De Bleecker, JL, et al. Seronegative patients form a distinctive subgroup of immune-mediated necrotizing myopathy. Neurol Neuroimmunol Neuroinflamm 2018;6(1):e513. doi: 10.1212/NXI.0000000000000513. PMID: 30345336; PMCID: PMC6192692.Google Scholar

Suggested Reading

Cox, FM, Titulaer, MJ, Sont, JK, et al. A 12-year follow-up in sporadic inclusion body myositis: an end stage with major disabilities. Brain 2011;134:31673175.Google Scholar
Greenberg, SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 2019;15(5):257272.Google Scholar
Lilleker, JB, Naddaf E, Saris CGJ, Schmidt J, de Visser M, Weihl CC; 272nd ENMC workshop participants. 272nd ENMC international workshop: 10 Years of progress - revision of the ENMC 2013 diagnostic criteria for inclusion body myositis and clinical trial readiness. 16-18 June 2023, Hoofddorp, The Netherlands. Neuromuscul Disord. 2024 Apr;37:36-51. doi: 10.1016/j.nmd.2024.03.001. Epub 2024 Mar 7. PMID: 38522330.Google Scholar
Shelly, S, Mielke, MM, Mandrekar, J, et al. Epidemiology and natural history of inclusion body myositis: a 40-year population-based study. Neurology 2021;96(21):e2653e2661.Google Scholar

Suggested Reading

Duyff, RF, Van den Bosch, J, Laman, DM, van Loon BJ, , Linssen, WH. Neuromuscular findings in thyroid dysfunction: a prospective clinical and electrodiagnostic study. J Neurol Neurosurg Psychiatry 2000;68(6):750755. doi: 10.1136/jnnp.68.6.750. PMID: 10811699; PMCID: PMC1736982.Google Scholar
Klein, I, Ojamaa, K. Thyroid (neuro)myopathy. Lancet 2000;356(9230):614. doi: 10.1016/s0140-6736(00)02601-5. PMID: 10968432.Google Scholar
Jordan, B, Uer, O, Buchholz, T, Spens, A, Zierz, S. Physical fatigability and muscle pain in patients with Hashimoto thyroiditis. J Neurol 2021;268(7):24412449. doi: 10.1007/s00415-020-10394-5. Epub 2021 Jan 28. PMID: 33507372; PMCID: PMC8217009.Google Scholar

Suggested Reading

Abudalou, M, Mohamed AS, Vega EA, Al Sbihi A. Colchicine-induced rhabdomyolysis: a review of 83 cases. BMJ Case Rep. 2021 Jul 21;14(7):e241977. doi: 10.1136/bcr-2021-241977. PMID: 34290008; PMCID: PMC8296791.Google Scholar
Allenbach, Y, Anquetil C, Manouchehri A et al. Immune checkpoint inhibitor-induced myositis, the earliest and most lethal complication among rheumatic and musculoskeletal toxicities. Autoimmun Rev. 2020 Aug;19(8):102586. doi: 10.1016/j.autrev.2020.102586. Epub 2020 Jun 11. PMID: 32535094.Google Scholar
Batchelor, TT, Taylor, LP, Thaler, HT, Posner, JB, DeAngelis, LM. Steroid myopathy in cancer patients. Neurology 1997;48(5):12341238. doi: 10.1212/wnl.48.5.1234. PMID: 9153449.Google Scholar
Doughty, CT, Amato, AA. Toxic myopathies. Continuum (Minneap Minn) 2019;25(6):17121731. doi: 10.1212/CON.0000000000000806. PMID: 31794468.Google Scholar
Gunton, JE, Girgis, CM. Vitamin D and muscle. Bone Rep 2018;8:163167. doi: 10.1016/j.bonr.2018.04.004. PMID: 29963601; PMCID: PMC6021354.Google Scholar
Mammen, AL. Statin-associated myalgias and muscle injury-recognizing and managing both while still lowering the low-density lipoprotein. Med Clin North Am 2021;105(2):263272. doi: 10.1016/j.mcna.2020.10.004. Epub 2020 Dec 24. PMID: 33589101.Google Scholar
Naddaf, E, Paul, P, AbouEzzeddine, OF. Chloroquine and hydroxychloroquine myopathy: clinical spectrum and treatment outcomes. Front Neurol 2021;11:616075. doi: 10.3389/fneur.2020.616075. PMID: 33603707; PMCID: PMC7884308.Google Scholar
Penson, PE, Bruckert, E, Marais, D, et al.; International Lipid Expert Panel (ILEP).Step-by-step diagnosis and management of the nocebo/drucebo effect in statin-associated muscle symptoms patients: a position paper from the International Lipid Expert Panel (ILEP). J Cachexia Sarcopenia Muscle 2022;13(3):15961622. doi: 10.1002/jcsm.12960. Epub 2022 Mar 10. PMID: 35969116; PMCID: PMC9178378.Bottom of FormGoogle Scholar
Simon, L, Jolley, SE, Molina, PE. Alcoholic myopathy: pathophysiologic mechanisms and clinical implications. Alcohol Res 2017;38(2):207217. PMID: 28988574; PMCID: PMC5513686.Google Scholar

Suggested Reading

Brewster, LM, Mairuhu, G, Sturk, A, van Montfrans, GA. Distribution of creatine kinase in the general population: implications for statin therapy. Am Heart J 2007;154(4):655661. doi: 10.1016/j.ahj.2007.06.008. PMID: 17892987.Google Scholar
Janssens, L, De Puydt, J, Milazzo, M, et al. Risk of malignant hyperthermia in patients carrying a variant in the skeletal muscle ryanodine receptor 1 gene. Neuromuscul Disord 2022;32(11-12):864869. doi: 10.1016/j.nmd.2022.10.003. Epub 2022 Oct 19. PMID: 36283893.Google Scholar
Lilleng, H, Johnsen, SH, Wilsgaard, T, Bekkelund, SI. Are the currently used reference intervals for creatine kinase (CK) reflecting the general population? The Tromsø Study. Clin Chem Lab Med 2011;50(5):879884. doi: 10.1515/CCLM.2011.776. PMID: 22070220.Google Scholar
Kley, RA, Schmidt-Wilcke, T, Vorgerd, M. Differential diagnosis of hyperckemia. Neurol Int Open 2018;2:E72E83.Google Scholar
Rubegni, A, Malandrini, A, Dosi, C, et al. Next-generation sequencing approach to hyperCKemia: a 2-year cohort study. Neurol Genet 2019;5(5):e352. doi: 10.1212/NXG.0000000000000352. PMID: 31517061; PMCID: PMC6705647.Google Scholar

General Remarks and Suggested Reading

For more information on rhabdomyolysis, see Case 53 (McArdle disease) and Case 54 (CPT2 deficiency).Google Scholar
For more information on malignant hyperthermia, see Case 56 (RYR1-related disease) and Chapter 8 (Management).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×