Published online by Cambridge University Press: 04 August 2010
Introduction
A seemingly bewildering array of factors with putative neurohormonal function have been described in (mainly decapod) Crustacea (see Kleinholz & Keller 1979; Cooke & Sullivan 1982; Keller 1983; Kleinholz 1985). They are implicated in almost every aspect of crustacean physiology, including pigment dispersion and concentration, inhibition of moulting, limb regeneration and gonad development, cardiac control, blood glucose, metabolism and respiratory control, ion and water balance, endogenous rhythmicity and locomotion. Several of these factors are produced by neurosecretory structures in the eyestalk, which can be easily ablated. This accessibility has unfortunately led to a tendency to assign hormonal regulation of physiological mechanisms based solely upon the results of eyestalk removal, often without the rigorous application of deficiency and replacement protocols using physiologically relevant doses of extracts or further purification of the active principle. Thus, apart from the well known neuropeptides, it is not known how many of these described ‘factors’ genuinely control individual processes and little is known of their precise chemical identity.
Evidence from immunocytochemical studies suggests that many neuropeptides classically known as ‘vertebrate’ peptides and also neuropeptides that have originally been found in invertebrates (e.g. FMRF amide, proctolin) are ubiquitous in crustaceans (Mancillas et al. 1981; Jacobs & Van Herp 1984; Jaros et al. 1985; Van Deijnen et al. 1985; Stangier et al. 1986). However, there is at present little information concerning the role of ‘vertebrate-type’ peptides in physiological integration.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.