Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T01:18:07.127Z Has data issue: false hasContentIssue false

1 - Genes and brain development

Published online by Cambridge University Press:  04 August 2010

Timothy A. Klempan
Affiliation:
Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
Pierandrea Muglia
Affiliation:
Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
James L. Kennedy
Affiliation:
Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

The processes of neurulation, patterning, neuronal specification, and synaptogenesis, as well as the functional dynamics of neurotransmission, are governed by the coordinated actions of products from a wide array of genes. Neurodevelopmental etiology of schizophrenia is suggested by neuroimaging and postmortem studies revealing significant and replicated lateral ventricular enlargement, hippocampal and gray matter deficits, and cellular disarray, independent of duration of the illness and antipsychotic treatment. This chapter provides an overview of the major mechanisms involved in the development of the mammalian central nervous system (CNS), with specific reference to the identity and patterning of genes that are known to regulate the developmental phases. This pattern of gene expression is related to the etiology of schizophrenia through evidence provided by genetic, postmortem, imaging, electrophysiological, and behavioral investigations of the disorder.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akatone, A., Kunugi, H., Tanaka, H., Nanko, S. (2002). Association analysis of polymorphic CGG repeat in 5′ UTR of the reelin and VLDLR genes with schizophrenia, Schizophr Res 58: 37–41Google Scholar
Akbarian, S., Kim, J. J., Potkin, S. G.et al. (1996). Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 53: 425–436CrossRefGoogle ScholarPubMed
Anderson, S. A., Eisenstat, D. D., Shi, L., Rubenstein, J. L. R. (1997). Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278: 474–476CrossRefGoogle ScholarPubMed
Andrews, P. L., Wood, K. L. (1986). Systemic baclofen stimulates gastric motility and secretion via a central action in the rat. Br J Pharmacol 89: 461–467CrossRefGoogle Scholar
Angelucci, F., Mathe, A. A., Aloe, L. (2000). Brain-derived neurotrophic factor and tyrosine kinase receptor TrκB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 60: 783–7943.0.CO;2-M>CrossRefGoogle Scholar
Arenas, E., Trupp, M., Akerud, P., Ibanez, C. F. (1995). GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron 15: 1465–1473CrossRefGoogle ScholarPubMed
Arinami, T., Toru, M. (1996). No evidence for association between CNTF null mutant allele and schizophrenia. Br J Psychiatry 169: 253CrossRefGoogle Scholar
Arinami, T., Takekoshi, K., Itokawa, M., Hamaguchi, H., Toru, M. (1996). Failure to find associations of the CA repeat polymorphism in the first intron and the Gly-63/Glu-63 polymorphism of the neurotrophin-3 gene with schizophrenia. Psychiatry Genet 6: 13–15CrossRefGoogle ScholarPubMed
Artavanis-Tsakonis, S., Muskavitch, M. A., Yedvobnick, Y. (1983). Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc Natl Acad Sci USA 80: 1977–1981CrossRefGoogle Scholar
Barbeau, D., Liang, J. J., Robitalille, Y., Quirion, R., Srivastava, L. K. (1995). Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA 92: 2785–2789CrossRefGoogle ScholarPubMed
Bark, I. C., Wilson, M. C. (1994). Regulated vesicular fusion in neurons: snapping together the details. Proc Natl Acad Sci USA 91: 4621–4624CrossRefGoogle ScholarPubMed
Barr, C. L., Feng, Y., Wigg, K.et al. (2000). Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 5: 405–409CrossRefGoogle ScholarPubMed
Beasley, C., Cotter, D., Khan, N.et al. (2001). Glycogen synthase kinase-3beta immunoreactivity is reduced in the prefrontal cortex in schizophrenia. Neurosci Lett 302: 117–120CrossRefGoogle Scholar
Beggs, H. E., Baragona, S. C., Hemperly, J. J., Maness, P. F. (1997). NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn). J Biol Chem 272: 8310–8319CrossRefGoogle Scholar
Bell, E., Wingate, R. J. T., Lumsden, A. (1999). Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science 284: 2168–2171CrossRefGoogle ScholarPubMed
Bello, M. J., Salagnon, N., Rey, J. A.et al. (1989). Precise in situ localization of NCAM, ETS1, and D11S29 on human meiotic chromosomes. Cytogenet Cell Genet 52: 7–10CrossRefGoogle ScholarPubMed
Berkmeier, L. R., Winslow, J. W., Kaplan, D. R.et al. (1991). Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron 4: 189–201Google Scholar
Bilder, R. M., Volavka, J., Czobor, P.et al. (2002). Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol Psychiatry 52: 701–707CrossRefGoogle ScholarPubMed
Broccoli, V., Boncinelli, E., Wurst, W. (1999). The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401: 164–168CrossRefGoogle ScholarPubMed
Brouha, A. K., Weickert, C. S., Hyde, T. M., et al. (1996). Reductions in brain derived neurotrophic factor mRNA in the hippocampus of patients with schizophrenia. In Proceedings of the Society for Neuroscience. Washington, DC: Society for Neuroscience, pp. 1680
Browning, M. D., Dudek, E. M., Rapier, J. L., Leonard, S., Freedman, R. (1993). Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry 34: 529–535CrossRefGoogle Scholar
Casarosa, S., Fode, C., Guillemot, F. (1999). Mash1 regulates neurogenesis in the ventral telencephalon. Development 126: 525–534Google ScholarPubMed
Catsicas, S., Larhammar, D., Blomqvist, A.et al. (1991). Expression of a conserved cell-type-specific protein in nerve terminals coincides with synaptogenesis. Proc Natl Acad Sci USA 88: 785–789CrossRefGoogle ScholarPubMed
Chapouton, P., Schuurmans, C., Guillemot, F., Gotz, M. (2001). The transcription factor neurogenin 2 restricts cell migration from the cortex to the striatum. Development 128: 5149–5159Google ScholarPubMed
Chumakov, I., Blumenfeld, M., Guerassimenko, O.et al. (2002). Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99: 13675–13680CrossRefGoogle Scholar
Cloninger, C. R. (2002). The discovery of susceptibility genes for mental disorders. Proc Natl Acad Sci USA 99: 13365–13367CrossRefGoogle ScholarPubMed
Cotter, D., Kerwin, R., al-Sarraji, S.et al. (1998). Abnormalities of Wnt signalling in schizophrenia: evidence for neurodevelopmental abnormality. Neuroreport 9: 1379–1383CrossRefGoogle ScholarPubMed
Crossin, K. L., Krushel, L. A. (2000). Cellular signaling by neural cell adhesion molecules of the immunoglobulin superfamily. Dev Dyn 218: 260–2793.0.CO;2-9>CrossRefGoogle ScholarPubMed
Cunningham, B. A. (1995). Cell adhesion molecules as morphoregulators. Curr Opin Cell Biol 7: 628–633CrossRefGoogle ScholarPubMed
D'Arcangelo, G., Curran, T. (1998). Reeler: new tales on an old mutant mouse. Bioessays 20: 235–2443.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Dawson, E., Powell, J. F., Sham, P. C.et al. (1995). An association study of a neurotrophin-3 (NT-3) gene polymorphism with schizophrenia. Acta Psychiatr Scand 92: 425–428CrossRefGoogle ScholarPubMed
Pompa, J. L., Wakeham, A., Correia, K. M.et al. (1997). Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124: 1139–1148Google ScholarPubMed
DeSilva, U., D'Arcangelo, G., Braden, V. V.et al. (1997). The human reelin gene: isolation, sequencing, and mapping on chromosome 7. Genome Res 7: 157–164CrossRefGoogle ScholarPubMed
Doherty, P., Walsh, F. S. (1996). CAM–FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 8: 99–111CrossRefGoogle ScholarPubMed
Doherty, P., Fruns, M., Seaton, P.et al. (1990). A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature 343: 464–466CrossRefGoogle ScholarPubMed
Durany, N., Michel, T., Zochling, R.et al. (2001). Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 52: 79–86CrossRefGoogle ScholarPubMed
Eastwood, S. L., Harrison, P. J. (2000). Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 5: 425–432CrossRefGoogle ScholarPubMed
Eastwood, S. L., Harrison, P. J. (2001). Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 55: 569–578CrossRefGoogle Scholar
Eastwood, S. L., Burnet, P. W., Harrison, P. J. (2000). Expression of complexin I and II mRNAs and their regulation by antipsychotic drugs in the rat forebrain. Synapse 36: 167–1773.0.CO;2-D>CrossRefGoogle ScholarPubMed
Eastwood, S. L., Cotter, D., Harrison, P. J. (2001). Cerebellar synaptic protein expression in schizophrenia. Neuroscience 105: 219–229CrossRefGoogle Scholar
Eckhardt, M., Muhlenhoff, M., Bethe, A.et al. (1995). Molecular characterization of eukaryotic polysialyltransferase-1. Nature 373: 715–718CrossRefGoogle ScholarPubMed
Egan, M. F., Kojima, M., Callicott, J. H.et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112: 257–269CrossRefGoogle ScholarPubMed
Ericson, J., Murh, J., Placzek, M.et al. (1995). Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81: 747–756CrossRefGoogle ScholarPubMed
Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T.et al. (1998). Neurogenesis in the adult human hippocampus. Nat Med 4: 1313–1317CrossRefGoogle ScholarPubMed
Ernfors, P., Ibanez, C. F., Ebendal, T., Olson, L., Persson, H. (1990). Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in brain. ProcNatl Acad Sci USA 87: 5454–5458CrossRefGoogle Scholar
Falconer, D. S. (1951). Two new mutants trembler and reeler, with neurological actions in the house mouse. J Genet 50: 192–201CrossRefGoogle ScholarPubMed
Fan, J. B., Tang, J. X., Gu, N. F.et al. (2002). A family-based and case–control association study of the NOTCH4 gene and schizophrenia. Mol Psychiatry 7: 100–103CrossRefGoogle Scholar
Fatemi, S. H., Earle, J. A., McMenomy, T. (2000). Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5: 654–663, 571CrossRefGoogle ScholarPubMed
Ferreiro, B., Kintner, C., Zimmerman, K., Anderson, D. J., Harris, W. (1994). XASH1 genes promote neurogenesis in Xenopus embryos. Development 120: 3649–3655Google Scholar
Fields, R. D., Itoh, K. (1996). Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends Neurosci 19: 473–480CrossRefGoogle ScholarPubMed
Gabriel, S. M., Haroutunian, V., Powchik, P.et al. (1997). Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch Gen Psychiatry 54: 559–566CrossRefGoogle ScholarPubMed
Gelernter, J., Dyck, C., Kammen, D. P.et al. (1997). Ciliary neurotrophic factor null allele frequencies in schizophrenia, affective disorders, and Alzheimer's disease. Am J Med Genet 74: 497–5003.0.CO;2-L>CrossRefGoogle ScholarPubMed
Goffinet, A. M., Dernoncourt, C. (1991). Localization of the reeler gene relative to flanking loci on mouse chromosome 5. Mamm Genome 1: 100–103CrossRefGoogle ScholarPubMed
Goggi, J., Pullar, I. A., Carney, S. L., Bradford, H. F. (2002). Modulation of neurotransmitter release induced by brain-derived neurotrophic factor in rat brain striatal slices in vitro. Brain Res 941: 34–42CrossRefGoogle ScholarPubMed
Gotz, R., Koster, R., Winkler, C.et al. (1994). Neurotrophin-6 is a new member of the nerve growth factor family. Nature 372: 266–269CrossRefGoogle ScholarPubMed
Gower, H. J., Barton, C. H., Elsom, V. L.et al. (1988). Alternative splicing generates a secreted form of N-CAM in muscle and brain. Cell 55: 955–964CrossRefGoogle ScholarPubMed
Grebb, J. A., Greengard, P. (1990). An analysis of synapsin II, a neuronal phosphoprotein, in postmortem brain tissue from alcoholic and neuropsychiatrically ill adults and medically ill children and young adults. Arch Gen Psychiatry 47: 1149–1156CrossRefGoogle ScholarPubMed
Greengard, P., Valtorta, F., Czernik, A. J., Benfenati, F. (1993). Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259: 780–785CrossRefGoogle ScholarPubMed
Guidotti, A., Auta, J., Davis, J. M.et al. (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57: 1061–1069CrossRefGoogle ScholarPubMed
Guillin, O., Diaz, J., Carroll, P.et al. (2001). BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411: 86–89CrossRefGoogle ScholarPubMed
Ha, D. H., Robertson, R. T., Ribak, C. E., Weiss, J. H. (1996). Cultured basal forebrain cholinergic neurons in contact with cortical cells display synapses, enhanced morphological features, and decreased dependence on nerve growth factor. J Comp Neurol 373: 451–4653.0.CO;2-1>CrossRefGoogle ScholarPubMed
Han, H. Q., Bahler, M., Greengard, P., Nichols, R. A., Rubin, M. R. (1991). Induction of formation of presynaptic terminals in neuroblastoma cells by synapsin IIb. Nature 349: 697–700CrossRefGoogle ScholarPubMed
Harrison, P. J., Eastwood, S. L. (1998). Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 352: 1669–1673CrossRefGoogle Scholar
Hattori, M., Nanko, S. (1995). Association of neurotrophin-3 gene variant with severe forms of schizophrenia. Biochem Biophys Res Commun 209: 513–518CrossRefGoogle ScholarPubMed
Hawi, Z., Straub, R. E., O'Neill, A.et al. (1998). No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in Irish families. Psychiatry Res 81: 111–116CrossRefGoogle ScholarPubMed
Hepp, R., Langley, K. (2001). SNAREs during development. Cell Tissue Res 305: 247–253CrossRefGoogle ScholarPubMed
Hess, E. J., Collins, K. A., Wilson, M. C. (1996). Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 16: 3104–3111CrossRefGoogle ScholarPubMed
Heyser, C. J., Wilson, M. C., Gold, L. H. (1995). Coloboma hyperactive mutant exhibits delayed neurobehavioral developmental milestones. Brain Res Dev Brain Res 89: 264–269CrossRefGoogle ScholarPubMed
Hodel, A. (1998). Snap-25. Int J Biochem Cell Biol 30: 1069–1073CrossRefGoogle ScholarPubMed
Hohn, A., Leibrock, J., Bailey, K., Barde, Y. A. (1990). Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344: 339–341CrossRefGoogle ScholarPubMed
Honer, W. G., Falkai, P., Young, C.et al. (1997). Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 78: 99–110CrossRefGoogle Scholar
Honer, W. G., Falkai, P., Bayer, T. A.et al. (2002). Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 12: 349–356CrossRefGoogle ScholarPubMed
Hynes, M., Rosenthal, A. (1999). Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol 9: 26–36CrossRefGoogle ScholarPubMed
Imai, C., Sugai, T., Iritani, S.et al. (2001a). A quantitative study on the expression of synapsin II and N-ethylmaleimide-sensitive fusion protein in schizophrenic patients. Neurosci Lett 305: 185–188CrossRefGoogle Scholar
Imai, K., Harada, S., Kawanishi, Y.et al. (2001b). The (CTG)n polymorphism in the NOTCH4 gene is not associated with schizophrenia in Japanese individuals. BMC Psychiatry 1: 1CrossRefGoogle Scholar
Imai, K., Harada, S., Kawanishi, Y.et al. (2001c). Polymorphisms in the promoter and coding regions of the synapsin III gene. A lack of association with schizophrenia. Neuropsychobiology 43: 237–241CrossRefGoogle Scholar
Ip, N. Y., Ibanez, C. F., Nye, S. H.et al. (1992). Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci USA 89: 3060–3064CrossRefGoogle ScholarPubMed
Jones, F. S., Holst, B. D., Minowa, O., Robertis, E. M., Edelman, G. M. (1993). Binding and transcriptional activation of the promoter for the neural cell adhesion molecule by HoxC6 (Hox-3.3). Proc Natl Acad Sci USA 90: 6557–6561CrossRefGoogle Scholar
Jonsson, E., Brene, S., Zhang, X. R.et al. (1997). Schizophrenia and neurotrophin-3 alleles. Acta Psychiatr Scand 95: 414–419CrossRefGoogle ScholarPubMed
Jovanovic, J. N., Czernik, A. J., Fienberg, A. A., Greengard, P., Sihra, T. S. (2000). Synapsins as mediators of BDNF-enhanced neurotransmitter release. NatNeurosci 3: 323–329Google ScholarPubMed
Kao, H. T., Porton, B., Czernik, A. J.et al. (1998). A third member of the synapsin gene family. Proc Natl Acad Sci USA 95: 4667–4672CrossRefGoogle ScholarPubMed
Karecla, P. I., Green, S. J., Bowden, S. J., Coadwell, J., Kilshaw, P. J. (1996). Identification of a binding site for integrin alphaEbeta7 in the N-terminal domain of E-cadherin. J Biol Chem 271: 30909–30915CrossRefGoogle ScholarPubMed
Karson, C. N., Mrak, R. E., Schluterman, K. O.et al. (1999). Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for “hypofrontality”. Mol Psychiatry 4: 39–45CrossRefGoogle ScholarPubMed
Kiss, J. Z., Troncoso, E., Djebbara, Z., Vutskits, L., Muller, D. (2001). The role of neural cell adhesion molecules in plasticity and repair. Brain Res Brain Res Rev 36: 175–184CrossRefGoogle Scholar
Klempan, T. A., Trakalo, J. M., Pato, C. N.et al. (2001). Polymorphisms of the NOTCH4 gene and schizophrenia. Am J Hum Genet 69 (Suppl. 4): 567Google Scholar
Klempan, T. A., Trakalo, J., King, N., et al. (2002). Transmission of SYNAPSIN3 gene variants in schizophrenia families. In Proceeding of the 52nd Annual Meeting of the American Society for Human Genetics. Bethesda, MD: American Society for Human Genetics, p. 489
Kohtz, J. D., Baker, D. P., Corte, G., Fishell, G. (1998). Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic hedgehog. Development 125: 5079–5089Google ScholarPubMed
Kortschak, R. D., Tamme, R., Lardelli, M. (2001). Evolutionary analysis of vertebrate Notch genes. Dev Genes Evol 211: 350–354CrossRefGoogle ScholarPubMed
Kozlovsky, N., Belmaker, R. H., Agam, G. (2002). GSK-3 and the neurodevelopmental hypothesis of schizophrenia. Eur Neuropsychopharmacol 12: 13–25CrossRefGoogle ScholarPubMed
Krebs, M. O., Guillin, O., Bourdell, M. C.et al. (2000). Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia. Mol Psychiatry 5: 558–562CrossRefGoogle Scholar
Kristiansen, L. V., Marques, F. A., Soroka, V.et al. (1999). Homophilic NCAM interactions interfere with L1 stimulated neurite outgrowth. FEBS Lett 464: 30–34CrossRefGoogle ScholarPubMed
Krumlauf, R. (1994). Hox genes in vertebrate development. Cell 78: 191–201CrossRefGoogle ScholarPubMed
Krushel, L. A., Cunningham, B. A., Edelman, G. M., Crossin, K. L. (1999). NF-kappaB activity is induced by neural cell adhesion molecule binding to neurons and astrocytes. J Biol Chem 274: 2432–2439CrossRefGoogle ScholarPubMed
LaMantia, A. S. (1999). Forebrain induction, retinoic acid, and vulnerability to schizophrenia: insights from molecular and genetic analysis in developing mice. Biol Psychiatry 46: 19–30CrossRefGoogle ScholarPubMed
Lawrie, S. M., Abukmeil, S. S. (1998). Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172: 110–120CrossRefGoogle ScholarPubMed
Lee, J. E. (1997). Basic helix-loop–helix genes in neural development. Curr Opin Neurobiol 7: 13–20CrossRefGoogle ScholarPubMed
Lee, J. E., Hollenberg, S. M., Lipnick, N.et al. (1995). Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop–helix protein. Science 268: 836–844CrossRefGoogle ScholarPubMed
Lee, K., Kunugi, H., Nanko, S. (2001). Glial cell line-derived neurotrophic factor (GDNF) gene and schizophrenia: polymorphism screening and association analysis. Psychiatry Res 104: 11–17CrossRefGoogle ScholarPubMed
Leibrock, J., Lottspeich, F., Hohn, A.et al. (1989). Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341: 149–152CrossRefGoogle ScholarPubMed
Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science 237: 1154–1162CrossRefGoogle ScholarPubMed
Lewis, C. M., Levinson, D. F., Wise, L. H.et al. (2003). Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 73: 34–48CrossRefGoogle ScholarPubMed
Li, L., Huang, G. M., Banta, A. B.et al. (1998). Cloning, characterization, and the complete 56.8-kilobase DNA sequence of the human NOTCH4 gene. Genomics 51: 45–58CrossRefGoogle ScholarPubMed
Lin, L. H., Doherty, D. H., Lile, J. D., Bektesh, S., Collins, F. (1993). GDNF: a glial cell-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132CrossRefGoogle Scholar
Lou, X. J., Bixby, J. L. (1995). Patterns of presynaptic gene expression define two stages of synaptic differentiation. Mol Cell Neurosci 6: 252–262CrossRefGoogle ScholarPubMed
Luo, X. J., Klempan, T. A., Lappalainen, J.et al. (2004). NOTCH4 gene haplotype is associated with schizophrenia in African-Americans. Biol Psychiatry 55: 112–117CrossRefGoogle ScholarPubMed
Maglott, D. R., Feldblyum, T. V., Durkin, A. S., Nierman, W. C. (1996). Radiation hybrid mapping of SNAP, PCSK2, and THBD (human chromosome 20p). Mamm GenomeM 7: 400–401CrossRefGoogle Scholar
Maisonpierre, P., Belluscio, L., Friedman, B.et al. (1990). NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5: 501–509CrossRefGoogle Scholar
Mallamaci, A., Mercurio, S., Muzio, L.et al. (2000). The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex. J Neurosci 20: 1109–1118CrossRefGoogle ScholarPubMed
McEvilly, R. J., Diaz, M. O., Schonemann, M. D., Hooshmand, F., Rosenfeld, M. G. (2002). Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295: 1528–1532CrossRefGoogle ScholarPubMed
McGinnis, R. E., Fox, H., Yates, P.et al. (2001). Failure to confirm NOTCH4 association with schizophrenia in a large population-based sample from Scotland. Nat Genet 28: 128–129CrossRefGoogle Scholar
McMahon, A. P., Bradley, A. (1990). The Wnt-1 (int-1) proto-oncogene is required for the development of a large region of the mouse brain. Cell 62: 1073–1085CrossRefGoogle ScholarPubMed
Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A., Levitt, P. (2000). Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28: 53–67CrossRefGoogle ScholarPubMed
Mirnics, K., Middleton, F. A., Lewis, D. A., Levitt, P. (2001). Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24: 479–486CrossRefGoogle ScholarPubMed
Miyaoka, T., Seno, H., Ishino, H. (1999). Increased expression of Wnt-1 in schizophrenic brains. Schizophr Res 38: 1–6CrossRefGoogle ScholarPubMed
Moises, H. W., Kristbjarnarson, H., Wiese, C.et al. (1995). An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 11: 321–324CrossRefGoogle ScholarPubMed
Morris, P. J., Dawson, S. J., Wilson, M. C., Latchman, D. S. (1997). A single residue within the homeodomain of the Brn-3 POU family transcription factors determines whether they activate or repress the SNAP-25 promoter. Neuroreport 8: 2041–2045CrossRefGoogle ScholarPubMed
Morton, A. J., Faull, R. L. M., Edwardson, J. M. (2001). Abnormalities in the synaptic vesicle fusion machinery in Huntington's disease. Brain Res Bull 56: 111–117CrossRefGoogle ScholarPubMed
Muglia, P., Vicente, A. M., Verga, M.et al. (2003). Association between the BDNF gene and schizophrenia. Mol Psychiatry 8: 147–148CrossRefGoogle Scholar
Mukaetova-Ladinska, E. B., Hurt, J., Honer, W. G., Harrington, C. R., Wischik, C. M. (2002). Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci Lett 317: 161–165CrossRefGoogle Scholar
Muller, D., Djebbara-Hannas, Z., Jourdain, P.et al. (2000). Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci USA 97: 4315–4320CrossRefGoogle ScholarPubMed
Murase, S., Schuman, E. M. (1999). The role of cell adhesion molecules in synaptic plasticity and memory. Curr Opin Cell Biol 11: 549–553CrossRefGoogle ScholarPubMed
Murphy, K. C., Jones, L. A., Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 56: 940–945CrossRefGoogle ScholarPubMed
Nakayama, J., Fukuda, M. N., Fredette, B., Ranscht, B., Fukuda, M. (1995). Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci USA 92: 7031–7035CrossRefGoogle ScholarPubMed
Nanko, S., Hattori, M., Kuwata, S.et al. (1994). Neurotrophin-3 gene polymorphism associated with schizophrenia. Acta Psychiatr Scand 89: 390–392CrossRefGoogle ScholarPubMed
Nguyen Ba-Charvet, K. T., Boxberg, Y., Godement, P. (1999). The mouse homeodomain protein OTX2 regulates NCAM promoter activity. Brain Res Mol Brain Res 67: 292–295CrossRefGoogle ScholarPubMed
Nimgaonkar, V. L., Zhang, X. R., Brar, J. S., DeLeo, M., Ganguli, R. (1995). Lack of association of schizophrenia with the neurotrophin-3 gene locus. Acta Psychiatr Scand 92: 464–466CrossRefGoogle ScholarPubMed
Ohmori, O., Shinkai, T., Hori, H., Kojima, H., Nakamura, J. (2000). Synapsin III gene polymorphisms and schizophrenia. Neurosci Lett 279: 125–127CrossRefGoogle Scholar
Ohtsuki, T., Ichiki, R., Toru, M., Arinami, T. (2000). Mutational analysis of the synapsin III gene on chromosome 22q12-q13 in schizophrenia. Psychiatry Res 94: 1–7CrossRefGoogle Scholar
Osen-Sand, A., Catsicas, M., Staple, J. K.et al. (1993). Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364: 445–448CrossRefGoogle ScholarPubMed
Parras, C. M., Schuurmans, C., Scardigli, R.et al. (2002). Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16: 324–338CrossRefGoogle ScholarPubMed
Persico, A. M., D'Agruma, L., Maiorano, N.et al. (2001). Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 6: 150–159CrossRefGoogle ScholarPubMed
Proschel, M., Saunders, A., Roses, A. D., Muller, C. R. (1992). Dinucleotide repeat polymorphism at the human gene for the brain-derived neurotrophic factor (BDNF). Hum Mol Genet 1: 353CrossRefGoogle Scholar
Purves, D. (1988) Body and Brain: A Trophic Theory of Neural Connections. Cambridge, MA: Harvard University Press
Raber, J., Mehta, P. P., Kreifeldt, M.et al. (1997). Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission. J Neurochem 68: 176–186CrossRefGoogle ScholarPubMed
Rakic, P., Caviness, V. S., Jr. (1995). Cortical development: view from neurological mutants two decades later. Neuron 14: 1101–1104CrossRefGoogle ScholarPubMed
Rhoads, A. R., Karkera, J. D., Detera-Wadleigh, S. D. (1999). Radiation hybrid mapping of genes in the lithium-sensitive wnt signaling pathway. Mol Psychiatry 4: 437–442CrossRefGoogle ScholarPubMed
Rice, D. S., Curran, T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24: 1005–1039CrossRefGoogle ScholarPubMed
Rodriguez, M. A., Pesold, C., Liu, W. S.et al. (2000). Colocalization of integrin receptors and Reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proc Natl Acad Sci USA 97: 3550–3555CrossRefGoogle ScholarPubMed
Rosahl, T. W., Spillane, D., Missler, M.et al. (1995). Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375: 488–493CrossRefGoogle ScholarPubMed
Ruiz i Altaba, A. (1994). Pattern formation in the vertebrate neural plate. Trends Neurosci 17: 233–243CrossRefGoogle ScholarPubMed
Sasaki, T., Dai, X. Y., Kuwata, S.et al. (1997a). Brain-derived neurotrophic factor gene and schizophrenia in Japanese subjects. Am J Med Genet 74: 443–4443.0.CO;2-I>CrossRefGoogle Scholar
Sakai, T., Sasaki, T., Tatsumi, M.et al. (1997b). Schizophrenia and the ciliary neurotrophic factor (CNTF) gene: no evidence for association. Psychiatry Res 71: 7–10CrossRefGoogle Scholar
Schneider-Manoury, S., Seitanidou, T., Charnay, P., Lumsden, A. (1997). Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124: 1215–1226Google Scholar
Schonemann, M. D., Ryan, A. K., McEvilly, R. J.et al. (1995). Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev 9: 3122–3135CrossRefGoogle ScholarPubMed
Schwab, S. G., Albus, M., Hallmayer, J.et al. (1995). Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nat Genet 11: 325–327CrossRefGoogle ScholarPubMed
Selemon, L. D., Rajkowska, G., Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52: 805–818CrossRefGoogle ScholarPubMed
Sendtner, M., Carroll, P., Holtmann, B., Hughes, R., Thoenen, H. (1994). Ciliary neurotrophic factor. J Neurobiol 25: 1436–1453CrossRefGoogle ScholarPubMed
Senzaki, K., Ogawa, M., Yagi, T. (1999). Proteins of the CNR family are multiple receptors for Reelin. Cell 99: 635–647CrossRefGoogle ScholarPubMed
Sklar, P., Schwab, S. G., Williams, N. M.et al. (2001). Association analysis of NOTCH4 loci in schizophrenia using family and population-based controls. Nat Genet 28: 126–128CrossRefGoogle ScholarPubMed
Snider, W. (1994). Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77: 627–638CrossRefGoogle ScholarPubMed
Sokolov, B. P., Tcherepanov, A. A., Haroutunian, V., Davis, K. L. (2000). Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 48: 184–196CrossRefGoogle ScholarPubMed
Soustek, Z. (1989). Ultrastructure of cortical synapses in the brain of schizophrenics. Zentralbl Allg Pathol 135: 25–32Google ScholarPubMed
Steindler, D. A., Colwell, S. A. (1976). Reeler mutant mouse: maintenance of appropriate and reciprocal connections in the cerebral cortex and thalamus. Brain Res 113: 386–393CrossRefGoogle ScholarPubMed
Stober, G., Syagailo, Y. V., Okladnova, O.et al. (1999). Functional PAX-6 gene-linked polymorphic region: potential association with paranoid schizophrenia. Biol Psychiatry 45: 1585–1591CrossRefGoogle ScholarPubMed
Stober, G., Meyer, J., Nanda, I.et al. (2000). Linkage and family-based association study of schizophrenia and the synapsin III locus that maps to chromosome 22q13. Am J Med Genet 96: 392–3973.0.CO;2-R>CrossRefGoogle ScholarPubMed
Straub, R. E., MacLean, C. J., O'Neill, F. A.et al. (1995). A potential vulnerability locus for schizophrenia on chromosome 6p24–22: evidence for genetic heterogeneity. Nat Genet 11: 287–293CrossRefGoogle ScholarPubMed
Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A., Krumlauf, R. (1996). Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb1. Nature 384: 630–634CrossRefGoogle Scholar
Sun, Y., Nadal-Vicens, M., Misono, S.et al. (2001). Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104: 365–376CrossRefGoogle ScholarPubMed
Swift-Scanlan, T., Lan, T. H., Fallin, M. D.et al. (2002). Genetic analysis of the (CTG)nNOTCH4 polymorphism in 65 multiplex bipolar pedigrees. Psychiatr Genet 12: 43–47CrossRefGoogle ScholarPubMed
Tachikawa, H., Harada, S., Kawanishi, Y., Okubo, T., Suzuki, T. (2001). Polymorphism of the 5′-upstream region of the human SNAP-25 gene: an association analysis with schizophrenia. Neuropsychobiology 43: 131–133CrossRefGoogle ScholarPubMed
Takahashi, M., Shirakawa, O., Toyooka, K.et al. (2000). Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 5: 293–300CrossRefGoogle ScholarPubMed
Takei, K., Chan, T. A., Wang, F. S., Deng, H., Rutishauser, U., Jay, D. G. (1999). The neural cell adhesion molecules L1 and NCAM-180 act in different steps of neurite outgrowth. J Neurosci 19: 9469–9479CrossRefGoogle ScholarPubMed
Takeichi, M. (1990). Cadherins: a molecular family important in selective cell–cell adhesion. Annu Rev Biochem 59: 237–252CrossRefGoogle ScholarPubMed
Tanaka, Y., Ujike, H., Fujiwara, Y.et al. (1998). Schizophrenic psychoses and the CNTF null mutation. Neuroreport 9: 981–983CrossRefGoogle ScholarPubMed
Tartaglia, N., Du, J., Tyler, W. J.et al. (2001). Protein synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor. J Biol Chem 276: 37585–37593CrossRefGoogle ScholarPubMed
Tcherepanov, A. A., Sokolov, B. P. (1997). Age-related abnormalities in expression of mRNAs encoding synapsin 1A, synapsin 1B, and synaptophysin in the temporal cortex of schizophrenics. J Neurosci Res 49: 639–6443.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Thoenen, H. (1995) Neurotrophins and neuronal plasticity. Science 270: 593–598CrossRefGoogle ScholarPubMed
Thome, J., Durany, N., Harsanyi, A.et al. (1996). A null mutation allele in the CNTF gene and schizophrenic psychoses. Neuroreport 7: 1413–1416CrossRefGoogle ScholarPubMed
Thome, J., Durany, N., Palomo, A.et al. (1997a). Variants in neurotrophic factor genes and schizophrenic psychoses: no associations in a Spanish population. Psychiatry Res 71: 1–5CrossRefGoogle Scholar
Thome, J., Jonsson, E., Foley, P.et al. (1997b). Ciliary neurotrophic factor null mutation and schizophrenia in a Swedish population. Psychiatr Genet 7: 79–82CrossRefGoogle Scholar
Thompson, P. M., Sower, A. C., Perrone-Bizzozero, N. I. (1998). Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry 43: 239–243CrossRefGoogle Scholar
Thompson, P. M., Rosenberger, C., Qualls, C. (1999). CSF SNAP-25 in schizophrenia and bipolar illness. A pilot study. Neuropsychopharmacology 21: 717–722CrossRefGoogle ScholarPubMed
Treloar, H., Tomasiewicz, H., Magnuson, T., Key, B. (1997). The central pathway of primary olfactory axons is abnormal in mice lacking the N-CAM-180 isoform. J Neurobiol 32: 643–6583.0.CO;2-4>CrossRefGoogle ScholarPubMed
Tsai, M. T., Hung, C. C., Tsai, C. Y.et al. (2002). Mutation analysis of synapsin III gene in schizophrenia. Am J Med Genet 114: 79–83CrossRefGoogle Scholar
Turner, E. E., Fedtsova, N., Jeste, D. V. (1997). Cellular and molecular neuropathology of schizophrenia: new directions from developmental neurobiology. Schizophr Res 27: 169–180CrossRefGoogle ScholarPubMed
Ujike, H., Takehisa, Y., Takaki, M.et al. (2001). NOTCH4 gene polymorphism and susceptibility to schizophrenia and schizoaffective disorder. Neurosci Lett 301: 41–44CrossRefGoogle ScholarPubMed
Usui, T., Shima, Y., Shimada, Y.et al. (1999). Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98: 585–595CrossRefGoogle ScholarPubMed
Kammen, D. P., Poltorak, M., Kelley, M. E.et al. (1998). Further studies of elevated cerebrospinal fluid neuronal cell adhesion molecule in schizophrenia. Biol Psychiatry 43: 680–686CrossRefGoogle Scholar
Vicente, A. M., Macciardi, F., Verga, M.et al. (1997). NCAM and schizophrenia: genetic studies. Mol Psychiatry 2: 65–69CrossRefGoogle ScholarPubMed
Virgos, C., Martorell, L., Valero, J.et al. (2001). Association study of schizophrenia with polymorphisms at six candidate genes. Schizophr Res 49: 65–71CrossRefGoogle ScholarPubMed
Wassarman, K. M., Lewandoski, M., Campbell, K.et al. (1997). Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Dev Suppl 124: 2923–2934Google ScholarPubMed
Wassink, T. H., Nelson, J. J., Crowe, R. R., Andreasen, N. C. (1999). Heritability of BDNF alleles and their effect on brain morphology in schizophrenia. Am J Med Genet 88: 724–7283.0.CO;2-7>CrossRefGoogle Scholar
Wei, J., Hemmings, G. P. (2000). The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet 25: 376–377CrossRefGoogle Scholar
Wong, A., Macciardi, F., Klempan, T.et al. (2003). Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the 14–3–3η gene. Mol Psychiatry 8: 156–166CrossRefGoogle ScholarPubMed
Wood, G. K., Tomasiewicz, H., Rutishauser, U.et al. (1998). NCAM-180 knockout mice display increased lateral ventricle size and reduced prepulse inhibition of startle. Neuroreport 9: 461–466CrossRefGoogle ScholarPubMed
Wu, Q., Maniatis, T. (1999). A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97: 779–790CrossRefGoogle ScholarPubMed
Yagi, T., Takeichi, M. (2000). Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 14: 1169–1180Google ScholarPubMed
Young, C. E., Arima, K., Xie, J.et al. (1998). SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8: 261–268CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×