from Part III - Therapeutic approaches in neurodegeneration
Published online by Cambridge University Press: 04 August 2010
Introduction
New therapeutic non-pharmacological methodology involves cell and synaptic renewal or replacement in the living brain to restore function of neuronal systems, including the dopaminergic (DA) system in Parkinson's disease. Understanding the cell biological principles for generating functional DA neurons in lieu of the diseased can provide many new avenues for better treatment of patients with PD. Recent laboratory work has focused on using stem cells as a starting point for exogenous or endogenous derivation of the optimal DA cells for repair (Fig. 24.1). Using fetal DA cell therapy in PD patients (Piccini et al., 1999, 2000; Freed et al., 2001; Isacson et al., 2001; Mendez et al., 2002a) and stem cell-derived DA neurons in animal models (Bjorklund et al., 2002; Kim et al., 2002), it has been demonstrated that functional motor deficits associated with PD can be reduced after application of this new technology. Evidence shows that the underlying disease process does not destroy the transplanted fetal DA cells, although the patient's original DA system degeneration progresses (Piccini et al., 1999, 2000). The optimal DA cell regeneration system would reconstitute a normal network capable of restoring feedback-controlled release of DA in the nigro-striatal system (Bjorklund & Isacson, 2002). The success of cell therapy for neurological diseases is limited by access to preparation and development of highly specialized dopaminergic neurons found in the A9 and A10 region of the substantia nigra (SN) in the ventral mesencephalon, as well as technical and surgical steps associated with transplantation.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.