Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T23:26:11.000Z Has data issue: false hasContentIssue false

Chapter 14 - Trust and Psychopharmaca:

Neuromodulation of the Signaling Pathways Underlying Trust Behavior

from Part IV - Neuromolecular Level of Trust

Published online by Cambridge University Press:  09 December 2021

Frank Krueger
Affiliation:
George Mason University, Virginia
Get access

Summary

Psychopharmacological drug manipulation creates causal mechanisms for selectively stimulating or blocking target neurotransmitter receptors known to modulate brain regions engaged in trust behavior. In this chapter, we review studies that used pharmacological agents to act as neuromodulators in the neural signaling pathway mechanisms underlying trust behavior. First, we describe the laboratory measurements of trust behavior, the underlying domain-general large-scale brain networks, and its related target neurotransmitter systems that probe trust behavior. Second, we review the psychopharmacological studies focusing first on studies that implemented the trust game and second on studies that applied trust ratings after cooperative exchange games. Overall, some preliminary evidence exists that neuromodulators such as opiates, monoamine neurotransmitters (e.g., serotonin, dopamine), and pharmacologic agents such as 3,4-Methyl-enedioxy-methamphetamine increase monoamine neurotransmitter activity and impact trust behavior via experimental paradigms that have face validity in laboratory measures of trust. Finally, we indicate shortcomings in the present psychopharmacological research approach and offer guidance for future interdisciplinary research on the neuropsychoeconomic underpinnings of trust –shedding light on trust impairment as a key feature of several neuropsychiatric disorders.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aimone, J. A., Houser, D., & Weber, B. (2014). Neural signatures of betrayal aversion: An fMRI study of trust. Proceedings: Biological Sciences, 281(1782), Article 20132127. https://doi.org/10.1098/rspb.2013.2127Google Scholar
Alarcon, G. M., Lyons, J. B., Christensen, J. C., et al. (2018). The effect of propensity to trust and perceptions of trustworthiness on trust behaviors in dyads. Behavioral Research Methods, 50(5), 19061920. https://doi.org/10.3758/s13428–017-0959-6Google Scholar
Allott, K., & Redman, J. (2007). Are there sex differences associated with the effects of ecstasy/3,4-methylenedioxymethamphetamine (MDMA)? Neuroscience & Biobehavioral Reviews, 31(3), 327347. https://doi.org/10.1016/j.neubiorev.2006.09.009Google Scholar
Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497529. https://doi.org/10.1037/0033-2909.117.3.497Google Scholar
Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., & Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58(4), 639650. https://doi.org/10.1016/j.neuron.2008.04.009Google Scholar
Bedi, G., Hyman, D., & de Wit, H. (2010). Is ecstasy an “empathogen”? Effects of +/-3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others. Biological Psychiatry, 68(12), 11341140. https://doi.org/10.1016/j.biopsych.2010.08.003Google Scholar
Belfi, A. M., Koscik, T. R., & Tranel, D. (2015). Damage to the insula is associated with abnormal interpersonal trust. Neuropsychologia, 71, 165172. https://doi.org/10.1016/j.neuropsychologia.2015.04.003Google Scholar
Bellucci, G., Chernyak, S. V., Goodyear, K., Eickhoff, S. B., & Krueger, F. (2017). Neural signatures of trust in reciprocity: A coordinate-based meta-analysis. Human Brain Mapping, 38(3), 12331248. https://doi.org/10.1002/hbm.23451Google Scholar
Bellucci, G., Feng, C., Camilleri, J., Eickhoff, S. B., & Krueger, F. (2018). The role of the anterior insula in social norm compliance and enforcement: Evidence from coordinate-based and functional connectivity meta-analyses. Neuroscience & Biobehavoral Reviews, 92, 378389. https://doi.org/10.1016/j.neubiorev.2018.06.024Google Scholar
Bellucci, G., Munte, T. F., & Park, S. Q. (2020). Effects of a dopamine against on trusting behaviors in females. Psychopharmacology (Berl), 237(6), 16711680. https://doi.org/10.1007/s00213–020-05488-xGoogle Scholar
Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, reciprocity, and social history. Games and Economic Behavior, 10(1), 122142. https://doi.org/10.1006/game.1995.1027Google Scholar
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neuroscience, 26(9), 507513. https://doi.org/10.1016/s0166–2236(03)00233-9Google Scholar
Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nature Reviews Neuroscience, 8(1), 5769. https://doi.org/10.1038/nrn2038Google Scholar
Bodi, N., Keri, S., Nagy, H., et al. (2009). Reward-learning and the novelty-seeking personality: A between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain, 132(Pt 9), 23852395. https://doi.org/10.1093/brain/awp094Google Scholar
Bohnet, I., Greig, F., Herrmann, B., & Zeckhauser, R. (2008). Betrayal aversion: Evidence from Brazil, China, Oman, Switzerland, Turkey, and the United States. American Economic Review, 98(1), 294310. https://doi.org/10.1257/aer.98.1.294CrossRefGoogle Scholar
Bohnet, I., & Zeckhauser, R. (2004). Trust, risk and betrayal. Journal of Economic Behavior & Organization, 55(4), 467484. https://doi.org/10.1016/j.jebo.2003.11.004Google Scholar
Bond, A., & Lader, M. (1974). The use of analogue scales in rating subjective feelings. British Journal of Medical Psychology, 47, 211218. https://doi.org/10.1111/j.2044-8341.1974.tb02285.xGoogle Scholar
Bonnefon, J. F., Hopfensitz, A., & De Neys, W. (2013). The modular nature of trustworthiness detection. Journal of Experimental Psychology: General, 142(1), 143150. https://doi.org/10.1037/a0028930CrossRefGoogle ScholarPubMed
Burnham, T., McCabe, K., & Smith, V. L. (2000). Friend-or-foe intentionality priming in an extensive form trust game. Journal of Economic Behavior & Organization, 43(1), 5773. https://doi.org/10.1016/s0167–2681(00)00108-6Google Scholar
Caceda, R., Moskovciak, T., Prendes-Alvarez, S., et al. (2014). Gender-specific effects of depression and suicidal ideation in prosocial behaviors. PLoS ONE, 9(9), Article e108733. https://doi.org/10.1371/journal.pone.0108733Google Scholar
Cacioppo, J. T., Norris, C. J., Decety, J., Monteleone, G., & Nusbaum, H. (2009). In the eye of the beholder: Individual differences in perceived social isolation predict regional brain activation to social stimuli. Journal of Cognitive Neuroscience, 21(1), 8392. https://doi.org/10.1162/jocn.2009.21007Google Scholar
Camerer, C. F. (2003). Behavioural studies of strategic thinking in games. Trends in Cognitive Sciences, 7(5), 225231. https://doi.org/10.1016/S1364–6613(03)00094-9Google Scholar
Cami, J., Farre, M., Mas, M., et al. (2000). Human pharmacology of 3,4-methylenedioxymethamphetamine (“ecstasy”): Psychomotor performance and subjective effects. Journal of Clinical Psychopharmacology, 20(4), 455466. https://doi.org/10.1097/00004714-200008000-00010Google Scholar
Campbell-Meiklejohn, D. K., Simonsen, A., Jensen, M., et al. (2012). Modulation of social influence by methylphenidate. Neuropsychopharmacology, 37(6), 15171525. https://doi.org/10.1038/npp.2011.337Google Scholar
Campbell-Meiklejohn, D., Simonsen, A., Scheel-Kruger, J., et al. (2012). In for a penny, in for a pound: Methylphenidate reduces the inhibitory effect of high stakes on persistent risky choice. Journal of Neuroscience, 32(38), 1303213038. https://doi.org/10.1523/jneurosci.0151-12.2012Google Scholar
Carhart-Harris, R. L., & Nutt, D. J. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31(9), 10911120. https://doi.org/10.1177/0269881117725915Google Scholar
Chang, L. J., Doll, B. B., Van ’t Wout, M., Frank, M. J., & Sanfey, A. G. (2010). Seeing is believing: Trustworthiness as a dynamic belief. Cognitive Psychology, 61(2), 87105. https://doi.org/10.1016/j.cogpsych.2010.03.001Google Scholar
Collins, A. G., & Frank, M. J. (2013). Cognitive control over learning: Creating, clustering, and generalizing task-set structure. Psychological Review, 120(1), 190229. https://doi.org/10.1037/a0030852Google Scholar
Cox, J. C. (2004). How to identify trust and reciprocity. Games and Economic Behavior, 46(2), 260281. https://doi.org/10.1016/s0899–8256(03)00119-2Google Scholar
Coyne, J. (1976). Depression and the response of others. Journal of Abnormal Psychology, 85, 186193. https://doi.org/10.1037/0021-843x.85.2.186Google Scholar
Crockett, M. J., & Fehr, E. (2014). Pharmacology of economic and social decision making. In Glimcher, P. W. & Fehr, E. (Eds.), Neuroeconomics (2nd ed., pp. 259279). Academic Press.Google Scholar
de la Torre, R., Farre, M., Roset, P. N., et al. (2004). Human pharmacology of MDMA: Pharmacokinetics, metabolism, and disposition. Therapeutic Drug Monitoring, 26(2), 137144. https://doi.org/10.1097/00007691-200404000-00009Google Scholar
Delgado, M. R., Frank, R. H., & Phelps, E. A. (2005). Perceptions of moral character modulate the neural systems of reward during the trust game. Nature Neuroscience, 8(11), 16111618. https://doi.org/10.1038/nn1575Google Scholar
Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28(3), 313350; discussion 350–395. https://doi.org/10.1017/s0140525x05000063Google Scholar
DeVito, E. E., Blackwell, A. D., Kent, L., et al. (2008). The effects of methylphenidate on decision making in attention-deficit/hyperactivity disorder. Biological Psychiatry, 64(7), 636639. https://doi.org/10.1016/j.biopsych.2008.04.017Google Scholar
Dewall, C. N., Macdonald, G., Webster, G. D., et al. (2010). Acetaminophen reduces social pain: Behavioral and neural evidence. Psychological Science, 21(7), 931937. https://doi.org/10.1177/0956797610374741Google Scholar
Doorduin, J., de Vries, E. F., Willemsen, A. T., de Groot, J. C., Dierckx, R. A., & Klein, H. C. (2009). Neuroinflammation in schizophrenia-related psychosis: A PET study. Journal of Nuclear Medicine, 50(11), 18011807. https://doi.org/10.2967/jnumed.109.066647Google Scholar
Dumont, G. J., Sweep, F. C., Van der Steen, R., et al. (2009). Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Social Neuroscience, 4(4), 359366. https://doi.org/10.1080/17470910802649470Google Scholar
Durso, G. R., Luttrell, A., & Way, B. M. (2015). Over-the-counter relief from pains and pleasures alike: Acetaminophen blunts evaluation sensitivity to both negative and positive stimuli. Psychological Science, 26(6), 750758. https://doi.org/10.1177/0956797615570366Google Scholar
Fairley, K., Vyrastekova, J., Weitzel, U., & Sanfey, A. G. (2019). Subjective beliefs about trust and reciprocity activate an expected reward signal in the ventral striatum. Frontiers in Neuroscience, 13, Article 660. https://doi.org/10.3389/fnins.2019.00660Google Scholar
Fareri, D. S., Chang, L. J., & Delgado, M. R. (2012). Effects of direct social experience on trust decisions and neural reward circuitry. Frontiers in Neuroscience, 6, Article 148. https://doi.org/10.3389/fnins.2012.00148Google Scholar
Fehr, E. (2009). On the economics and biology of trust. Journal of the European Economic Association, 7(2–3), 235266. https://doi.org/10.1162/jeea.2009.7.2-3.235Google Scholar
Fernandez-Theoduloz, G., Paz, V., Nicolaisen-Sobesky, E., et al. (2019). Social avoidance in depression: A study using a social decision making task. Journal of Abnormal Psychology, 128(3), 234244. https://doi.org/10.1037/abn0000415Google Scholar
Fett, A. K., Shergill, S. S., Joyce, D. W., et al. (2012). To trust or not to trust: The dynamics of social interaction in psychosis. Brain, 135(Pt 3), 976984. https://doi.org/10.1093/brain/awr359Google Scholar
Flood, M. M. (1952). Some experimental games: Research memorandum RM-789. RAND Corporation.Google Scholar
Fouragnan, E., Chierchia, G., Greiner, S., Neveu, R., Avesani, P., & Coricelli, G. (2013). Reputational priors magnify striatal responses to violations of trust. Journal of Neuroscience, 33(8), 36023611. https://doi.org/10.1523/jneurosci.3086-12.2013Google Scholar
Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R., & Maier, S. F. (2007). Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain, Behavior, and Immunity, 21(1), 4759. https://doi.org/10.1016/j.bbi.2006.03.005Google Scholar
Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306(5703), 19401943. https://doi.org/10.1126/science.1102941Google Scholar
Fu, C., Yao, X., Yang, X., Zheng, L., Li, J., & Wang, Y. (2019). Trust game database: Behavioral and EEG data from two trust games. Frontiers in Psychology, 10, Article 2656. https://doi.org/10.3389/fpsyg.2019.02656Google Scholar
Fung, K., & Alden, L. E. (2017). Once hurt, twice shy: Social pain contributes to social anxiety. Emotion, 17(2), 231239. https://doi.org/10.1037/emo0000223Google Scholar
Gabay, A. S., Kempton, M. J., Gilleen, J., & Mehta, M. A. (2019). MDMA increases cooperation and recruitment of social brain areas when playing trustworthy players in an iterated prisoner’s dilemma. Journal of Neuroscience, 39(2), 307320. https://doi.org/10.1523/jneurosci.1276-18.2018Google Scholar
Gerretsen, P., Graff-Guerrero, A., Menon, M., et al. (2010). Is desire for social relationships mediated by the serotonergic system in the prefrontal cortex? An [(18)F]setoperone PET study. Social Neuroscience, 5(4), 375383. https://doi.org/10.1080/17470911003589309Google Scholar
Gurevich, E. V., & Joyce, J. N. (1999). Distribution of dopamine D3 receptor expressing neurons in the human forebrain: Comparison with D2 receptor expressing neurons. Neuropsychopharmacology, 20(1), 6080. https://doi.org/10.1016/s0893–133x(98)00066-9Google Scholar
Hahn, T., Notebaert, K., Anderl, C., Teckentrup, V., Kassecker, A., & Windmann, S. (2015). How to trust a perfect stranger: Predicting initial trust behavior from resting-state brain-electrical connectivity. Social Cognitive and Affective Neuroscience, 10(6), 809813. https://doi.org/10.1093/scan/nsu122Google Scholar
Hall, H., Halldin, C., Dijkkstra, D., et al. (1996). Autoradiographic localisation of D 3 - dopamine receptors in the human brain using the selective D 3 -dopamine receptor agonist (+)-[3] PD 128907. Psychopharmacology, 128, 240247. https://doi.org/10.1007/s002130050131Google Scholar
Hanisch, U. K., & Kettenmann, H. (2007). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nature Neuroscience, 10(11), 13871394. https://doi.org/10.1038/nn1997Google Scholar
Harvey, P. D., Patterson, T. L., Potter, L. S., Zhong, K., & Brecher, M. (2006). Improvement in social competence with short-term atypical antipsychotic treatment: A randomized, double-blind comparison of quetiapine versus risperidone for social competence, social cognition, and neuropsychological functioning. American Journal of Psychiatry, 163(11), 19181925. https://doi.org/10.1176/ajp.2006.163.11.1918Google Scholar
Hashimoto, K., & Ishima, T. (2010). A novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: Translation initiation [corrected] factor eIF4AI. PLoS ONE, 5(11), Article e15430. https://doi.org/10.1371/journal.pone.0015430Google Scholar
He, J., & Crews, F. T. (2008). Increased MCP-1 and microglia in various regions of the human alcoholic brain. Experimental Neurology, 210(2), 349358. https://doi.org/10.1016/j.expneurol.2007.11.017Google Scholar
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54(12), 13891398. https://doi.org/10.1016/s0006–3223(03)00465-7Google Scholar
Hysek, C. M., Simmler, L. D., Schillinger, N., et al. (2014). Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. International Journal of Neuropsychopharmacology, 17(3), 371381. https://doi.org/10.1017/S1461145713001132Google Scholar
Ishibashi, K., Ishii, K., Oda, K., Mizusawa, H., & Ishiwata, K. (2011). Binding of pramipexole to extrastriatal dopamine D2/D3 receptors in the human brain: A positron emission tomography study using 11C-FLB 457. PLoS ONE, 6(3), Article e17723. https://doi.org/10.1371/journal.pone.0017723Google Scholar
Jocham, G., Klein, T. A., & Ullsperger, M. (2011). Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. Journal of Neuroscience, 31(5), 16061613. https://doi.org/10.1523/jneurosci.3904-10.2011Google Scholar
Johnson, N. D., & Mislin, A. A. (2011). Trust games: A meta-analysis. Journal of Economic Psychology, 32(5), 865889. https://doi.org/10.1016/j.joep.2011.05.007Google Scholar
Johnson-George, C., & Swap, W. C. (1982). Measurement of specific interpersonal trust: Construction and validation of a scale to assess trust in a specific other. Journal of Personality and Social Psychology, 43(6), 13061317. https://doi.org/10.1037/0022-3514.43.6.1306Google Scholar
Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1986). Fairness and the assumptions of economics. Journal of Business, 59(4), S285S300. https://doi.org/10.2307/2352761Google Scholar
Keri, S., Kiss, I., & Kelemen, O. (2009). Sharing secrets: Oxytocin and trust in schizophrenia. Social Neuroscience, 4(4), 287293. https://doi.org/10.1080/17470910802319710Google Scholar
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308(5718), 7883. https://doi.org/10.1126/science.1108062Google Scholar
Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed neural representation of expected value. Journal of Neuroscience, 25(19), 48064812. https://doi.org/10.1523/jneurosci.0642-05.2005CrossRefGoogle ScholarPubMed
Knutson, B., Wolkowitz, O. M., Cole, S. W., et al. (1998). Selective alteration of personality and social behavior by serotonergic intervention. American Journal of Psychiatry, 155(3), 373379. https://doi.org/10.1176/ajp.155.3.373Google Scholar
Kolbrich, E. A., Goodwin, R. S., Gorelick, D. A., Hayes, R. J., Stein, E. A., & Huestis, M. A. (2008). Plasma pharmacokinetics of 3,4-methylenedioxymethamphetamine after controlled oral administration to young adults. Therapeutic Drug Monitoring, 30(3), 320332. https://doi.org/10.1097/ftd.0b013e3181684fa0Google Scholar
Koscik, T. R., & Tranel, D. (2011). The human amygdala is necessary for developing and expressing normal interpersonal trust. Neuropsychologia, 49(4), 602611. https://doi.org/10.1016/j.neuropsychologia.2010.09.023Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676. https://doi.org/10.1038/nature03701Google Scholar
Krueger, F., McCabe, K., Moll, J., et al. (2007). Neural correlates of trust. Proceedings of the National Academy of Sciences USA, 104(50), 2008420089. https://doi.org/10.1073/pnas.0710103104Google Scholar
Krueger, F., & Meyer-Lindenberg, A. (2019). Toward a model of interpersonal trust drawn from neuroscience, psychology, and economics. Trends in Neuroscience, 42(2), 92101. https://doi.org/10.1016/j.tins.2018.10.004Google Scholar
Kuypers, K. P., de la Torre, R., Farre, M., et al. (2014). No evidence that MDMA-induced enhancement of emotional empathy is related to peripheral oxytocin levels or 5-HT1a receptor activation. PLoS ONE, 9(6), Article e100719. https://doi.org/10.1371/journal.pone.0100719Google Scholar
Lefevre, A., Richard, N., Jazayeri, M., et al. (2017). Oxytocin and serotonin brain mechanisms in the nonhuman primate. Journal of Neuroscience, 37(28), 67416750. https://doi.org/10.1523/jneurosci.0659-17.2017Google Scholar
Levkovitz, Y., Mendlovich, S., Riwkes, S., et al. (2010). A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. Journal of Clinical Psychiatry, 71(2), 138149. https://doi.org/10.4088/jcp.08m04666yelGoogle Scholar
Lewicki, R., & Bunker, B. (1995). Trust in relationships. Administrative Science Quarterly, 5(1), 583601. https://doi.org/10.2307/259288Google Scholar
Liechti, M. E., Baumann, C., Gamma, A., & Vollenweider, F. X. (2000). Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology, 22(5), 513521. https://doi.org/10.1016/S0893–133x(99)00148-7Google Scholar
Maoz, H., Tsviban, L., Gvirts, H. Z., et al. (2014). Stimulants improve theory of mind in children with attention deficit/hyperactivity disorder. Journal of Psychopharmacology, 28(3), 212219. https://doi.org/10.1177/0269881113492030Google Scholar
Martinez, D., Slifstein, M., Broft, A., et al. (2003). Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. Journal of Cerebral Blood Flow & Metabolism, 23(3), 285300. https://doi.org/10.1097/01.wcb.0000048520.34839.1aGoogle Scholar
Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709734. https://doi.org/10.2307/258792Google Scholar
McKnight, D., Cummings, L., & Chervany, N. (1998). Initial trust formation in new organizational relationships. Academy of Management Review, 23, 473490. https://doi.org/10.2307/259290Google Scholar
Mischkowski, D., Crocker, J., & Way, B. M. (2016). From painkiller to empathy killer: Acetaminophen (paracetamol) reduces empathy for pain. Social, Cognitive and Affective Neuroscience, 11(9), 13451353. https://doi.org/10.1093/scan/nsw057Google Scholar
Mithoefer, M. C., Wagner, M. T., Mithoefer, A. T., Jerome, L., & Doblin, R. (2011). The safety and efficacy of {+/-}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: The first randomized controlled pilot study. Journal of Psychopharmacology, 25(4), 439452. https://doi.org/10.1177/0269881110378371Google Scholar
Moretto, G., Sellitto, M., & di Pellegrino, G. (2013). Investment and repayment in a trust game after ventromedial prefrontal damage. Frontiers in Human Neuroscience, 7, Article 593. https://doi.org/10.3389/fnhum.2013.00593Google Scholar
Munro, C. A., McCaul, M. E., Wong, D. F., et al. (2006). Sex differences in striatal dopamine release in healthy adults. Biological Psychiatry, 59(10), 966974. https://doi.org/10.1016/j.biopsych.2006.01.008Google Scholar
Munzar, P., Li, H., Nicholson, K. L., Wiley, J. L., & Balster, R. L. (2002). Enhancement of the discriminative stimulus effects of phencyclidine by the tetracycline antibiotics doxycycline and minocycline in rats. Psychopharmacology (Berl), 160(3), 331336. https://doi.org/10.1007/s00213–001-0989-7Google Scholar
Murray, A. M., Ryoo, H. L., Gurevich, E., & Joyce, J. N. (1994). Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proceedings of the National Academy of Sciences USA, 91(23), 1127111275. https://doi.org/10.1073/pnas.91.23.11271Google Scholar
Neigh, G. N., Karelina, K., Glasper, E. R., et al. (2009). Anxiety after cardiac arrest/cardiopulmonary resuscitation: Exacerbated by stress and prevented by minocycline. Stroke, 40(11), 36013607. https://doi.org/10.1161/strokeaha.109.564146Google Scholar
Nelson, E. E., & Panksepp, J. (1998). Brain substrates of infant-mother attachment: Contributions of opioids, oxytocin, and norepinephrine. Neuroscience & Biobehavioral Reviews, 22(3), 437452. https://doi.org/10.1016/s0149–7634(97)00052-3Google Scholar
Oehen, P., Traber, R., Widmer, V., & Schnyder, U. (2013). A randomized, controlled pilot study of MDMA (+/- 3,4-Methylenedioxymethamphetamine)-assisted psychotherapy for treatment of resistant, chronic post-traumatic stress disorder (PTSD). Journal of Psychopharmacology, 27(1), 4052. https://doi.org/10.1177/0269881112464827CrossRefGoogle ScholarPubMed
Panksepp, J. (2009). Affective neuroscience. Oxford University Press.Google Scholar
Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442(7106), 10421045. https://doi.org/10.1038/nature05051Google Scholar
Petersen, N., Kilpatrick, L. A., Goharzad, A., & Cahill, L. (2014). Oral contraceptive pill use and menstrual cycle phase are associated with altered resting state functional connectivity. NeuroImage, 90, 2432. https://doi.org/10.1016/j.neuroimage.2013.12.016Google Scholar
Rahman, S., Robbins, T. W., Hodges, J. R., et al. (2006). Methylphenidate (“Ritalin”) can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology, 31(3), 651658. https://doi.org/10.1038/sj.npp.1300886Google Scholar
Ratala, C. E., Fallon, S. J., Van der Schaaf, M. E., Ter Huurne, N., Cools, R., & Sanfey, A. G. (2019). Catecholaminergic modulation of trust decisions. Psychopharmacology (Berl), 236(6), 18071816. https://doi.org/10.1007/s00213–019-5165-zGoogle Scholar
Riba, J., Kramer, U. M., Heldmann, M., Richter, S., & Munte, T. F. (2008). Dopamine agonist increases risk taking but blunts reward-related brain activity. PLoS ONE, 3(6), Article e2479. https://doi.org/10.1371/journal.pone.0002479Google Scholar
Riedl, R., & Javor, A. (2012). The biology of trust: Integrating evidence from genetics, endocrinology, and functional brain imaging. Journal of Neuroscience, Psychology, and Economics, 5(2), 6391. https://doi.org/10.1037/a0026318Google Scholar
Rilling, J., Gutman, D., Zeh, T., Pagnoni, G., Berns, G., & Kilts, C. (2002). A neural basis for social cooperation. Neuron, 35(2), 395405. https://doi.org/10.1016/s0896–6273(02)00755-9Google Scholar
Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267287. https://doi.org/10.1146/annurev.neuro.051508.135535Google Scholar
Roberts, I. D., Krajbich, I., & Way, B. M. (2019). Acetaminophen influences social and economic trust. Scientific Reports, 9(1), Article 4060. https://doi.org/10.1038/s41598–019-40093-9Google Scholar
Robson, S. E., Repetto, L., Gountouna, V. E., & Nicodemus, K. K. (2020). A review of neuroeconomic gameplay in psychiatric disorders. Molecular Psychiatry, 25(1), 6781. https://doi.org/10.1038/s41380–019-0405-5Google Scholar
Rothstein, B., & Uslaner, E. M. (2005). All for all: Equality, corruption, and social trust. World Politics, 58, 4172. https://doi.org/10.1353/wp.2006.0022Google Scholar
Rudnick, G., & Wall, S. C. (1992). The molecular mechanism of “ecstasy” [3,4-methylenedioxy-methamphetamine (MDMA)]: Serotonin transporters are targets for MDMA-induced serotonin release. Proceedings of the National Academy of Sciences USA, 89(5), 18171821. https://doi.org/10.1073/pnas.89.5.1817Google Scholar
Schiavone, S., Sorce, S., Dubois-Dauphin, M., et al. (2009). Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biological Psychiatry, 66(4), 384392. https://doi.org/10.1016/j.biopsych.2009.04.033Google Scholar
Schmid, Y., Hysek, C. M., Simmler, L. D., Crockett, M. J., Quednow, B. B., & Liechti, M. E. (2014). Differential effects of MDMA and methylphenidate on social cognition. Journal of Psychopharmacology, 28(9), 847856. https://doi.org/10.1177/0269881114542454Google Scholar
Schmidt, C. J., Wu, L., & Lovenberg, W. (1986). Methylenedioxymethamphetamine: A potentially neurotoxic amphetamine analogue. European Journal of Pharmacology, 124(1–2), 175178. https://doi.org/10.1016/0014-2999(86)90140-8Google Scholar
Schroeder, K. B., McElreath, R., & Nettle, D. (2013). Variants at serotonin transporter and 2A receptor genes predict cooperative behavior differentially according to presence of punishment. Proceedings of the National Academy of Sciences USA, 110(10), 39553960. https://doi.org/10.1073/pnas.1216841110Google Scholar
Schweiger, D., Stemmler, G., Burgdorf, C., & Wacker, J. (2014). Opioid receptor blockade and warmth-liking: Effects on interpersonal trust and frontal asymmetry. Social, Cognitive and Affective Neuroscience, 9(10), 16081615. https://doi.org/10.1093/scan/nst152Google Scholar
Sekine, Y., Ouchi, Y., Sugihara, G., et al. (2008). Methamphetamine causes microglial activation in the brains of human abusers. Journal of Neuroscience, 28(22), 57565761. https://doi.org/10.1523/jneurosci.1179-08.2008Google Scholar
Selvaraj, S., Turkheimer, F., Rosso, L., et al. (2012). Measuring endogenous changes in serotonergic neurotransmission in humans: A [11C]CUMI-101 PET challenge study. Molecular Psychiatry, 17(12), 12541260. https://doi.org/10.1038/mp.2012.78Google Scholar
Seymour, B., Daw, N. D., Roiser, J. P., Dayan, P., & Dolan, R. (2012). Serotonin selectively modulates reward value in human decision making. Journal of Neuroscience, 32(17), 58335842. https://doi.org/10.1523/jneurosci.0053-12.2012Google Scholar
Shiels, K., Hawk, L. W., Reynolds, B., et al. (2009). Effects of methylphenidate on discounting of delayed rewards in attention deficit/hyperactivity disorder. Experimental and Clinical Psychopharmacology, 17(5), 291301. https://doi.org/10.1037/a0017259Google Scholar
Snyder, R., Turgay, A., Aman, M., et al. (2002). Effects of risperidone on conduct and disruptive behavior disorders in children with subaverage IQs. Journal of the American Academy of Child and Adolescent Psychiatry, 41(9), 10261036. https://doi.org/10.1097/00004583-200209000-00002Google Scholar
Sokoloff, P., Diaz, J., Le Foll, B., et al. (2006). The dopamine D3 receptor: A therapeutic target for the treatment of neuropsychiatric disorders. CNS & Neurological Disorders Drug Targets, 5(1), 2543. https://doi.org/10.2174/187152706784111551Google Scholar
Soutschek, A., Burke, C. J., Raja Beharelle, A., et al. (2017). The dopaminergic reward system underpins gender differences in social preferences. Nature Human Behavior, 1(11), 819827. https://doi.org/10.1038/s41562-017-0226-yGoogle Scholar
Steiner, J., Bielau, H., Brisch, R., et al. (2008). Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. Journal of Psychiatric Research, 42(2), 151157. https://doi.org/10.1016/j.jpsychires.2006.10.013Google Scholar
Steiner, J., Mawrin, C., Ziegeler, A., et al. (2006). Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathologica, 112(3), 305316. https://doi.org/10.1007/s00401–006-0090-8Google Scholar
Stewart, L. H., Ferguson, B., Morgan, C. J., et al. (2014). Effects of ecstasy on cooperative behaviour and perception of trustworthiness: A naturalistic study. Journal of Psychopharmacology, 28(11), 10011008. https://doi.org/10.1177/0269881114544775Google Scholar
Sun, H., Verbeke, W., Pozharliev, R., Bagozzi, R. P., Babiloni, F., & Wang, L. (2019). Framing a trust game as a power game greatly affects interbrain synchronicity between trustor and trustee. Social Neuroscience, 14(6), 635648. https://doi.org/10.1080/17470919.2019.1566171Google Scholar
Tancer, M., & Johanson, C. E. (2003). Reinforcing, subjective, and physiological effects of MDMA in humans: A comparison with d-amphetamine and mCPP. Drug and Alcohol Dependence, 72(1), 3344. https://doi.org/10.1016/s0376–8716(03)00172-8Google Scholar
Thompson, M. R., Callaghan, P. D., Hunt, G. E., Cornish, J. L., & McGregor, I. S. (2007). A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (“ecstasy”). Neuroscience, 146(2), 509514. https://doi.org/10.1016/j.neuroscience.2007.02.032Google Scholar
Todorov, A., Pakrashi, M., & Oosterhof, N. (2009). Evaluating faces on trustworthiness after minimal time exposure. Social Cognition, 27(6), 813833. https://doi.org/10.1521/soco.2009.27.6.813Google Scholar
Trezza, V., Damsteegt, R., Achterberg, E. J., & Vanderschuren, L. J. (2011). Nucleus accumbens mu-opioid receptors mediate social reward. Journal of Neuroscience, 31(17), 63626370. https://doi.org/10.1523/jneurosci.5492-10.2011Google Scholar
Tse, W. S., Wong, A. S., Chan, F., Pang, A. H., Bond, A. J., & Chan, C. K. (2016). Different mechanisms of risperidone result in improved interpersonal trust, social engagement and cooperative behavior in patients with schizophrenia compared to trifluoperazine. Psychiatry and Clinical Neurosciences, 70(5), 218226. https://doi.org/10.1111/pcn.12382Google Scholar
Tzieropoulos, H. (2013). The trust game in neuroscience: A short review. Social Neuroscience, 8(5), 407416. https://doi.org/10.1080/17470919.2013.832375Google Scholar
Van’t Wout, M., & Sanfey, A. G. (2008). Friend or foe: The effect of implicit trustworthiness judgments in social decision making. Cognition, 108(3), 796803. https://doi.org/10.1016/j.cognition.2008.07.002Google Scholar
Van Berckel, B. N., Bossong, M. G., Boellaard, R., et al. (2008). Microglia activation in recent-onset schizophrenia: A quantitative (R)-[11C]PK11195 positron emission tomography study. Biological Psychiatry, 64(9), 820822. https://doi.org/10.1016/j.biopsych.2008.04.025Google Scholar
Volkow, N. D., Wang, G. J., Fowler, J. S., & Ding, Y. S. (2005). Imaging the effects of methylphenidate on brain dopamine: New model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 14101415. https://doi.org/10.1016/j.biopsych.2004.11.006Google Scholar
Wardle, M. C., & de Wit, H. (2012). Effects of amphetamine on reactivity to emotional stimuli. Psychopharmacology (Berl), 220(1), 143153. https://doi.org/10.1007/s00213–011-2498-7Google Scholar
Watabe, M., Kato, T. A., Monji, A., Horikawa, H., & Kanba, S. (2012). Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction? Psychopharmacology (Berl), 220(3), 551557. https://doi.org/10.1007/s00213–011-2509-8Google Scholar
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 10631070. https://doi.org/10.1037//0022-3514.54.6.1063Google Scholar
Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after a 100-ms exposure to a face. Psychological Science, 17(7), 592598. https://doi.org/10.1111/j.1467-9280.2006.01750.xGoogle Scholar
Winston, J. S., Strange, B. A., O’Doherty, J., & Dolan, R. J. (2002). Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nature Neuroscience, 5(3), 277283. https://doi.org/10.1038/nn816Google Scholar
Wolff, K., Tsapakis, E. M., Winstock, A. R., et al. (2006). Vasopressin and oxytocin secretion in response to the consumption of ecstasy in a clubbing population. Journal of Psychopharmacology, 20(3), 400410. https://doi.org/10.1177/0269881106061514Google Scholar
Wu, Y., Lousberg, E. L., Moldenhauer, L. M., et al. (2011). Attenuation of microglial and IL-1 signaling protects mice from acute alcohol-induced sedation and/or motor impairment. Brain, Behavior, and Immunity, 25(Suppl. 1), S155–164. https://doi.org/10.1016/j.bbi.2011.01.012Google Scholar
Yamagishi, T., & Yamagishi, M. (1994). Trust and commitment in the United States and Japan. Motivation and Emotion, 18, 129166. https://doi.org/10.1007/bf02249397Google Scholar
Young, L. J., Lim, M. M., Gingrich, B., & Insel, T. R. (2001). Cellular mechanisms of social attachment. Hormones and Behavior, 40(2), 133138. https://doi.org/10.1006/hbeh.2001.1691Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×