Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T23:20:02.828Z Has data issue: false hasContentIssue false

9 - Role of the basal ganglia in language and semantics: supporting cast

from Part V - Critical Role of Subcortical Nuclei in Semantic Functions

Published online by Cambridge University Press:  14 September 2009

Bruce Crosson
Affiliation:
Malcolm Randall VA Medical Center; University of Florida
Michelle Benjamin
Affiliation:
Malcolm Randall VA Medical Center; University of Florida
Ilana Levy
Affiliation:
University of Florida
John Hart
Affiliation:
University of Texas, Dallas
Michael A. Kraut
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

The role of the basal ganglia in language and semantics has been debated since Broadbent (1872), Wernicke (1874), Kussmaul (1877) and Marie (1906) first addressed the topic. Interest was resurrected in the late 1950s and 1960s when the pallidotomies were conducted for relief of Parkinson's disease. After dominant pallidotomy, some patients demonstrated aphasia (Svennilson et al., 1960). Further, stimulation of the dominant globus pallidus during operative procedures interrupted ongoing language (Hermann et al., 1966), and stimulation of the dominant caudate head produced phrases and short sentences not relevant to the ongoing situation (Van Buren, 1963, 1966; Van Buren et al., 1966). Interest peaked in the late 1970s and 1980s, as use of computerized tomography (CT) scans demonstrated basal ganglia infarcts and hemorrhages in the dominant hemisphere that were accompanied by aphasia (Brunner et al., 1982; Cappa et al., 1983; Damasio et al., 1982; Fisher, 1979; Hier et al., 1977; Knopman et al., 1984; Murdoch et al., 1989; Wallesch, 1985, to mention a few).

Much has happened since the latter studies to clarify the role of the basal ganglia in language and semantics. Now, it can be definitively stated that the basal ganglia are not directly involved in primary language or semantic functions. Yet it is becoming equally clear that the basal ganglia play a pervasive, but subtle role in cognitive processing that cuts across a number of functions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akkal, D., Dum, R. P., and Strick, P. L. (2002). Cerebellar and basal ganglia inputs to the pre-supplementary area (Pre-SMA). Society for Neuroscience Abstract Viewer/Itinerary Planner, Online, Program No. 462.14.
Alexander, C. E., DeLong, M. R., and Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Annual Review of Neuroscience, 9: 357–81.CrossRefGoogle ScholarPubMed
Angwin, A. J., Chenery, H. J., Copland, D. A., Arnott, W. L., et al. (2004). Dopamine and semantic activation: an investigation of masked direct and indirect priming. Journal of the International Neuropsychological Society, 10: 15–25.CrossRefGoogle ScholarPubMed
Bäckman, L. and Farde, L. (2005). The role of dopamine systems in cognitive aging. In Cabeza, R., Nyberg, L., and Park, D. (eds.), Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging. New York: Oxford University Press, pp. 58–84.Google Scholar
Balota, D. A. and Paul, S. T. (1996). Summation of activation: Evidence from multiple primes that converge and diverge within semantic memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22: 827–45.Google ScholarPubMed
Broadbent, W. H. (1872). On the cerebral mechanisms of speech and thought; in Proceedings of the Royal Medicinal and Chirurgical Society of London, pp. 25–9. (Cited by Wallesch and Papagno, 1988.)
Brunner, R. J., Kornhuber, H. H., Seemuller, E., Suger, G., and Wallesch, C.-W. (1982). Basal ganglia participation in language pathology. Brain and Language, 16: 281–99.CrossRefGoogle ScholarPubMed
Cappa, S. F., Cavallotti, G., Guidotti, M., Papagno, C., and Vignolo, L. (1983). Subcortical aphasia: two clinical–CT scan correlation studies. Cortex, 19: 227–41.CrossRefGoogle ScholarPubMed
Copland, D. A. (2000). A Real-Time Examination of Lexical Ambiguity Resolution Following Lesions of the Dominant Nonthalamic Subcortex. Doctoral Dissertation:University of Queensland, Brisbane, Australia.Google Scholar
Copland, D. A. (2003). Basal ganglia and semantic engagement. Journal of the International Neuropsychological Society, 9: 1041–52.Google ScholarPubMed
Copland, D. A., Chenery, H. J., and Murdoch, B. E. (2000a). Persistent deficits in complex language function following dominant nonthalamic subcortical lesions. Journal of Medical Speech–Language Pathology, 8: 1–15.Google Scholar
Copland, D. A., Chenery, H. J., and Murdoch, B. E. (2000b). Processing lexical ambiguities in word triplets. Neuropsychology, 14: 370–90.CrossRefGoogle Scholar
Crosson, B., Bacon Moore, A., Gopinath, K., White, K. D., et al. (2005). Role of the right and left hemispheres in recovery of function during treatment of intention in aphasia. Journal of Cognitive Neuroscience, 17: 392–406.CrossRefGoogle ScholarPubMed
Crosson, B., Benefield, H., Cato, M. A., Sadek, J. R., Moore, A. B., et al. (2003). Left and right basal ganglia and frontal activity during language generation: Contributions to lexical, semantic, and phonological processes. Journal of the International Neuropsychological Society, 9: 1061–77.CrossRefGoogle ScholarPubMed
Damasio, A. R., Damasio, H., Rizzo, M., Varney, N., and Gersh, F. (1982). Aphasia with nonhemorrhagic lesions in the basal ganglia and internal capsule. Archives of Neurology, 39: 15–20.CrossRefGoogle ScholarPubMed
Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., and Gagnon, D. A. (1997). Lexical access in aphasic and nonaphasic speakers. Psychological Review, 104: 801–38.CrossRefGoogle ScholarPubMed
Demonet, J.-F. (1987). Les Aphasies Sous-corticales: Etude Linguistique, radiologique et hemodynamique de 31 observations. Thèse Pour le Doctorat D'Etat en Medicine, Université Paul Sabatier-Toulouse III, Facultés de Medecine.
Fisher, C. M. (1979). Capsular infarcts: the underlying vascular lesions. Archives of Neurology, 36: 65–73.CrossRefGoogle ScholarPubMed
Fuster, J. M. (2003). Cortex and Mind: Unifying Cognition. New York: Oxford University Press.Google Scholar
Gerfen, C. (1992). The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annual Review of Neuroscience, 15: 285–320.CrossRefGoogle ScholarPubMed
Hart, J. and Gordon, B. (1992). Neural subsystems for object knowledge. Nature, 359: 60–4.CrossRefGoogle ScholarPubMed
Heilman, K. M., Watson, R. T., and Valenstein, E. (2003). Neglect and related disorders. In Heilman, K. M. and Valenstein, E. (eds.), Clinical Neuropsychology, 4th edn. New York: Oxford University Press, pp. 296–346.Google Scholar
Hermann, K., Turner, J. W., Gillingham, F. J., and Gaze, R. M. (1966). The effects of destructive lesions and stimulation of the basal gangalia on speech mechanisms. Confinia Neurologica, 27: 107–207.Google Scholar
Hier, D. B., Davis, K. R., Richardson, E. P. Jr., and Mohr, J. P. (1977). Hypertensive putaminal hemorrhage. Annals of Neurology, 1: 152–9.CrossRefGoogle ScholarPubMed
Hillis, A. E., Wityk, R. J., Barker, P. B., Beauchamp, N. J., et al. (2002). Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain, 125: 1094–104.CrossRefGoogle ScholarPubMed
Inase, M., Tokuno, H., Nambu, A., Akazawa, T., and Takada, M. (1999). Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Research, 833: 191–201.CrossRefGoogle ScholarPubMed
Kim, Y.-H., Ko, M.-H., Parrish, T. B., and Kim, H.-G. (2002). Reorganization of cortical language areas in patients with aphasia: a functional MRI study. Yonsei Medical Journal, 43: 441–5.CrossRefGoogle ScholarPubMed
Kischka, J., Kammer, T. H., Maier, S., Weisbrod, M., et al. (1996). Dopaminergic modulation of semantic network activation. Neuropsychologia, 23: 1107–13.CrossRefGoogle Scholar
Knopman, D. S., Selnes, O. A., Niccum, N., and Rubens, A. B. (1984). Recovery of naming in aphasia: Relationship to fluency, comprehension, and CT findings. Neurology, 34: 1461–70.CrossRefGoogle ScholarPubMed
Kussmaul, A. (1877). Die Storungen der Sprache. Leipzig: Vogel. (Cited by Wallesch & Papagno, 1988.)Google Scholar
Levelt, W. J. M. (2001). Spoken word production: a theory of lexical access. Proceedings of the National Academy of Sciences, 98: 13464–71.CrossRefGoogle ScholarPubMed
Levelt, W. J. M. (1999). Models of word production. Trends in Cognitive Science, 3: 223–32.CrossRefGoogle ScholarPubMed
Marie, P. (1906). Revision de la question de l'aphasie: Que faut-il penser des aphasies sous-courticales (aphasies pures)? La Semaine Medicale, 42. October (Cited by Démonet, 1987.)
Maurice, N., Mercer, J., Chan, C. S., Hernandez-Lopez, S., et al. (2004). D2 dopamine receptor-mediated modulation of voltage dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. Journal of Neuroscience, 24: 10289–301.CrossRefGoogle ScholarPubMed
Middleton, F. A. and Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research Review, 31: 236–50.CrossRefGoogle ScholarPubMed
Mink, J. W. (1996). The basal ganglia. Progress in Neurobiology, 50: 381–425.CrossRefGoogle ScholarPubMed
Mitchell, I. J., Jackson, A., Sambrook, M. A., and Crossman, A. R. (1989). The role of the subthalamic nucleus in experimental chorea. Brain, 112: 1533–48.CrossRefGoogle ScholarPubMed
Murdoch, B. E., Chenery, H. J., and Kennedy, M. (1989). Aphemia associated with bilateral striato-capsular lesions subsequent to cerebral anoxia. Brain Injury, 3: 41–9CrossRefGoogle ScholarPubMed
Nadeau, S. E. and Crosson, B. (1997). Subcortical aphasia. Brain and Language, 58: 355–402.CrossRefGoogle ScholarPubMed
Nambu, A., Tokuno, H., Hamada, I., Kita, H., et al. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84: 289–300.CrossRefGoogle ScholarPubMed
Nambu, A., Tokuno, H., and Takada, M. (2002). Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neuroscience Research, 43: 111–17.CrossRefGoogle ScholarPubMed
Penney, J. B. and Young, A. B. (1986). Striatal inhomogeneities and basal ganglia function. Movement Disorders, 1: 3–16.CrossRefGoogle ScholarPubMed
O'Donnell, P. (2003). Dopamine gating of forebrain neural ensembles. The European Journal of Neuroscience, 17: 429–35.CrossRefGoogle ScholarPubMed
Simpson, G. and Burgess, C. (1985). Activation and selection processes in the recognition of ambiguous words. Journal of Experimental Psychology, Human Perception, and Performance, 11: 28–39.CrossRefGoogle Scholar
Strick, P. L., Dum, R., and Picard, N. (1995). Macro-organization of the circuits connecting the basal ganglia with the cortical motor areas. In Houk, J. C., Davis, J. L., and Beiser, D. G. (eds.), Models of Information Processing in the Basal Ganglia. Cambridge, MA: MIT Press, pp. 117–30.Google Scholar
Svinnilson, E., Torvik, A., Lowe, R., and Leksell, L. (1960). Treatment of Parkinsonism by stereotactic thermolesions in the pallidal region. Acta Psychiatrica et Neurologica Scandinavia, 35: 358–77.CrossRefGoogle Scholar
Ullman, M. T. (2004). Contributions of memory circuits to language: the declarative/procedural model. Cognition, 92: 231–70.CrossRefGoogle ScholarPubMed
Buren, J. M. (1963). Confusion and disturbance of speech from stimulation in the vicinity of the head of the caudate nucleus. Journal of Neurosurgery, 20: 148–57.CrossRefGoogle Scholar
Buren, J. M. (1966). Evidence regarding a more precise localization of the frontal-caudate arrest response in man. Journal of Neurosurgery, 24: 416–17.Google Scholar
Buren, J. M., Li, C. L., and Ojemann, G. A. (1966). The fronto-striatal arrest response in man. Electroencephalography and Clinical Neurophysiology, 21: 114–30.CrossRefGoogle ScholarPubMed
Wallesch, C.-W. (1985). Two syndromes of aphasia occurring with ischemic lesions involving the left basal ganglia. Brain and Language, 25: 357–61.CrossRefGoogle ScholarPubMed
Wallesch, C.-W. and Pagagno, C. (1988). Subcortical aphasia. In Rose, F. C., Whurr, R., and Wyke, M. A. (eds.), Aphasia. London: Whurr Publishers, pp. 256–87.Google Scholar
Weiller, C., Willmes, K., Reiche, W., Thron, A., et al. (1993). The case of aphasia or neglect after striatocapsular infarction. Brain, 116: 1509–25.CrossRefGoogle ScholarPubMed
Wernicke, C. (1874). Der Aphasische Symptomencomplex. Breslau: Cohn & Weigert. (Cited by Wallesch & Papagno, 1988.)Google Scholar
West, A. R. and Grace, A. A. (2002). Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining In Vivo intracellular recordings and reverse microdialysis. Journal of Neuroscience, 22: 294–304.CrossRefGoogle ScholarPubMed
Wilson, C. J. and Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal of Neuroscience, 16: 2397–410.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×