Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T00:55:12.905Z Has data issue: false hasContentIssue false

2 - Fibers and Fiber Bundles

Published online by Cambridge University Press:  15 September 2022

Catalin R. Picu
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

Various types of fibers encountered in Network materials are presented and classified in this chapter. Their mechanical behavior is of primary concern here. The first section describes the structure and mechanical behavior of cellulose fibers, polymeric fibers used in nonwovens, and collagen fibers forming connective tissue. The remainder of the chapter is divided into three parts presenting the mechanical behavior of athermal fibers, thermal filaments, and of fiber bundles. The linear, nonlinear, and rupture characteristics of athermal fibers are presented. Thermal filaments, which form molecular networks such as elastomers and gels, are described by the Gaussian, Langevin, and self-avoiding random walk models. Models describing the mechanics of semiflexible filaments are presented. The section on the mechanics of fiber bundles presents a number of results relevant for bundles of continuous and discontinuous (staple) fibers, including the effect of bundle twisting and of packing on the axial stiffness and strength of the bundle. These results apply to many networks of practical importance which are composed from fiber bundles.

Type
Chapter
Information
Network Materials
Structure and Properties
, pp. 13 - 73
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrady, A. L. (2008). Science and technology of polymer nanofibers. Wiley, Hoboken, NJ.CrossRefGoogle Scholar
Armero, F. & Valverde, J. (2012). Invariant Hermitian finite elements for thin Kirchhoff rods. I: The linear plane case. Comput. Methods Appl. Mech. Engrg. 213–216, 427457.Google Scholar
Bazant, Z. P. & Cedolin, L. (2010). Stability of structures. World Scientific Publishing, Singapore.Google Scholar
Bosia, F., Buehler, M. J. & Pugno, N. M. (2010). Hierarchical simulations for the design of supertough nanofibers inspired by spider silk. Phys. Rev. E 82, 056103.Google Scholar
Bouchiat, C., Wang, M. D., Allemand, J. F., et al. (1999). Estimating the persistence length of a worn-like chain molecule from force–extension measurements. Biophys. J. 76, 409413.Google Scholar
Bunsell, A., Gorbatikh, L., Morton, H., et al. (2018). Benchmarking of strength models for unidirectional composites under longitudinal tension. Composites A 111, 138150.Google Scholar
Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. (1994). Entropic elasticity of λ-Phage DNA. Science 265, 15991600.Google Scholar
Chay, T. R. (1970). Distribution function for self-avoiding walks. J. Chem. Phys. 52, 10251033.Google Scholar
des Cloizeaux, J. (1974). Lagrangian theory for a self-avoiding random chain. Phys. Rev. A 10, 16651669.Google Scholar
Cohen, A. (1991). A Pade approximant to the inverse Langevin function. Rheol. Acta 30, 270273.Google Scholar
Coleman, B. D. (1958). On the strength of classical fibers and fiber bundles. J. Mech. Phys. Solids 7, 6070.CrossRefGoogle Scholar
Cox, H. L. (1952). The elasticity and strength of paper and other fibrous materials. British J. Appl Phys. 3, 7281.CrossRefGoogle Scholar
Crisfield, M. A. & Jelenic, G. (1999). Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation, Proc. R. Soc. London A 455, 11251147.CrossRefGoogle Scholar
Daniels, H. E. (1945). The statistical theory of the strength of bundles of threads. Proc. R. Soc. London A 183, 405.Google Scholar
van Dillen, T., Onck, P. R. & van der Giessen, E. (2008). Models for stiffening in cross-linked biopolymer networks: a comparative study. J. Mech. Phys. Sol. 56, 22402264.Google Scholar
Dobrynin, A. V., Carrillo, J. M. Y. & Rubinstein, M. (2010). Chains are more flexible under tension. Macromolecules 43, 91819190.Google Scholar
Farber, J., Lichtenegger, H., Reiterer, C., Stanzl-Tschegg, S. & Frazl, P. (2001). Cellulose microfibril angles in a spruce branch and mechanical implications. J. Mater. Sci. 36, 50875092.Google Scholar
Fertis, D. G. (1999). Nonlinear mechanics, 2nd ed. CRC Press, Boca Raton.Google Scholar
Fisher, M. E. (1966). The shape of a self-avoiding walk or polymer chains. J. Chem. Phys. 44, 616622.Google Scholar
Fischer, M. E. (1969). Aspects of equilibrium critical phenomena. J. Phys. Soc. Japan 26, 8793.Google Scholar
Flory, P. J. (1949). The configuration of real polymer chains. J. Chem. Phys. 17, 303310.Google Scholar
de Gennes, P. G. (1979). Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY.Google Scholar
Gere, J. M. & Timoshenko, S. P. (2002). Mechanics of materials, 5th ed. Nelson Thornes, Cheltenham.Google Scholar
Hearle, J. W. S., El-Behery, H. M. A. E. & Thakur, V. M. (1959). The mechanics of twisted yarns: Tensile properties of continuous filament yarns. J. Textile Inst. 50, T83T111.CrossRefGoogle Scholar
Hearle, J. W. S., Grosberg, P. & Backer, S. (1969). Structural mechanics of fibers, yarns and fabrics. Wiley-Interscience, London.Google Scholar
Howard, J. (2001). Mechanics of motor proteins and the cytoskeleton. Sinauer Assoc. Inc., Sunderland, MA.Google Scholar
Jelenic, G. & Crisfield, M. A. (1999). Geometrically exact 3D beam theory: Implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171, 141171.Google Scholar
Kabla, A. & Mahadevan, L. (2007). Nonlinear mechanics of soft fibrous networks. J. R. Soc. Interface 4, 99106.Google Scholar
Kádár, V., Danku, Z. & Kun, F. (2017). Size scaling of failure strength with fat-tailed disorder in a fiber bundle model. Phys. Rev. E 96, 033001.Google Scholar
Kratky, O. & Porod, G. (1949). Röntgenuntersuchung gelöster Fadenmoleküle Recueil Traveaux Chim. Pays-Bas 68, 11061122.Google Scholar
Landstreet, C. B., Ewald, P. R. & Simpson, J. (1957). The relation of twist to the construction and strength of cotton rowings and yarns. Textile Res. J., 27, 486492.Google Scholar
Lichtenegger, H., Muller, M., Paris, O., Riekel, C. & Fratzl, P. (1999). Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction. J. Appl. Cryst. 32, 11271133.Google Scholar
Liu, J., Das, D., Yang, F., et al. (2018). Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening and strengthening. Acta Biomater. 80, 217227.Google Scholar
Livadaru, L., Netz, R. R. & Kreuzer, H. J. (2003). Stretching response of discrete semiflexible polymers. Macromolecules 36, 37323744.Google Scholar
Marko, J. F. & Siggia, E. D. (1995). Stretching DNA. Macromolecules 28, 87598770.Google Scholar
Mattiasson, K. (1981). Numerical results from large deflection beams and frames problems analyzed by means of elliptic integrals. Int. J. Numer. Meth. Eng. 17, 145153.Google Scholar
McHugh, A. J. & Doufas, A. K. (2001). Modeling flow-induced crystallization in fiber spinning. Composites A 32, 10591066.Google Scholar
Mohanty, A. K., Misra, M. & Hinrichsen, G. (2000). Biofibers, biodegradable polymers and biocomposites: An overview. Macromolec. Mater. Eng. 276/277, 124.Google Scholar
Morton, W. E. (1956). The arrangement of fibers in single yarns. Textile Res. J. 26, 325331.Google Scholar
Moroz, J. D. & Nelson, P. C. (1998). Entropic elasticity of twist storing polymers. Macromolecules 31, 63336347.Google Scholar
Neagu, R. C., Gamstedt, E. K., Bardage, S. L. & Lindstrom, M. (2006). Ultrastructural features affecting mechanical properties of wood fibers. Wood Mat. Sci Eng. 1, 146170.Google Scholar
Neckar, B. & Das, D. (2018). Theory of structure and mechanics of yarns. Woodhead Publishing India, New Delhi.Google Scholar
Newman, W. I. & Phoenix, S. L. (2001). Time-dependent fiber bundles with local load sharing. Phys. Rev. E 63, 021507.Google Scholar
Odijk, T. (1995). Stiff chains and filaments under tension. Macromolecules 28, 70167018.Google Scholar
Okabe, T., Sekine, H., Ishii, K., Nishikawa, M. & Takeda, N. (2005). Numerical method for failure simulation of unidirectional fiber-reinforced composites with spring element model. Compos. Sci. Technol. 65, 921933Google Scholar
Orgel, J. P. R. O, Miller, A., Irving, T. C., et al. (2001). The in-situ supermolecular structure of type I collagen. Structure 9, 10611069.Google Scholar
Osta, A., Picu, R. C., King, A., et al. (2014). Effect of polypropylene fiber processing conditions on fiber mechanical behavior. Polym. Int. 63, 18161823.Google Scholar
Phoenix, S. L. (1993). Statistical issues in the fracture of brittle-matrix fibrous composites. Comp. Sci. Technol. 48, 6580.Google Scholar
Phoenix, S. L. & Beyerlein, I. J. (2000) Statistical strength theory for fibrous composite materials. In Comprehensive composite materials, Kelly, A. and Zweben, C., eds. Pergamon, New York, Vol. 1, Chap. 1.19.Google Scholar
Pimenta, S. & Pinho, S. T. (2013). Hierarchical scaling law for the strength of composite fibre bundles. J. Mech. Phys. Solids 61, 13371356.Google Scholar
Pradhan, S., Hansen, A. & Chkrabarti, B. K. (2010). Failure processes in elastic fiber bundles. Rev. Mod. Phys. 82, 499555.CrossRefGoogle Scholar
Puxkandl, R., Zizak, I., Paris, O., et al. (2002). Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. London B 357, 191197.Google Scholar
Reissner, E. (1972). On one-dimensional finite-strain beam theory: The plane problem. Z. Angew. Math. Phys. 23, 795804.Google Scholar
Reissner, E. (1981). On finite deformations of space-curved beams. Z. Angew. Math. Phys. 32, 734744.Google Scholar
Rezakhaniha, R., Agianniotis, A., Schrauwen, J. T. C., et al. (2012). Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11, 461473.Google Scholar
Richaud, E., Verdu, J. & Fayolle, B. (2009). Tensile properties of polyproylene fibres. Handbook of Tensile Properties of Textile and Technical Fibres, Woodhead Publishing Series – Elsevier, Cambridge, pp. 315331.Google Scholar
Riding, G. (1964). Filament migration in single yarns. J. Textile Inst. 55, T9T17.Google Scholar
Romero, I. (2008). A comparison of finite elements for nonlinear beams: The absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20, 5168.Google Scholar
Rosa, A., Hoang, T. X., Marenduzzo, D. & Maritan, A. (2003). Elasticity of semiflexible polymers with and without self-interactions. Macromolecules 36, 1009510102.Google Scholar
Rubinstein, M. & Colby, R. H. (2003). Polymer physics. Oxford University Press, New York.CrossRefGoogle Scholar
Seth, R. S. and Page, D. H. (1983). The stress strain curve of paper. In The role of fundamental research in paper making: Transactions of the symposium held at Cambridge, September 1981, 2nd ed. (January 1, 1983). Mechanical Engineering Publications Limited, London, pp. 421452.Google Scholar
Shahsavari, A. & Picu, R. C. (2012). Model selection for athermal cross-linked fiber networks. Phys. Rev. E 86, 011923.Google Scholar
Sherman, V. R., Yang, W. & Meyers, M. A. (2015) The materials science of collagen. J. Mech. Beh. Biomed. Mater. 52, 2250.Google Scholar
Sopakayang, R., de Vita, R., Kwansa, A. & Freeman, J. W. (2012). Elastic and viscoelastic properties of type I collagen fiber. J. Theor. Biol. 293, 197205.Google Scholar
Strick, T. R., Allemand, J.-F., Bensimon, D., Bensimon, A. & Croquette, V. (1996). The elasticity of a single supercoiled DNA molecule. Science 271, 18351837.Google Scholar
Swolfs, Y., Verpoest, I. & Gorbatikh, L. (2015). Issues in strength models for unidirectional fibre-reinforced composites related to Weibull distributions, fibre packings and boundary effects. Compos. Sci. Technol. 114, 4249.Google Scholar
Timoshenko, S. P. & Gere, J. M. (1961). Theory of elastic stability. Dover, Mineola, NY.Google Scholar
Treloar, L. R. G. (1965). A migrating-filament theory of yarn properties. J. Textile Inst. 56, T359T380.Google Scholar
da Vinci, L. (1972) I Libri Di Meccanica, reconstructed from the original notes by Arturo Uccelli. Nendeln, Liechtenstein.Google Scholar
Weiner, J. H. (1982). Use of S= k log(p) for stretched polymers. Macromolecules 15, 542544.Google Scholar
Weiner, J. H. (1983). Statistical mechanics of elasticity. John Wiley, New York.Google Scholar
Wu, H. F., Biresaw, G. & Laemmle, J.T. (1991). Effect of surfactant treatments on interfacial adhesion in single graphite-epoxy composites. Polymer Compos. 12, 281288.Google Scholar
Zhang, Z., Liu, B., Zhang, Y. W., Hwang, K. C. & Gao, H. (2014). Ultra-strong collagen-mimic carbon nanotube bundles. Carbon 77, 10401053.Google Scholar
Zhang, Z. Q., Liu, B., Huang, Y., Hwang, K. C. & Gao, H. (2010). Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution. J. Mech. Phys. Solids 58, 16461660.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Fibers and Fiber Bundles
  • Catalin R. Picu, Rensselaer Polytechnic Institute, New York
  • Book: Network Materials
  • Online publication: 15 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108779920.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Fibers and Fiber Bundles
  • Catalin R. Picu, Rensselaer Polytechnic Institute, New York
  • Book: Network Materials
  • Online publication: 15 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108779920.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Fibers and Fiber Bundles
  • Catalin R. Picu, Rensselaer Polytechnic Institute, New York
  • Book: Network Materials
  • Online publication: 15 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108779920.003
Available formats
×