Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T10:43:39.496Z Has data issue: false hasContentIssue false

11 - Composite Networks

Published online by Cambridge University Press:  15 September 2022

Catalin R. Picu
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

This chapter is dedicated to composites in which the reinforcement is a stochastic fiber network. Many network materials are reinforced by the addition of fillers of various geometry. However, in most current applications, filler dimensions are orders of magnitude larger than the characteristic length scales of the network. The focus of this chapter is on the properties of composites with matched filler-network length scales. The four sections of the chapter present the mechanics of networks reinforced with particles of dimensions comparable with the network pores, networks reinforced with stiff fibers, interpenetrating networks in which reinforcement is provided by the interaction with another network which spans the same spatial domain, and of networks embedded in a continuum matrix. It is shown that exceptional properties may be achieved due to the emergence of interphases in thermal and athermal networks with rigid fillers, and in interpenetrating network systems. The results and concepts presented are aimed to stimulate the future development of reinforced network materials.

Type
Chapter
Information
Network Materials
Structure and Properties
, pp. 393 - 427
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S., Nakajima, T., Kurokawa, T., Haque, M. A. & Gong, J. P. (2014). Brittle–ductile transition of double network hydrogels: Mechanical balance of two networks as the key factor. Polymer 55, 914923.Google Scholar
Amoroso, N. J., D’Amore, A., Hong, Y., et al. (2012). Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomat. 8, 42684277.Google Scholar
Ansari, F., Skrifvars, M. & Berglund, L. (2015). Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Comp. Sci. Technol. 117, 298306.Google Scholar
Aranguren, M. I., Mora, E., Macosko, C. W. & Saam, J. (1994). Rheological and mechanical properties of filled rubber: Silica-silicone. Rubber Chem. Technol. 67, 820833.Google Scholar
Avazmohammadi, R. & Ponte Castaneda, P. (2014). On the macroscopic response, microstructure evolution and macroscopic stability of short-fiber-reinforced elastomers at finite strains: I: Analytical results. Phil. Mag. 94, 10311067.Google Scholar
Bai, M., Missel, A. R., Klug, W. S. & Levine, A. J. (2011). The mechanics and affine–nonaffine transition in polydisperse semiflexible networks. Soft Matt. 7, 907914.Google Scholar
Burla, F., Tauber, J., Dussi, S., van der Gucht, J. & Koenderink, G. H. (2019). Stress management in composite biopolymer networks. Nature Phys. 15, 549553.Google Scholar
Donev, A., Torquato, S., Stillinger, F. H. & Connelly, R. (2004). Jamming in hard sphere and disk packings. J. Appl. Phys. 95, 989999.Google Scholar
Es-haghi, S. S., Leonov, A. I. & Weiss, R. A. (2014). Deconstructing the double network hydrogels: The importance of grafted chains for achieving toughness. Macromolecules 47, 47694777.Google Scholar
Es-haghi, S. S. & Weiss, R. A. (2016a). Finite strain damage–elastoplasticity in double network hydrogels. Polymer 103, 277287.CrossRefGoogle Scholar
Es-haghi, S. S. & Weiss, R. A. (2016b). Fabrication of tough hydrogels from chemically cross-linked multiple neutral networks. Macromolecules 49, 89808987.Google Scholar
Es-haghi, S. S. & Weiss, R. A. (2017). Do physically trapped polymer chains contribute to the mechanical response of a host double network hydrogel under finite tensile deformation? Macromolecules 50, 82678273.Google Scholar
Fukasawa, M., Sakai, T., Chung, U. I. & Haraguchi, K. (2010). Synthesis and mechanical properties of a nanocomposite gel consisting of tetra-PEG/Clay network. Macromolecules 43, 43704378.Google Scholar
Gavrilov, A. A., Chertovich, A. V., Khalatur, P. G. & Khokhlov, A. R. (2013). Effect of nanotube size on the mechanical properties of elastomeric composites. Soft Matt. 9, 40674072.Google Scholar
Hashin, Z. & Shtrikman, S. (1961). Note on a variational approach to the theory of composite elastic materials. J. Franklin Inst. 271, 336341.Google Scholar
Hassanzadeh, P., Kazemzadeh-Narbat, M., Roesnzweig, R., et al. (2016). Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). J. Mater. Chem. B 4, 25392543.Google Scholar
Horii, M. & Nemat-Nasser, S. (1993). Micromechanics: Overall properties of heterogeneous materials. North-Holland, Amsterdam.Google Scholar
Huisman, E. M., Heussinger, C., Storm, C. & Barkema, G. T. (2010). Semiflexible filamentous composites. Phys. Rev. Lett. 105, 118101.Google Scholar
Illeperuma, W. R. K., Sun, J. Y., Suo, Z. & Vlassak, J. J. (2014). Fiber-reinforced tough hydrogels. Extreme Mech. Lett. 1, 9096.Google Scholar
Islam, M. R. & Picu, R. C. (2019). Random fiber networks with inclusions: The mechanism of reinforcement. Phys. Rev. E 99, 063001.Google Scholar
Lai, V. K., Lake, S. P., Frey, C. R., Tranquillo, R. T. & Barocas, V. H. (2012). Mechanical behavior of collagen–fibrin co-gels reflects transition from series to parallel interactions with increasing collagen content. J. Biomech. Eng. 134, 011004.Google Scholar
Li, H., Wang, H., Zhang, D., Xu, Z. & Liu, W. (2018). A highly tough and stiff supramolecular polymer double network hydrogel. Polymer 153, 193200.Google Scholar
Li, J., Suo, Z. & Vlassak, J. J. (2014). Stiff, strong and tough hydrogels with good chemical stability. J. Mater. Chem. B 2, 67086713.Google Scholar
Lin, X., Zhu, H., Yuan, X., Wang, Z. & Bordas, S. (2019). The elastic properties of composites reinforced by a transversely isotropic random fiber network. Comp. Struct. 208, 3344.CrossRefGoogle Scholar
Lin, Y. C., Koenderink, G. H., MacKintosh, F. C. & Weitz, D. A. (2011). Control of non-linear elasticity in F-actin network with microtubules. Soft Matt. 7, 902906.Google Scholar
Lopez-Pamies, O., Goudarzi, T. & Danas, K. (2013). The nonlinear elastic response of suspensions of rigid inclusions in rubber: II: A simple explicit approximation for finite-concentration suspensions. J. Mech. Phys. Sol. 61, 1937.Google Scholar
Medalia, A. I. (1978). Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem. Technol. 51, 437523.Google Scholar
Medalia, A. I. & Kraus, G. (1994). Reinforcement of elastomers by particulate fillers. In Science and technology of rubber, Mark, J. E., Erman, B. & Eirich, F. R., eds. Academic Press, San Diego, pp. 387418.Google Scholar
Mullins, L. & Tobin, N. R. (1965). Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler‐reinforced vulcanized rubber. J. Appl. Polym. Sci. 9, 29933009.Google Scholar
Murai, J., Nakajima, T., Matsuda, T., et al. (2019). Tough double network elastomers reinforced by the amorphous cellulose network. Polymer 178, 121686.Google Scholar
Na, Y. H., Tanaka, Y., Kawauchi, Y., et al. (2006). Necking phenomenon of double network gels. Macromolecules 39, 46414645.Google Scholar
Nakajima, T., Furukawa, H., Tanaka, Y., et al. (2009). True chemical structure of double network hydrogels. Macromolecules 42, 21842189.Google Scholar
Oono, R. (1978). Distribution of carbon black in SBR. Rubber Chem. Technol. 51, 278284.Google Scholar
van Oosten, A. S. G., Chen, X., Chin, L. K., et al. (2019). Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature 573, 96101.Google Scholar
Payne, A. R. (1974). Hysteresis in rubber vulcanizates. J. Polym. Sci.: Poly. Symp. 48, 169196.Google Scholar
Payne, A. R. & Whittaker, R. E. (1971). Low strain dynamic properties of filled rubbers. Rubber Chem. Technol. 44, 440478.Google Scholar
Picu, R. C., Krawczyk, K. K., Wang, Z., et al. (2019). Toughening in nanosilica-reinforced epoxy with tunable filler-matrix interface properties. Comp. Sci. Technol. 183, 107799.Google Scholar
Ponte Castaneda, P. (1989). The overall constitutive behavior of nonlinearly elastic composites. Proc. R. Soc. London A 422, 147171.Google Scholar
Raisanen, V. I., Heyden, S., Gustafsson, P. J., et al. (1997). Simulation of the effect of a reinforcement fiber on network mechanics. Nordic Pulp Paper Res. J. 12, 162166.Google Scholar
Rombouts, W. H., Giesbers, M., van Lent, J., de Wolf, F. A. & van der Gucht, J. (2014). Synergistic stiffening in double-fiber networks. Biomacromolecules 15, 12331239.Google Scholar
Rubinstein, M. & Colby, R. H. (2003). Polymer physics. Oxford University Press, Oxford.Google Scholar
Shahsavari, A. S. & Picu, R. C. (2015). Exceptional stiffening in composite fiber networks. Phys. Rev. E 92, 012401.Google Scholar
Shivers, J. L., Feng, J., van Oosten, A. S. G., et al. (2020). Compression stiffening of fibrous networks with stiff inclusions. Proc. Nat. Acad. Sci. 117, 2103721044.Google Scholar
Sperling, L. H. (1981). Interpenetrating polymer networks and related materials. Springer, Boston, MA.Google Scholar
Strange, D. G. T. & Oyen, M. L. (2012). Composite hydrogels for nucleus pulposus tissue engineering. J. Mech. Beh. Biomed. Mater. 11, 1626.Google Scholar
Sun, J. Y., Zhao, X., Illeperuma, W. R. K., et al. (2012). Highly stretchable and tough hydrogels. Nature 489, 133136.Google Scholar
Takahashi, R., Ikai, T., Kurokawa, T., King, D. R. & Gong, J. P. (2019). Double network hydrogels based on semi-rigid polyelectrolyte physical networks. J. Mater. Chem. B 7, 63476354.Google Scholar
Tonsomboon, K. & Oyen, M. L. (2013). Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J. Mech. Beh. Biomed. Mater. 21, 185194.CrossRefGoogle ScholarPubMed
Tsukeshiba, H., Huang, M., Na, Y. H., et al. (2005). Effect of polymer entanglement on the toughening of double network hydrogels. J. Phys. Chem. B 109, 1630416309.Google Scholar
Voet, A. (1980). Reinforcement of elastomers by fillers: review of period 1967–1976. J. Poly. Sci.: Macromolec. Rev. 15, 327373.Google Scholar
Wagner, M. P. (1976). Reinforcing silicas and silicates. Rubber Chem. Technol. 49, 703774.Google Scholar
Wang, Q., Chen, S. & Chen, D. (2017). Preparation and characterization of chitosan based injectable hydrogels enhanced by chitin nanowhiskers. J. Mech. Beh. Biomed. Mater. 65, 466477.Google Scholar
Yuan, Q. W. & Mark, J. E. (1999). Reinforcement of PDMS networks by blended and in-situ generated silica fillers having various sizes, size distributions and modified surfaces. Macromol. Chem. Phys. 200, 206220.Google Scholar
Zhang, L., Lake, S. P., Barocas, V. H., Shephard, M. S. & Picu, R. C. (2013). Crosslinked fiber network embedded in an elastic matrix. Soft Matt. 9, 63986405.Google Scholar
Zhang, X., Huang, J., Chang, P. R., et al. (2010). Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on Cyclodextrin inclusion. Polymer 51, 43984407.Google Scholar
Zimmermann, T., Pohler, E. & Gaiger, T. (2004). Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater. 6, 754761.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Composite Networks
  • Catalin R. Picu, Rensselaer Polytechnic Institute, New York
  • Book: Network Materials
  • Online publication: 15 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108779920.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Composite Networks
  • Catalin R. Picu, Rensselaer Polytechnic Institute, New York
  • Book: Network Materials
  • Online publication: 15 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108779920.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Composite Networks
  • Catalin R. Picu, Rensselaer Polytechnic Institute, New York
  • Book: Network Materials
  • Online publication: 15 September 2022
  • Chapter DOI: https://doi.org/10.1017/9781108779920.012
Available formats
×