Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgments
- List of abbreviations
- 1 Fetal nutrition
- 2 Determinants of intrauterine growth
- 3 Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia
- 4 Postnatal growth in preterm infants
- 5 Thermal regulation and effects on nutrient substrate metabolism
- 6 Development and physiology of the gastrointestinal tract
- 7 Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods
- 8 Nutrient regulation in brain development: glucose and alternate fuels
- 9 Water and electrolyte balance in newborn infants
- 10 Amino acid metabolism and protein accretion
- 11 Carbohydrate metabolism and glycogen accretion
- 12 Energy requirements and protein-energy metabolism and balance in preterm and term infants
- 13 The role of essential fatty acids in development
- 14 Vitamins
- 15 Normal bone and mineral physiology and metabolism
- 16 Disorders of mineral, vitamin D and bone homeostasis
- 17 Trace minerals
- 18 Iron
- 19 Conditionally essential nutrients: choline, inositol, taurine, arginine, glutamine and nucleotides
- 20 Intravenous feeding
- 21 Enteral amino acid and protein digestion, absorption, and metabolism
- 22 Enteral carbohydrate assimilation
- 23 Enteral lipid digestion and absorption
- 24 Minimal enteral nutrition
- 25 Milk secretion and composition
- 26 Rationale for breastfeeding
- 27 Fortified human milk for premature infants
- 28 Formulas for preterm and term infants
- 29 Differences between metabolism and feeding of preterm and term infants
- 30 Gastrointestinal reflux
- 31 Hypo- and hyperglycemia and other carbohydrate metabolism disorders
- 32 The infant of the diabetic mother
- 33 Neonatal necrotizing enterocolitis: clinical observations and pathophysiology
- 34 Neonatal short bowel syndrome
- 35 Acute respiratory failure
- 36 Nutrition for premature infants with bronchopulmonary dysplasia
- 37 Nutrition in infants with congenital heart disease
- 38 Nutrition therapies for inborn errors of metabolism
- 39 Nutrition in the neonatal surgical patient
- 40 Nutritional assessment of the neonate
- 41 Methods of measuring body composition
- 42 Methods of measuring energy balance: calorimetry and doubly labelled water
- 43 Methods of measuring nutrient substrate utilization using stable isotopes
- 44 Postnatal nutritional influences on subsequent health
- 45 Growth outcomes of preterm and very low birth weight infants
- 46 Post-hospital nutrition of the preterm infant
- Index
- References
14 - Vitamins
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgments
- List of abbreviations
- 1 Fetal nutrition
- 2 Determinants of intrauterine growth
- 3 Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia
- 4 Postnatal growth in preterm infants
- 5 Thermal regulation and effects on nutrient substrate metabolism
- 6 Development and physiology of the gastrointestinal tract
- 7 Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods
- 8 Nutrient regulation in brain development: glucose and alternate fuels
- 9 Water and electrolyte balance in newborn infants
- 10 Amino acid metabolism and protein accretion
- 11 Carbohydrate metabolism and glycogen accretion
- 12 Energy requirements and protein-energy metabolism and balance in preterm and term infants
- 13 The role of essential fatty acids in development
- 14 Vitamins
- 15 Normal bone and mineral physiology and metabolism
- 16 Disorders of mineral, vitamin D and bone homeostasis
- 17 Trace minerals
- 18 Iron
- 19 Conditionally essential nutrients: choline, inositol, taurine, arginine, glutamine and nucleotides
- 20 Intravenous feeding
- 21 Enteral amino acid and protein digestion, absorption, and metabolism
- 22 Enteral carbohydrate assimilation
- 23 Enteral lipid digestion and absorption
- 24 Minimal enteral nutrition
- 25 Milk secretion and composition
- 26 Rationale for breastfeeding
- 27 Fortified human milk for premature infants
- 28 Formulas for preterm and term infants
- 29 Differences between metabolism and feeding of preterm and term infants
- 30 Gastrointestinal reflux
- 31 Hypo- and hyperglycemia and other carbohydrate metabolism disorders
- 32 The infant of the diabetic mother
- 33 Neonatal necrotizing enterocolitis: clinical observations and pathophysiology
- 34 Neonatal short bowel syndrome
- 35 Acute respiratory failure
- 36 Nutrition for premature infants with bronchopulmonary dysplasia
- 37 Nutrition in infants with congenital heart disease
- 38 Nutrition therapies for inborn errors of metabolism
- 39 Nutrition in the neonatal surgical patient
- 40 Nutritional assessment of the neonate
- 41 Methods of measuring body composition
- 42 Methods of measuring energy balance: calorimetry and doubly labelled water
- 43 Methods of measuring nutrient substrate utilization using stable isotopes
- 44 Postnatal nutritional influences on subsequent health
- 45 Growth outcomes of preterm and very low birth weight infants
- 46 Post-hospital nutrition of the preterm infant
- Index
- References
Summary
Vitamins are organic compounds required in trace amounts in the diet for the maintenance of normal growth and development. They are divided into fat-soluble and water-soluble groups. For term infants, the daily requirement is based on the content of human milk with the exceptions of vitamins D and K for which human milk is clearly deficient.
Newborn deficiencies of the fat-soluble vitamins A, D, E and K are well described. The fat-soluble vitamins require the presence of pancreatic enzymes and bile acids in the gut for their absorption. They are stored in the body and thus clinical deficiency may require some time to develop unless stores are inadequate at birth as in the preterm infant. On the other hand, excessive intakes accumulate in the body and have the potential for toxicity. All of the fat-soluble vitamins have been used in pharmacologic quantities in the newborn for treatment or prevention of disease processes, though clear indications for their use in this fashion remain areas of neonatal nutritional controversy. Vitamin D, unique to this family of compounds, functions more like a prohormone in that it can be synthesized in the skin and carried to other organs where the metabolic effects occur.
As for the water-soluble vitamins and vitamin-like cofactors, the same statements cannot be made. Requirements for term infants are based on the concentrations in human milk. Deficiency or toxicity is very rare in developed countries.
- Type
- Chapter
- Information
- Neonatal Nutrition and Metabolism , pp. 161 - 184Publisher: Cambridge University PressPrint publication year: 2006