Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgments
- List of abbreviations
- 1 Fetal nutrition
- 2 Determinants of intrauterine growth
- 3 Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia
- 4 Postnatal growth in preterm infants
- 5 Thermal regulation and effects on nutrient substrate metabolism
- 6 Development and physiology of the gastrointestinal tract
- 7 Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods
- 8 Nutrient regulation in brain development: glucose and alternate fuels
- 9 Water and electrolyte balance in newborn infants
- 10 Amino acid metabolism and protein accretion
- 11 Carbohydrate metabolism and glycogen accretion
- 12 Energy requirements and protein-energy metabolism and balance in preterm and term infants
- 13 The role of essential fatty acids in development
- 14 Vitamins
- 15 Normal bone and mineral physiology and metabolism
- 16 Disorders of mineral, vitamin D and bone homeostasis
- 17 Trace minerals
- 18 Iron
- 19 Conditionally essential nutrients: choline, inositol, taurine, arginine, glutamine and nucleotides
- 20 Intravenous feeding
- 21 Enteral amino acid and protein digestion, absorption, and metabolism
- 22 Enteral carbohydrate assimilation
- 23 Enteral lipid digestion and absorption
- 24 Minimal enteral nutrition
- 25 Milk secretion and composition
- 26 Rationale for breastfeeding
- 27 Fortified human milk for premature infants
- 28 Formulas for preterm and term infants
- 29 Differences between metabolism and feeding of preterm and term infants
- 30 Gastrointestinal reflux
- 31 Hypo- and hyperglycemia and other carbohydrate metabolism disorders
- 32 The infant of the diabetic mother
- 33 Neonatal necrotizing enterocolitis: clinical observations and pathophysiology
- 34 Neonatal short bowel syndrome
- 35 Acute respiratory failure
- 36 Nutrition for premature infants with bronchopulmonary dysplasia
- 37 Nutrition in infants with congenital heart disease
- 38 Nutrition therapies for inborn errors of metabolism
- 39 Nutrition in the neonatal surgical patient
- 40 Nutritional assessment of the neonate
- 41 Methods of measuring body composition
- 42 Methods of measuring energy balance: calorimetry and doubly labelled water
- 43 Methods of measuring nutrient substrate utilization using stable isotopes
- 44 Postnatal nutritional influences on subsequent health
- 45 Growth outcomes of preterm and very low birth weight infants
- 46 Post-hospital nutrition of the preterm infant
- Index
- References
8 - Nutrient regulation in brain development: glucose and alternate fuels
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgments
- List of abbreviations
- 1 Fetal nutrition
- 2 Determinants of intrauterine growth
- 3 Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia
- 4 Postnatal growth in preterm infants
- 5 Thermal regulation and effects on nutrient substrate metabolism
- 6 Development and physiology of the gastrointestinal tract
- 7 Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods
- 8 Nutrient regulation in brain development: glucose and alternate fuels
- 9 Water and electrolyte balance in newborn infants
- 10 Amino acid metabolism and protein accretion
- 11 Carbohydrate metabolism and glycogen accretion
- 12 Energy requirements and protein-energy metabolism and balance in preterm and term infants
- 13 The role of essential fatty acids in development
- 14 Vitamins
- 15 Normal bone and mineral physiology and metabolism
- 16 Disorders of mineral, vitamin D and bone homeostasis
- 17 Trace minerals
- 18 Iron
- 19 Conditionally essential nutrients: choline, inositol, taurine, arginine, glutamine and nucleotides
- 20 Intravenous feeding
- 21 Enteral amino acid and protein digestion, absorption, and metabolism
- 22 Enteral carbohydrate assimilation
- 23 Enteral lipid digestion and absorption
- 24 Minimal enteral nutrition
- 25 Milk secretion and composition
- 26 Rationale for breastfeeding
- 27 Fortified human milk for premature infants
- 28 Formulas for preterm and term infants
- 29 Differences between metabolism and feeding of preterm and term infants
- 30 Gastrointestinal reflux
- 31 Hypo- and hyperglycemia and other carbohydrate metabolism disorders
- 32 The infant of the diabetic mother
- 33 Neonatal necrotizing enterocolitis: clinical observations and pathophysiology
- 34 Neonatal short bowel syndrome
- 35 Acute respiratory failure
- 36 Nutrition for premature infants with bronchopulmonary dysplasia
- 37 Nutrition in infants with congenital heart disease
- 38 Nutrition therapies for inborn errors of metabolism
- 39 Nutrition in the neonatal surgical patient
- 40 Nutritional assessment of the neonate
- 41 Methods of measuring body composition
- 42 Methods of measuring energy balance: calorimetry and doubly labelled water
- 43 Methods of measuring nutrient substrate utilization using stable isotopes
- 44 Postnatal nutritional influences on subsequent health
- 45 Growth outcomes of preterm and very low birth weight infants
- 46 Post-hospital nutrition of the preterm infant
- Index
- References
Summary
To maintain normal cerebral function and development, a sufficient amount of metabolizable substrate must be supplied to the brain at all times. Glucose is the primary energy substrate for the growing fetus, newborn and adult brain under physiologic conditions. As much as 90% of all the energy consumed by the fetus is estimated to be derived from glucose. Plasma glucose concentration of the fetus changes with that of the mother, i.e. a linear relationship exists between the glucose concentrations of the mother and the fetus. At birth with umbilical cord clamping, the maternal supply of oxygen and nutrients ceases abruptly, which sets into motion the initiation of neonatal glucose production triggered by a surge in various circulating hormones. Most normal term and preterm infants are able to mobilize glycogen, initiate gluconeogenesis, and thereby produce glucose at 4–6 mg kg−1 min−1 in the immediate postnatal period. When glucose deficiency occurs, other organic non-glucose substrates are utilized to sustain the normal energy balance of supply and demand. This chapter will address normal cerebral glucose metabolism focusing on the delivery of glucose by a family of facilitative glucose transporters, the role of alternate substrates when glucose availability is limited, cerebral adaptive responses to hypoglycemia, and finally hypoglycemia-induced brain cellular apoptosis and/or necrosis.
Difficulties in defining hypoglycemia
Abnormalities in glucose homeostasis continue to pose problems in the term and preterm newborn infant. The reported incidence of hypoglycemia varies depending on the definition of hypoglycemia and the test employed to measure glucose concentrations.
- Type
- Chapter
- Information
- Neonatal Nutrition and Metabolism , pp. 91 - 103Publisher: Cambridge University PressPrint publication year: 2006
References
- 1
- Cited by