Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgments
- List of abbreviations
- 1 Fetal nutrition
- 2 Determinants of intrauterine growth
- 3 Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia
- 4 Postnatal growth in preterm infants
- 5 Thermal regulation and effects on nutrient substrate metabolism
- 6 Development and physiology of the gastrointestinal tract
- 7 Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods
- 8 Nutrient regulation in brain development: glucose and alternate fuels
- 9 Water and electrolyte balance in newborn infants
- 10 Amino acid metabolism and protein accretion
- 11 Carbohydrate metabolism and glycogen accretion
- 12 Energy requirements and protein-energy metabolism and balance in preterm and term infants
- 13 The role of essential fatty acids in development
- 14 Vitamins
- 15 Normal bone and mineral physiology and metabolism
- 16 Disorders of mineral, vitamin D and bone homeostasis
- 17 Trace minerals
- 18 Iron
- 19 Conditionally essential nutrients: choline, inositol, taurine, arginine, glutamine and nucleotides
- 20 Intravenous feeding
- 21 Enteral amino acid and protein digestion, absorption, and metabolism
- 22 Enteral carbohydrate assimilation
- 23 Enteral lipid digestion and absorption
- 24 Minimal enteral nutrition
- 25 Milk secretion and composition
- 26 Rationale for breastfeeding
- 27 Fortified human milk for premature infants
- 28 Formulas for preterm and term infants
- 29 Differences between metabolism and feeding of preterm and term infants
- 30 Gastrointestinal reflux
- 31 Hypo- and hyperglycemia and other carbohydrate metabolism disorders
- 32 The infant of the diabetic mother
- 33 Neonatal necrotizing enterocolitis: clinical observations and pathophysiology
- 34 Neonatal short bowel syndrome
- 35 Acute respiratory failure
- 36 Nutrition for premature infants with bronchopulmonary dysplasia
- 37 Nutrition in infants with congenital heart disease
- 38 Nutrition therapies for inborn errors of metabolism
- 39 Nutrition in the neonatal surgical patient
- 40 Nutritional assessment of the neonate
- 41 Methods of measuring body composition
- 42 Methods of measuring energy balance: calorimetry and doubly labelled water
- 43 Methods of measuring nutrient substrate utilization using stable isotopes
- 44 Postnatal nutritional influences on subsequent health
- 45 Growth outcomes of preterm and very low birth weight infants
- 46 Post-hospital nutrition of the preterm infant
- Index
- References
11 - Carbohydrate metabolism and glycogen accretion
Published online by Cambridge University Press: 10 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgments
- List of abbreviations
- 1 Fetal nutrition
- 2 Determinants of intrauterine growth
- 3 Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia
- 4 Postnatal growth in preterm infants
- 5 Thermal regulation and effects on nutrient substrate metabolism
- 6 Development and physiology of the gastrointestinal tract
- 7 Metabolic programming as a consequence of the nutritional environment during fetal and the immediate postnatal periods
- 8 Nutrient regulation in brain development: glucose and alternate fuels
- 9 Water and electrolyte balance in newborn infants
- 10 Amino acid metabolism and protein accretion
- 11 Carbohydrate metabolism and glycogen accretion
- 12 Energy requirements and protein-energy metabolism and balance in preterm and term infants
- 13 The role of essential fatty acids in development
- 14 Vitamins
- 15 Normal bone and mineral physiology and metabolism
- 16 Disorders of mineral, vitamin D and bone homeostasis
- 17 Trace minerals
- 18 Iron
- 19 Conditionally essential nutrients: choline, inositol, taurine, arginine, glutamine and nucleotides
- 20 Intravenous feeding
- 21 Enteral amino acid and protein digestion, absorption, and metabolism
- 22 Enteral carbohydrate assimilation
- 23 Enteral lipid digestion and absorption
- 24 Minimal enteral nutrition
- 25 Milk secretion and composition
- 26 Rationale for breastfeeding
- 27 Fortified human milk for premature infants
- 28 Formulas for preterm and term infants
- 29 Differences between metabolism and feeding of preterm and term infants
- 30 Gastrointestinal reflux
- 31 Hypo- and hyperglycemia and other carbohydrate metabolism disorders
- 32 The infant of the diabetic mother
- 33 Neonatal necrotizing enterocolitis: clinical observations and pathophysiology
- 34 Neonatal short bowel syndrome
- 35 Acute respiratory failure
- 36 Nutrition for premature infants with bronchopulmonary dysplasia
- 37 Nutrition in infants with congenital heart disease
- 38 Nutrition therapies for inborn errors of metabolism
- 39 Nutrition in the neonatal surgical patient
- 40 Nutritional assessment of the neonate
- 41 Methods of measuring body composition
- 42 Methods of measuring energy balance: calorimetry and doubly labelled water
- 43 Methods of measuring nutrient substrate utilization using stable isotopes
- 44 Postnatal nutritional influences on subsequent health
- 45 Growth outcomes of preterm and very low birth weight infants
- 46 Post-hospital nutrition of the preterm infant
- Index
- References
Summary
Metabolism of glucose in the fetus
Glucose is a vital substrate for the growing and developing fetus. It is required by most cells for oxidative and nonoxidative ATP production and serves as a precursor for other carbon-containing compounds. It is the primary fuel used for several specialized cells and is the major fuel used by the brain. Its storage in the liver as glycogen provides a means by which glucose homeostasis can be maintained, particularly during the neonatal period. The fetal requirement for glucose is met almost, if not entirely, by transplacental transport from the mother to the fetus. At birth, there is an abrupt loss of the maternal supply of substrates and nutrients and the newborn has to mobilize glucose and other substrates to meet its energy needs.
A number of studies in a variety of species, including humans, have shown that fetal plasma glucose concentrations are significantly lower than that of the mother. Furthermore, there is a direct relationship between maternal and fetal plasma glucose concentrations and the supply of glucose to the fetus is highly dependent upon maternal glycemia. Thus, the supply of glucose to the fetus is likely to be diminished in the case of maternal hypoglycemia and to be increased in the case of maternal hyperglycemia. However, the placenta has a large capacity for glucose storage in the form of glycogen which blunts glucose transfer to the fetus when significant maternal hyperglycemia occurs.
- Type
- Chapter
- Information
- Neonatal Nutrition and Metabolism , pp. 122 - 133Publisher: Cambridge University PressPrint publication year: 2006
References
- 2
- Cited by