Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T15:05:21.303Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 August 2014

Dirk Hofmann
Affiliation:
Universidade de Aveiro, Portugal
Gavin J. Seal
Affiliation:
Swiss Federal Institute of Technology, Lausanne
Walter Tholen
Affiliation:
York University, Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Monoidal Topology
A Categorical Approach to Order, Metric, and Topology
, pp. 467 - 479
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, S. and A., Jung. Domain theory. In S., Abramsky, D.M., Gabbay, and T.S.E., Maibaurn, eds., Handbook of Logic in Computer Science. Oxford University Press, Oxford, 1994, pp. 1-168.
Adámek, J., H., Herrlich, and G.E., Strecker. Abstract and Concrete Categories: The Joy of Cats. Wiley, New York, 1990. Republished as Repr. Theory Appl. Categ., 17 (2006).
Adámek, J., F.W., Lawvere, and J., Rosicky. Continuous categories revisited. Theory Appl. Categ., 11:252-282, 2003.Google Scholar
Adámek, J., J., Rosický, and E.M., Vitale. Algebraic Theories: A Categorical Introduction to General Algebra. Cambridge University Press, Cambridge, 2011. With a foreword by F.W. Lawvere.
Akhvlediani, A.Hausdorff and Gromov distances in quantale-enriched categories. MA thesis, York University, Toronto, 2008.
Akhvlediani, A., M. M., Clementino, and W., Tholen. On the categorical meaning of Hausdorff and Gromov distances, I. Topology Appl., 157(8):1275-1295, 2010.Google Scholar
Awodey, S.Category Theory. Clarendon, New York, 2006.
Banaschewski, B.Essential extensions of T0-spaces. Gen. Topol. Appl., 7:233-246, 1977.Google Scholar
Banaschewski, B. and G., Bruns. Categorical characterization of the MacNeille completion. Arch. Math. (Basel), 18:369-377, 1967.Google Scholar
Banaschewski, B., R., Lowen, and C. Van, Olmen. Sober approach spaces. Topol. Appl., 153:3059-3070, 2006.Google Scholar
Barr, M.Relational algebras. Lect. Notes Math., 137:39-55, 1970.Google Scholar
Barr, M. and C., Wells. Toposes, Triples and Theories. Springer, New York, 1985. Republished as Repr. Theory Appl. Categ., 12 (2005).
Beck, J.Distributive laws. Lect. Notes Math., 80:119-140, 1969. Republished as Repr. Theory Appl. Categ., 18 (2008).Google Scholar
Bénabou, J.Catégories avec multiplication. C.R., Acad. Sci. Paris, 256:1887-1890, 1963.Google Scholar
Bénabou, J.Fibrations petites et localement petites. C.R., Acad. Sci. Paris Sér. A, 281:897-900, 1975.Google Scholar
Bénabou, J.Fiberedcategories and the foundations of naive category theory. J. Symb. Log., 50:10-37, 1985.Google Scholar
Bénabou, J.Distributors at work. http://www.mathematik.tu-darmstadt.de/~streicher/, 2000. Lecture notes by T. Streicher.
Bentley, H.L., H., Herrlich, and R., Lowen. Improving constructions in topology. In H., Herrlich and H.-E., Porst, eds., Category Theory at Work.Heldermann, Berlin, 1991, pp. 3-20.
Betti, R., A., Carboni, R., Street, and R., Walters. Variation through enrichment. J. Pure Appl. Algebra, 29:109-127, 1983.Google Scholar
Birkedal, L., K., Støvring, and J., Thamsborg. The category-theoretic solution of recursive metric-space equations. Theoret. Comput. Sci., 411:4102-4122, 2010.Google Scholar
Birkhoff, G.A new definition of limit. Bull. Amer. Math. Soc., 41:636, 1935.Google Scholar
Birkhoff, G.Moore-Smith convergence in general topology. Ann. of Math. (2), 38:39-56, 1937.Google Scholar
Birkhoff, G.Lattice Theory, 3rd edn. American Mathematical Society, Providence, RI, 1979.
Bonsangue, M.M., F. van, Breugel, and J.J.M.M., Rutten. Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding. Theoret. Comput. Sci., 193:1-51, 1998.Google Scholar
Borceux, F.Handbook of Categorical Algebra 1. Basic Category Theory. Cambridge University Press, Cambridge, 1994a.
Borceux, F.Handbook of Categorical Algebra 2. Categories and Structures. Cambridge University Press, Cambridge, 1994b.
Borceux, F.Handbook of Categorical Algebra 3. Categories of Sheaves. Cambridge University Press, Cambridge, 1994c.
Börger, R.Coproducts and ultrafilters. J. Pure Appl. Algebra, 46:35-47, 1987a.Google Scholar
Börger, R.Disjoint and universal coproducts, I, II. Seminarberichte, Fern Universität, Hagen, 1987b.
Börger, R.Disjointness and related properties of coproducts. Acta Univ. Carolin. Math. Phys., 35:43-63, 1994.Google Scholar
Börger, R. and W., Tholen. Cantors Diagonalprinzip für Kategorien. Math. Z., 160:135-138, 1978.Google Scholar
Bourbaki, N.Elements de Mathématique. Les Structures Fondamentales de l'Analyse, III: Topologie Générale, III. Groupes Topologiques (Théorie Elémentaire) IV. Nombres Réels. Hermann, Paris, 1942.
Bourbaki, N.General Topology, Chapters 1-4. Springer, Berlin, 1989.
Brock, P. and D.C., Kent. Approach spaces, limit tower spaces, and probabilistic convergence spaces. Appl. Categ. Structures, 5:99-110, 1997.Google Scholar
Brock, P. and D.C., Kent. On convergence approach spaces. Appl. Categ. Structures, 6:117-125, 1998.Google Scholar
Bunge, M.Coherent extensions and relational algebras. Trans. Amer. Math. Soc., 197:355-390, 1974.Google Scholar
Burroni, A.T-catégories (catégories dans un triple). Cahiers Topol. Géom. Différent., 12: 215-321, 1971.
Carboni, A., G.M., Kelly, and R.J., Wood. A 2-categorical approach to change of base and geometric morphisms I. Cahiers Topologie Géom. Différentielle, 32: 47-95, 1991.Google Scholar
Carboni, A., S., Lack, and R., Walters. Introduction to extensive and distributive categories. J. Pure Appl. Algebra, 84:145-158, 1993.Google Scholar
Cartan, H.Filtres et ultrafiltres. C. R. Acad. Sci. Paris, 205:777-779, 1937a.Google Scholar
Cartan, H.Théorie des filtres. C. R. Acad. Sci. Paris, 205:595-598, 1937b.Google Scholar
Čech, E.On bicompact spaces. Ann. of Math. (2), 38:823-844, 1937.Google Scholar
Chai, Y.-M.A note on the probabilistic quasi-metric spaces. J. Sichuan Univ. (Natur. Sci. Ed.), 46:543-547, 2009.
Choquet, G.Convergences. Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.), 23:57-112, 1948.Google Scholar
Clementino, M.M., E., Giuli, and W., Tholen. Topology in a category: compactness. Portugal. Math., 53:397-433, 1996.Google Scholar
Clementino, M.M., E., Giuli, and W., Tholen. A functional approach to general topology. In M.-C., Pedicchio and W., Tholen, eds., Categorical Foundations. Cambridge University Press, Cambridge, 2004a, pp. 103-164.
Clementino, M.M. and D., Hofmann. Triquotient maps via ultrafilter convergence. Proc. Amer. Math. Soc., 130:3423-3431, 2002.Google Scholar
Clementino, M.M. and D., Hofmann. Topological features of lax algebras. Appl. Categ. Structures, 11:267-286, 2003.Google Scholar
Clementino, M.M. and D., Hofmann. Effective descent morphisms in categories of lax algebras. Appl. Categ. Structures, 12:413-425, 2004a.Google Scholar
Clementino, M.M. and D., Hofmann. On extensions of lax monads. Theory Appl. Categ., 13:41-60, 2004b.Google Scholar
Clementino, M.M. and D., Hofmann. Exponentiation in V-categories. Topology Appl., 153:3113-3128, 2006.Google Scholar
Clementino, M.M. and D., Hofmann. On some special classes of continuous maps. In E., Pearl, ed., Open Problems in Topology, II.Elsevier, Amsterdam, 2007, pp. 367-376.
Clementino, M.M. and D., Hofmann. Relative injectivity as cocompleteness for a class of distributors. Theory Appl. Categ., 21:210-230, 2008.Google Scholar
Clementino, M.M. and D., Hofmann. Lawvere completeness in topology. Appl. Categ. Structures, 17:175-210, 2009.Google Scholar
Clementino, M.M. and D., Hofmann. Descent morphisms and a van Kampen theorem in categories of lax algebras. Topology Appl., 159:2310-2319, 2012.Google Scholar
Clementino, M.M., D., Hofmann, and G., Janelidze. Local homeomorphisms via ultrafilter convergence. Proc. Amer. Math. Soc., 133:917-922, 2005.Google Scholar
Clementino, M.M., D., Hofmann, and A., Montoli. Covering morphisms in categories of relational algebras. Appl. Categ. Structures, 2013, in press; DOI: 10.1007/s10485- 013-9349-0.Google Scholar
Clementino, M.M., D., Hofmann, and W., Tholen. The convergence approach to exponen- tiable maps. Math. Portugal., 60:139-160, 2003a.Google Scholar
Clementino, M.M., D., Hofmann, and W., Tholen. Exponentiability in categories of lax algebras. Theory Appl. Categ., 11:337-352, 2003b.Google Scholar
Clementino, M.M., D., Hofmann, and W., Tholen. One setting for all: metric, topology, uniformity, approach structure. Appl. Categ. Structures, 12:127-154, 2004b.Google Scholar
Clementino, M.M. and W., Tholen. Tychonoff's theorem in a category. Proc. Amer. Math. Soc., 124:3311-3314, 1996.Google Scholar
Clementino, M.M. and W., Tholen. Metric, topology and multicategory - a common approach. J. Pure Appl. Algebra, 179:13-47, 2003.Google Scholar
Clementino, M.M. and W., Tholen. Proper maps for lax algebras and the Kuratowski- Mrówka theorem. Theory Appl. Categ., 27:327-346, 2013.Google Scholar
Colebunders, E. and R., Lowen. A quasitopos containing CONV and MET as full subcategories. Internat. J. Math. Math. Sci., 11:417-438, 1988.Google Scholar
Colebunders, E. and R., Lowen. Topological quasitopos hulls of categories containing topological and metric objects. Cah. Topol. Géom. Différ. Catég., 30:213-227, 1989.
Colebunders, E. and R., Lowen. Metrically generated theories. Proc. Amer. Math. Soc., 133:1547-1556, 2005.Google Scholar
Colebunders, E., R., Lowen, and W., Rosiers. Lax algebras via initial monad morphisms: APP, TOP, MET and ORD. Topology Appl., 158:882-903, 2011.Google Scholar
Colebunders, E., R., Lowen, and P., Wuyts. A Kuratowski-Mrówka theorem in approach theory. Topology Appl., 153:756-766, 2005.Google Scholar
Colebunders, E. and G., Richter. An elementary approach to exponential spaces. Appl. Categ. Structures, 9:303-310, 2001.Google Scholar
Cook, C.H. and H.R., Fischer. Regularconvergence spaces. Math. Ann., 174:1-7, 1967.Google Scholar
Cruttwell, G.S.H.Normed Spaces and the Change of Base for Enriched Categories. Ph.D. thesis, Dalhousie University, Halifax, 2008.
Cruttwell, G.S.H. and M.A., Shulman. A unified framework for generalized multicategories. Theory Appl. Categ., 24:580-655, 2010.Google Scholar
Davey, B.A. and H. A., Priestley. Introduction to Lattices and Order. Cambridge University Press, Cambridge, 1990.
Day, A.Filtermonads, continuous lattices and closure systems. Canad. J. Math., 27:50-59, 1975.Google Scholar
Day, B.J. and G.M., Kelly. On topologically quotient maps preserved by pullbacks or products. Proc. Cambridge Philos. Soc., 67:553-558, 1970.Google Scholar
de Groot, J.An isomorphism principle in general topology. Bull. Amer. Math. Soc., 73:465-467, 1967.Google Scholar
de Groot, J., G.E., Strecker, and E., Wattel. The compactness operator in general topology. In General Topology and its Relations to Modern Analysis and Algebra, II.Academia, Prague, 1967, pp. 161-163.Google Scholar
Dikranjan, D. and E., Giuli. Closure operators I. Topology Appl., 27:129-143, 1987.Google Scholar
Dikranjan, D. and E., Giuli. Compactness, minimality and closedness with respect to a closure operator. In J., Adámek and S., MacLane, eds., Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, World Scientific Publishing, Teaneck, 1989, pp. 284-296.
Dikranjan, D. and W., Tholen. Categorical Structure of Closure Operators: With Applications to Topology, Algebra and Discrete Mathematics. Kluwer, Dordrecht, 1995.
Duskin, J.Variations on Beck's tripleability criterion. Lect. Notes Math., 106:74-129, 1969.Google Scholar
Dyckhoff, R.Total reflections, partial products, and hereditary factorizations. Topology Appl., 17:101-113, 1984.Google Scholar
Dyckhoff, R. and W., Tholen. Exponentiable morphisms, partial products and pullback complements. J. Pure Appl. Algebra, 49:103-116, 1987.Google Scholar
Eilenberg, S. and G.M., Kelly. Closed categories. In Proc. Conf. Categorical Algebra. Springer, New York, 1966, pp. 421-562.
Eilenberg, S. and J.C., Moore. Adjoint functors and triples. Illinois J. Math., 9:381-398, 1965.Google Scholar
Engelking, R.General Topology, 2nd edn. Heldermann, Berlin, 1989.
Erné, M.Vollständig Distributive Topologien und Idempotente Relationen. Deutsche Mathematiker-Vereinigung, Dortmund, 1980.
Erné, M.Scott convergence and Scott topology in partially ordered sets, II. In B., Bemaschewski and R.-E., Hoffmann, eds., Continuous Lattices, Lecture Notes in Mathematics, 871. Springer, Berlin, 1981, pp. 61-96.
Erné, M.The ABC of order and topology. In H., Herrlich and H.-E., Porst, eds., Category Theory at Work. Heldermann, Berlin, 1991, pp. 57-83.
Erné, M.Z-continuous posets and their topological manifestation. Appl. Categ. Structures, 7:31-70, 1999.Google Scholar
Erné, M. and G., Wilke. Standard completions for quasiordered sets. Semigroup Forum, 27:351-376, 1983.Google Scholar
Ershov, Y.L.Theory of domains and nearby. In D., Bjørner, M., Broy, and I.V., Pottosin, eds., Formal Methods in Programming and their Applications. Lecture Notes in Computer Science 735. Springer, Berlin, 1993, pp. 1-7.
Escardó, M.H.Properly injective spaces and function spaces. Topology Appl., 89:75-120, 1998.Google Scholar
Fawcett, B. and R., Wood. Constructive complete distributivity I.Math. Proc. Camb. Phil. Soc., 107:81-89, 1990.Google Scholar
Feferman, S.Set-theoretical foundations of category theory. In Reports of the Midwest Category Seminar III, Lecture Notes in Mathematics 106. Springer, Berlin, 1969, pp. 106-201.
Feferman, S.Categorical foundations and foundations of category theory. In R.E., Butts and J., Hintikka, eds., Logic, Foundations of Mathematics, and Computability Theory, Proc. 5th Int. Congr., London, Ontario, 1975, Part1, 1977, pp. 149-169. Philos. Sci., 9:149-169, 1977.
Flagg, R.C.Completeness in continuity spaces. In R.A.G., Seely, ed., Category Theory 1991. AMS, Providence, RI, 1992, pp. 183-200.
Flagg, R.C.Quantales and continuity spaces. Algebra Universalis, 37:257-276, 1997.Google Scholar
Flagg, R.C. and R., Kopperman. Continuity spaces: reconciling domains and metric spaces. Theoret. Comput. Sci., 177:111-138, 1997.Google Scholar
Flagg, R.C., P., Sünderhauf, and K., Wagner. A logical approach to quantitative domain theory. Topology Atlas, Preprint 23, http://at.yorku.ca/e/a/p/p/23.htm, 1996.
Fréchet, M.Généralisation d'un théorème de Weierstrass. C.R. Acad. Sci. Paris, 139:848-850, 1905.Google Scholar
Fréchet, M.Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo, 22:1-74, 1906.Google Scholar
Fréchet, M.Surdivers modes deconvergenced'unesuite de fonctions d'unevariable. Bull. Calcutta Math. Soc., 11:187-206, 1921.Google Scholar
Freyd, P.J. and A., Scedrov. Categories, Allegories. North-Holland, Amsterdam, 1990.
Gabriel, P. and F., Ulmer. Lokal präsentierbare Kategorien. Lecture Notes in Mathematics 221. Springer, Berlin, 1971.
Gähler, W.Monads and convergence. In Proc. Conf. Generalized Functions, Convergence Structures and Their Applications, Dubrovnik, Yugoslavia, 1987. Springer, New York, 1988, pp. 29-46.
Gähler, W. (ed.) etal. Recent Developments of General Topology and its Applications. Int. Conf. in Memory of Felix Hausdorff (1868-1942), Berlin, Germany, March 22-28, 1992. Akademie Verlag. Math. Res. 67, Berlin, 1992, pp. 136-149.
Gerlo, A., E., Vandersmissen, and C. Van, Olmen. Sober approach spaces are firmly reflective for the class of epimorphic embeddings. Appl. Categ. Structures, 14:251-258, 2006.Google Scholar
Gierz, G., K.H., Hofmann, K., Keimel, J.D., Lawson, M.W., Mislove, and D.S., Scott. A Compendium of Continuous Lattices. Springer, Berlin, 1980.
Gierz, G., K.H., Hofmann, K., Keimel, J.D., Lawson, M.W., Mislove, and D.S., Scott. Continuous Lattices and Domains. Cambridge University Press, Cambridge, 2003.
Godement, R.Topologie Algébrique et Théorie des Faisceaux. Hermann, Paris, 1958.
Grimeisen, G.Gefilterte Summation von Filtern und iterierte Grenzprozesse I. Math. Ann., 141:318-342, 1960.Google Scholar
Grimeisen, G.Gefilterte Summation von Filtern und iterierte Grenzprozesse, II. Math. Ann., 144:386-417, 1961.Google Scholar
Grothendieck, A., J.-L., Verdier, and P., Deligne. Conditions de finitude, topos et sites fibrés. Applications aux questions de passage à la limite. In Séminaire de Géométrie Algébrique du Bois Marie 1963/64, SGA 4, no. 6. Lecture Notes in Mathematics 270. Springer, Berlin, 1972, pp. 163-340.
Gutierres, G. and D., Hofmann. Axioms for sequential convergence. Appl. Categ. Structures, 15:599-614, 2007.Google Scholar
Gutierres, G. and D., Hofmann. Approaching metric domains. Appl. Categ. Structures, 21(6):617-650, 2013.Google Scholar
Hausdorff, F.Grundzüge der Mengenlehre. Veit, Leipzig, 1914.
Hermida, C.Representable multicategories. Adv. Math., 151:164-225, 2000.Google Scholar
Hermida, C.From coherent structures to universal properties. J. Pure Appl. Algebra, 165:7-61, 2001.Google Scholar
Herrlich, H.Perfect subcategories and factorizations. In Topics in Topol., Colloqu. Keszthely 1972. Colloquia Math. Soc. János Bolyai 8, 1974, pp. 387-403, 1974.
Herrlich, H.Topologie, I: Topologische Räume. Heldermann, Berlin, 1986.
Herrlich, H.On the representability of partial morphisms in Top and in related constructs. In Proc. 1st Conf. Categorical Algebra and its Applications, Louvain-la-Neuve, Belgium, 1987. Lecture Notes in Mathematics 1348. Springer, Berlin, 1988a, pp. 143-153.
Herrlich, H.Topologie, II: Uniforme Räume. Heldermann, Berlin, 1988b.
Herrlich, H.Axiom of Choice. Lecture Notes in Mathematics 1876. Springer, Berlin, 2006.
Herrlich, H., E., Colebunders, and F., Schwarz. Improving Top: PrTop and PsTop. In H., Herrlich and H.-E., Porst, eds., Category Theory at Work. Heldermann, Berlin, 1991, pp. 21-34.
Herrlich, H. and M., Husek. Galois connections categorically. J. Pure Appl. Algebra, 68:165-180, 1990.Google Scholar
Herrlich, H., G., Salicrup, and G.E., Strecker. Factorizations, denseness, separation, and relatively compact objects. Topology Appl., 27:157-169, 1987.Google Scholar
Hochster, M.Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43-60, 1969.Google Scholar
Höhle, U.M-valued sets and sheaves over integral commutative CL-monoids. In S.E., Rod-abaugh, E.P., Klement, and U., Höhle, eds., Applications of Category Theory to Fuzzy Subsets. Theory and Decision Library vol. 14. Kluwer, Dordrecht, 1992, pp. 33-72.
Höhle, U.Many-Valued Topology and its Applications. Kluwer, Boston, 2001.
Hoffmann, R.-E.Die kategorielle Auffassung der Initial- und Finaltopologie. Ph.D. thesis, Ruhr-Universität, Bochum, 1972.
Hoffmann, R.-E.Projective sober spaces. In Structure of Topological Categories, Math.-Arbeitspapiere, vol. 18. University of Bremen, Bremen, 1979, pp. 109-153.
Hoffmann, R.-E.Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications. B., Bernaschewski and R.-E., Hoffmann, eds., Proc. Conf. Continuous Lattices, Bremen, 1979. Lecture Notes in Mathematics 871. Berlin, Springer, 1981, pp. 61-96.
Hofmann, D.An algebraic description of regular epimorphisms in topology. J. Pure Appl. Algebra, 199:71-86, 2005.Google Scholar
Hofmann, D.Exponentiation forunitary structures. Topology Appl., 153:3180-3202, 2006.Google Scholar
Hofmann, D.Topological theories and closed objects. Adv. Math., 215:789-824, 2007.Google Scholar
Hofmann, D. and C.D., Reis. Probabilistic metric spaces as enriched categories. Fuzzy Set. Syst., 210:1-21, 2013.Google Scholar
Hofmann, D. and W., Tholen. Kleisli compositions for topological spaces. Topology Appl., 153:2952-2961, 2006.Google Scholar
Hofmann, D. and W., Tholen. Lax algebra meets topology. Topology Appl., 159:2434-2452, 2012.Google Scholar
Hofmann, D. and P., Waszkiewicz. Approximation in quantale-enriched categories. Topology Appl., 158:963-977, 2011.Google Scholar
Huber, P.J.Homotopy theory in general categories. Math. Ann., 144:361-385, 1961.Google Scholar
Isbell, J.R.Six theorems about injective metric spaces. Comment. Math. Helv., 39:65-76, 1964.Google Scholar
Isbell, J.R.Atomless parts of spaces. Math. Scand., 31:5-32, 1972.Google Scholar
Isbell, J.R.General function spaces, products and continuous lattices. Math. Proc. Camb. Philos. Soc., 100:193-205, 1986.Google Scholar
Jäger, G.A one-point compactification for lattice-valued convergence spaces. Fuzzy Set. Syst., 190:21-31, 2012.Google Scholar
James, I.M.Fibrewise Topology.Cambridge University Press, Cambridge, 1989.
Janelidze, G.Categorical Galois theory: revision and some recent developments. In K., Deneckeet al., eds., Galois Connections and Applications. Mathematics and its Applications (Dordrecht) 565. Kluwer, Dordrecht, 2004, pp. 139-171.
Jayewardene, R. and O., Wyler. Categories of relations and functional relations. Appl. Categ. Structures, 9:279-305, 2000.Google Scholar
Johnstone, P.T.Topos Theory.Academic Press, London, 1977.
Johnstone, P.T.On a topological topos. Proc. London Math. Soc. (3), 38:237-271, 1979.Google Scholar
Johnstone, P.T.Stone Spaces.Cambridge University Press, Cambridge, 1982.
Johnstone, P.T.Sketches of an Elephant: A Topos Theory Compendium 1.Clarendon, New York, 2002a.
Johnstone, P.T.Sketches of an Elephant: A Topos Theory Compendium 2.Clarendon, New York, 2002b.
Jung, A.Stably compact spaces and the probabilistic powerspace construction. Electron. Notes Theoret Comput. Sci., 87:5-20, 2004.Google Scholar
Kamnitzer, S.H.Protoreflections, Relational Algebras and Topology. Ph.D. thesis, University of Cape Town, Cape Town, 1974a.
Kamnitzer, S.H.Topological aspects of relational algebras. Math. Colloq. Univ. Cape Town, 9:23-59, 1974b.Google Scholar
Kelley, J.L.Convergence in topology. Duke Math. J., 17:277-283, 1950.Google Scholar
Kelly, G.M.Basic Concepts of Enriched Category Theory.Cambridge University Press, Cambridge, 1982. Republished as Repr. Theory Appl. Categ.10 (2005).
Kelly, G.M.A note on relations relative to a factorization system. In Proc. Int. Conf. Category Theory, Como, Italy, 1990. Lecture Notes in Mathematics 1488. Springer, Berlin, 1991, pp. 249-261.
Kent, D.C. and W.K., Min. Neighborhood spaces. Int. J. Math. Math. Sci., 32:387-399, 2002.Google Scholar
Kent, D.C. and G.D., Richardson. Open and proper maps between convergence spaces. Czech. Math. J., 23:15-23, 1973.Google Scholar
Klein, A.Relations in categories. Illinois J. Math., 14:536-550, 1970.Google Scholar
Kock, A.Monads for which structures are adjointto units. J. Pure Appl. Algebra, 104:41-59, 1995.Google Scholar
Kopperman, R.All topologies come from generalized metrics. Amer. Math. Month., 95:89-97, 1988.Google Scholar
Kostanek, M. and P., Waszkiewicz. The formal ball model for Q-categories. Math. Structures Comput. Sci., 21:41-64, 2011.Google Scholar
Kowalsky, H.-J.Beiträge zur topologischen Algebra. Math. Nachr., 11:143-185, 1954a.Google Scholar
Kowalsky, H.-J.Limesräume und Komplettierung. Math. Nachr., 12:301-340, 1954b.Google Scholar
Kreyszig, E.Interaction between general topology and functional analysis. In Handbook of the History of General Topology, vol. 1. Kluwer, Dordrecht, 1997, pp. 357-390.
Kruml, D. and J., Paseka. Algebraic and categorical aspects of quantales. In M., Hazewinkel, ed., Handbook of Algebra, vol. 5. Elsevier, Amsterdam, 2008, pp. 323-362.
Kuratowski, C.Évaluation de la classe borélienne ou projective d'un ensemble de points à l'aide des symboles logiques. Fundam. Math., 17:249-272, 1931.Google Scholar
Lack, S. and R., Street. The formal theory of monads, II. J. Pure Appl. Algebra, 175:243-265, 2002.Google Scholar
Lambek, J.Deductive systems and categories, II. Standard constructions and closed categories. In Proc. Conf. Category Theory, Homology Theory and their Applications, Battelle Memorial Institute Seattle Research Center, 1968. Lecture Notes in Mathematics 86. Springer, Berlin, 1969, pp. 76-122.
Lawson, J.The duality of continuous posets. Houston J. Math., 5:357-386, 1979.Google Scholar
Lawson, J.The round ideal completion via sobrification. Topology Proc., 22:261-274, 1997.Google Scholar
Lawson, J.Stably compact spaces. Math. Structures Comput. Sci., 21:125-169, 2011.Google Scholar
Lawvere, F.W.The category of categories as a foundation for mathematics. In Proc. Conf. Categorical Algebra, Springer, New York, 1966, pp. 1-20.
Lawvere, F.W.Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano, 43:135-166, 1973. Republished as Repr. Theory Appl. Categ.1 (2002).Google Scholar
Lawvere, F.W. and R., Rosebrugh. Sets for Mathematics.Cambridge University Press, Cambridge, 2003.
Lowen R., Kuratowski'smeasure of noncompactness revisited. Quart. J. Math. Oxford Ser. 2, 39:235-254, 1988.Google Scholar
Lowen, R.Approach spaces: a common supercategory of TOP and MET. Math. Nachr., 141:183-226, 1989.Google Scholar
Lowen, R.Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad.Oxford University Press, Oxford, 1997.
Lowen, R.A survey of some categorical aspects of approach theory. In H., Herrlich and H.-E., Porst, eds., Categorical Methods in Algebra and Topology.University of Bremen, Bremen, 2000, pp. 267-277.
Lowen, R.Index Calculus: Approach Theory at Work.Springer, Berlin, 2013.
Lowen, R. and M., Sioen. A note on separation in AP. Appl. Gen. Topol., 4:475-486, 2003.Google Scholar
Lowen, R., C. Van, Olmen, and T., Vroegrijk. Functional ideals and topological theories. Houston J. Math., 34:1065-1089, 2008.Google Scholar
Lowen, R. and C., Verbeeck. Local compactness in approach spaces I. Int. J. Math. Math. Sci., 21:429-438, 1998.Google Scholar
Lowen, R. and C., Verbeeck. Local compactness in approach spaces, II. Int. J. Math. Math. Sci., 2:109-117, 2003.Google Scholar
Lowen, R. and T., Vroegrijk. A new lax algebraic characterization of approach spaces. Quad. Mat., 22:199-232, 2008.Google Scholar
Lucyshyn-Wright, R.B.B.Monoidal domain-theoretic topology. Master's thesis, York University, Toronto, 2009.
Lucyshyn-Wright, R.B.B.Domains occur among spaces as strict algebras among lax. Math. Structures Comput. Sci., 21:647-670, 2011.Google Scholar
MacLane, S.Natural associativity and commutativity. Rice Univ. Studies, 49:28-46, 1963.Google Scholar
Mac Lane, S.One universe as a foundation for category theory. In Reports of the Midwest Category Seminar III, Lecture Notes in Mathematics 106. Springer, Berlin, 1969, pp. 192-200.
Mac Lane, S.Categories for the Working Mathematician.Springer, New York, 1971; 2nd edn. 1998.
Mac Lane, S. and I., Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory.Springer, New York, 1994.
MacDonald, J. and M., Sobral. Aspects of monads. In C., Pedicchio and W., Tholen, eds., Categorical Foundations. Cambridge University Press, Cambridge, 2004, pp. 213-268.
Machado, A.Espaces d'Antoine et pseudo-topologies. Cah. Topol. Géom. Différ. Catég., 14:309-327, 1973.Google Scholar
Machner, J.T-algebras of the monad L-Fuzz. Czech. Math. J., 35(110):515-528, 1985.Google Scholar
McShane, E.J.Partialorderings and Moore-Smith limits. Am. Math. Mon., 59:1-11, 1952.Google Scholar
Mahmoudi, M., C., Schubert, and W., Tholen. Universality of coproducts in categories of lax algebras. Appl. Categ. Structures, 14:243-249, 2006.Google Scholar
Manes, E.G.A Triple Miscellany. Ph.D. thesis, Wesleyan University, Middletown, 1967.
Manes, E.G.Atriple theoretic construction of compactalgebras. In Sem. Triples and Categorical Homology Theory, ETH, Zurich, 1966/67. Lecture Notes in Mathematics 80. Springer, Berlin, 1969, pp. 91-118.
Manes, E.G.Compact Hausdorff objects. Gen. Topology Appl., 4:341-360, 1974.Google Scholar
Manes, E.G.Algebraic Theories. Springer, New York, 1976.
Manes, E.G.Taut monads and T0-spaces. Theor. Comp. Sci., 275:79-109, 2002.Google Scholar
Manes, E.G.Taut monads, dynamical logic and determinism. Electron. Notes Theoret. Comput. Sci., 173:241-262, 2007.Google Scholar
Manes, E.G.Monads in topology. Topology Appl., 157:961-989, 2010.Google Scholar
Manes, E.G. and P., Mulry. Monad compositions, I: General constructions and recursive distributive laws. Theory Appl. Categ., 18:172-208, 2007.Google Scholar
Marmolejo, F., R., Rosebrugh, and R., Wood. A basic distributive law. J. Pure Appl. Algebra, 168:209-226, 2002.Google Scholar
Marny, T.On epireflective subcategories of topological categories. Gen. Topology Appl., 10:175-181, 1979.Google Scholar
Meisen, J.Relations in regular categories. In Symp. Localized Group Theory Homotopy Theory and Related Topics, Battelle Memorial Institute Seattle Research Center. Lecture Notes in Mathematics 418. Springer, Berlin, 1974, pp. 196-202.
Menger, K.Statistical metrics. Proc. Nat. Acad. Sci. USA, 28:535-537, 1942.Google Scholar
Möbus, A. (E, M)-Relationalalgebren und -Objekte. In Nordwestdeutsches Kate-gorien seminar 1977. Universität Bielefeld, Bielefeld, 1978, pp. 163-194.
Möbus, A.Relational-Algebren. Ph.D. thesis, Universität Düsseldorf, Düsseldorf, 1981.
Möbus, A.Wallman compactification of T4-relational algebras and Mal'cev monads. In D., Pumpliin and W., Tholen, eds., Seminarberichte, vol. 16. Fernuniversität, Hagen, 1982, pp. 111-132.
Möbus, A.Alexandrov compactification of relational algebras. Arch. Math. (Basel), 40:526-537, 1983.Google Scholar
Moore, E.H.Definition of limit in general integral analysis. Nat. Acad. Proc., 1:628-632, 1915.Google Scholar
Moore, E.H. and H.L., Smith. A general theory of limits. Amer. J. Math., 44: 102-121, 1922.Google Scholar
Mrówka, S.Compactness and productspaces. Colloq. Math., 7:19-22, 1959.Google Scholar
Nachbin, L.Sur les espaces topologiques ordonnés. C.R. Acad. Sci. Paris, 226:381-382, 1948.Google Scholar
Nachbin, L.Topologia e Ordem.University of Chicago Press, Chicago, IL, 1950. English translation: Topology and Order, Van Nostrand, Princeton, NJ, 1965.
Niefield, S.Cartesianness: topological spaces, uniform spaces, and affine schemes. J. Pure Appl. Algebra, 23:147-167, 1982.Google Scholar
Pasynkov, B.A.Partial topological products. Trans. Mosc. Math. Soc., 13: 153-271, 1965.Google Scholar
Pedicchio, M.C. and W., Tholen. Multiplicative structures over sup-lattices. Arch. Math. (Brno), 25:107-114, 1989.
Pedicchio, M.C. and R.J., Wood. Groupoidal completely distributive lattices. J. Pure Appl. Algebra, 143:339-350, 1999.Google Scholar
Penon, J.Objets séparés ou compacts dans une catégorie. C.R. Acad. Sci. Paris Sér. A, 274:384-387, 1972.Google Scholar
Penon, J.Quasi-topos. C.R. Acad. Sci. Paris Sér. A, 276:237-240, 1973.Google Scholar
Perry, R.J.Completely regular relational algebras. Cahiers Topologie Géom. Différentielle, 17:125-133, 1976.Google Scholar
Picado, J., A., Pultr, and A., Tozzi. Locales. In M.C., Pedicchio and W., Tholen, eds., Categorical Foundations. Cambridge University Press, Cambridge, 2004, pp. 49-101.
Pisani, C.Convergence in exponentiable spaces. Theory Appl. Categ., 5:148-162, 1999.Google Scholar
Ramaley, J.F. and O., Wyler. Cauchy spaces, I, structure and uniformization theorems. Math. Ann., 187:175-186, 1970.Google Scholar
Reis, C.D.Topologia via Categorias Enriquecidas. Ph.D. thesis, University of Aveiro, Aveiro, 2013.
Reitermann, J. and W., Tholen. Effective descent maps of topological spaces. Topology Appl., 57:53-69, 1994.Google Scholar
Riesz, F.Stetigkeitsbegriff und abstrakte Mengenlehre. In Atti del IV Congresso Intern. dei Matem., Bologna, vol. 2, 1908, pp. 18-24.
Robeys, K.T.Extensions of Products of Metric Spaces. Ph.D. thesis, University of Antwerp, Antwerp, 1992.
Rosebrugh, R. and R., Wood. Boundedness and complete distributivity. Appl. Categ. Structures, 9:437-456, 2001.Google Scholar
Rosebrugh, R. and R.J., Wood. Distributive laws and factorization. J. Pure Appl. Algebra, 175:327-353, 2002.Google Scholar
Rosenthal, K.I.Quantales and their Applications. Addison Wesley Longman, Harlow, 1990.
Rosenthal, K.I.The Theory of Quantaloids. Addison Wesley Longman, Harlow, 1996.
Rutten, J.J.M.M.Weighted colimits and formal balls in generalized metric spaces. Topology Appl., 89:179-202, 1998.Google Scholar
Schubert, C.Lax Algebras – A Scenic Approach. Ph.D. thesis, Universität Bremen, Bremen, 2006.
Schubert, C. and G.J., Seal. Extensions in the theory of lax algebra. Theory Appl. Categ., 21:118-151, 2008.Google Scholar
Schubert, H.Categories.Springer, New York, 1972.
Schweizer, B. and A., Sklar. Probabilistic Metric Spaces.North-Holland, New York, 1983.
Scott, D.Continuous lattices. In Conf. Toposes, Algebraic Geometry and Logic, Dalhousie, Halifax N.S., 1971. Lecture Notes in Mathematics 274. Springer, Berlin, 1972, pp. 97-136.
Seal, G.J.Canonical and op-canonical lax algebras. Theory Appl. Categ., 14:221-243, 2005.Google Scholar
Seal, G.J.A Kleisli-based approach to lax algebras. Appl. Categ. Structures, 17:75-89, 2009.Google Scholar
Seal, G.J.Order-adjointmonads and injective objects. J. Pure Appl. Algebra, 214:778-796, 2010.Google Scholar
Seal, G.J.On the monadic nature of categories of ordered sets. Cah. Topol. Géom. Différ. Catég., 52:163-187, 2011.Google Scholar
Smyth, M.B.Effectively given domains. Theoret. Comput. Sci., 5:257-274, 1977/1978.Google Scholar
Solovyov, S.A.On the category Q-mod. Algebra Universalis, 58:35-58, 2008.Google Scholar
Solovyov, S.A.On a lax-algebraic characterization of closed maps, Appl. Categ. Structures, 2013, in press; DOI: 10.1007/s 10485-013-9334-7.Google Scholar
Šostak, A.P.Fuzzy functions and an extension of the category L-Top of Chang-Goguen L-topological spaces. In Proc. Ninth Prague Topological Symp., 2001, pp. 271-294. Contributed papers available at www.emis.de/procedings/TopoSym2001/00.htm.
Šostak, A.P.Fuzzy functions as morphisms in an extension of the category of Hutton L-uniform spaces. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci., 57:121-127, 2003.Google Scholar
Stone, M.H.Applications of the theory of Boolean rings to generaltopology. Trans. Amer. Math. Soc., 41:375-481, 1937.Google Scholar
Street, R.The formal theory of monads. J. Pure Appl. Algebra, 2:149-168, 1972.Google Scholar
Street, R.Fibrations and Yoneda's lemma in a 2-category. In Proc. Category Sem., Sydney, 1972/73. Lecture Notes in Mathematics 420. Springer, Berlin, 1974, pp. 104-133.
Street, R.Categorical structures. In M., Hazewinkel, ed., Handbook of Algebra, vol. 1. Elsevier, Amsterdam, pp. 529-577. 1996.
Streicher, T.Fibred categories à la Jean Bénabou. Lecture notes. Available at http://www.mathematik.tu-darmstadt.de/〜st:reiche:r/FIBR/FibLec.pdf, 1998-2012.
Stubbe, I.Categorical structures enriched in a quantaloid: categories, distributors and functors. Theory Appl. Categ., 14:1-45, 2005.Google Scholar
Stubbe, I.Categorical structures enriched in a quantaloid: tensored and cotensored categories. Theory Appl. Categ., 16:283-306, 2006.Google Scholar
Stubbe, I.Q-modules are Q-suplattices. Theory Appl. Categ., 19:50-60, 2007.Google Scholar
Tarski, A.Une contribution à la théorie de la mesure. Fundam. Math., 15:42-50, 1930.Google Scholar
Thampuran, D.V.Extended topology: filters and convergence I. Math. Ann., 158:57-68, 1965.Google Scholar
Tholen, W.On Wyler's tautlift theorem. Gen. Topology Appl., 8:197-206, 1978.Google Scholar
Tholen, W.Semitopological functors I. J. Pure Appl. Algebra, 15:53-73, 1979.Google Scholar
Tholen, W.Factorizations, localizations, and the orthogonal subcategory problem. Math. Nachr., 114:63-85, 1983.Google Scholar
Tholen, W.A categorical guide to separation, compactness and perfectness. Homology, Homotopy Appl., 1:147-161, 1999.Google Scholar
Tholen, W.Ordered topological structures. Topology Appl., 156:2148-2157, 2009.Google Scholar
Trnková, V.Relational automata in a category and their languages. In Proc. Int. Conf. Fundamental Computing Theory, Poznan-Kornik, 1977. Lecture Notes in Computer Science 56. Springer, Berlin, 1977, pp. 340-355.
Tukey, J.W.Convergence and Uniformity in Topology.Princeton University Press, Princeton, NJ, 1940.
Tychonoff, A.N.Über die topologische Erweiterung von Räumen. Math. Ann., 102:544-561, 1930.Google Scholar
van Breugel, F.An introduction to metric semantics: operational and denotational models for programming and specification languages. Theoret. Comput. Sci., 258:1-98, 2001.Google Scholar
VanOlmen, C.A study of the interaction between frame theory and approach theory. Ph.D. thesis, University of Antwerp, 2005.
Van Olmen, C. and S., Verwulgen. A finite axiom scheme for approach frames. Bull. Belg. Math. Soc. Simon Stevin, 17:899-908, 2010.Google Scholar
Vietoris, L.Bereiche zweiter Ordnung. Monatsh. Math. Phys., 32:258-280, 1922.Google Scholar
Wagner, K.R.Solving recursive domain equations with enriched categories. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, 1994.
Waszkiewicz, P.On domain theory over Girard quantales. Fund. Inform., 92:169-192, 2009.Google Scholar
Wood, R.J.Ordered sets via adjunctions. In C., Pedicchio and W., Tholen, eds., Categorical Foundations.Cambridge University Press, Cambridge, 2004, pp. 5-47.
Wyler, O.On the categories of general topology and topological algebra. Arch. Math. (Basel), 22:7-17, 1971.Google Scholar
Wyler, O.Are there topoi in topology? In Proc. Conf. Categorical Topology, Mannheim, 1975. Lecture Notes in Mathematics 540. Springer, Berlin, 1976, pp. 699-719.
Wyler, O.Algebraic theories of continuous lattices. In Continous Lattices. Lecture Notes in Mathematics 871. Springer, Berlin, 1981, pp. 390-413.
Wyler, O.Lectures Notes on Topoi and Quasitopoi.World Scientific, Singapore, 1991.
Wyler, O.Convergence axioms for topology. Ann. NY Acad. Sci., 806:465-475, 1995.Google Scholar
Zhang, D.Tower extensions of topological constructs. Comment. Math. Univ. Carolinae, 41:41-51, 2000.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×