from Part 2.1 - Molecular pathways underlying carcinogenesis: signal transduction
Published online by Cambridge University Press: 05 February 2015
Introduction
Hepatocyte growth factor (HGF), also known as scatter factor (SF), was discovered on the basis of its ability to promote liver regeneration, and independently for its mitogenic activity on epithelial cells and its ability to induce cell scatter (1). HGF is secreted primarily by mesenchymal cells and drives cell motility, proliferation, survival, and morphogenesis by binding to the Met receptor tyrosine kinase (TK) present on a variety of target cell types (1–6). HGF/Met signaling is critical for normal development and adult homeostasis: deletion of either gene lethally disrupts embryogenesis (4,6) and up-regulation of HGF expression after kidney, liver, or heart injury protects against tissue damage and promotes repair and regeneration in adults (1,7–11). Under normal conditions, Met activation is tightly regulated by paracrine ligand delivery, ligand activation, and receptor internalization, dephosphorylation, and degradation (1). Despite this, HGF/Met signaling contributes to tumorigenesis, tumor angiogenesis, and metastasis in several prevalent cancers, a realization that has driven rapid growth in the development of experimental therapeutics targeting the pathway.
HGF and Met structure and function
The human HGF gene consists of 18 exons and 16 introns spanning 68 Mb on chromosome 7q21.11 (1). Five mRNA transcripts arise from alternative splicing: two encode full-length HGF forms and three encode truncated isoforms that bind Met, but differ in their biological activities (1). HGF protein is a plasminogen family member consisting of an amino-terminal heparin-binding domain (N), four kringle domains (K1–4) and a carboxyl-terminal serine-protease-like domain (Figure 17.1a). Unlike other plasminogen family members, HGF has no proteolytic activity (1). The HGF N and K1 domains contain the primary Met binding sites (12), and the protease-like domain contains an important secondary Met binding site (13). Proteolytic processing of the single-chain HGF precursor results in the active disulfide-linked heterodimer; the amino-terminal α-chain contains N and K1–4, and the β-chain contains the protease-like region (1).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.