Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T03:48:31.815Z Has data issue: false hasContentIssue false

5 - Multimodality Imaging of Reporter Genes

Published online by Cambridge University Press:  07 September 2010

Sanjiv Sam Gambhir
Affiliation:
Stanford University School of Medicine, California
Shahriar S. Yaghoubi
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

INTRODUCTION

Reporter genes (RGs), an integral part of molecular imaging, have become essential tools for studying biology in living subjects noninvasively. Currently, molecular imaging techniques can be broadly classified into five categories based on the spectrum and source of energy used for detection. These are optical imaging (fluorescence and bioluminescence imaging), radionuclide imaging (positron emission tomography (PET) and single photon emission computed tomography (SPECT), X-ray computed tomography imaging (CT), magnetic resonance imaging (MRI), and ultrasound (US) imaging. Excluding CT and US, a variety of reporter genes have been developed for the remaining three categories, which can be used to study specific biological processes (such as promoter activation, transcription, translation, protein–protein interaction) and monitor disease progression and therapy (Figure 5.1). Reporter genes therefore are also categorized into different groups based on their usage for different imaging techniques.

REPORTER GENES

Optical Reporter Genes

By definition, an optical reporter protein can emit light in the visible range (300 nm–600 nm) either by interacting with specific substrates (luminescence) or by being excited with light of specific wavelength (fluorescence). The emitted light can then be captured in a sensitive charge coupled device (CCD) camera and presented as an optical signature. Both luminescence and fluorescence reporter genes have advantages and disadvantages that carry over to their in vivo imaging instrumentation and their application to noninvasive imaging. The luminescent reporter genes are commonly known as luciferases. Luciferase proteins (translated from luciferase genes) were originally isolated from different beetles, bacteria, and marine organisms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Massoud, T., Gambhir, S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17: 545–580.Google Scholar
Contag, C. H., Bachmann, M. H. (2002). Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4: 235–260.Google Scholar
Sato, A., Klaunberg, B., Tolwani, R. (2004). In vivo bioluminescence imaging. Comp Med 54: 631–634.Google Scholar
Bhaumik, S., Gambhir, S. S. (2002). Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A 99: 377–382.Google Scholar
Braggett, B., Roy, R., Momen, S., Morgan, S., Tisi, L., Morse, D., Gillies, R. J. (2004). Thermostability of firefly luciferase affects efficiency by in vivo bioluminescence. Molecular Imaging 3: 324–332.Google Scholar
Branchini, B. R., Ablamsky, D. M., Murtiashaw, M. H., Uzasci, L., Fraga, H., Southworth, T. L. (2007). Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 361: 253–262.Google Scholar
Ray, P., Tsien, R., Gambhir, S. S. (2007). Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67: 3085–3093.Google Scholar
Loening, A. M., Fenn, T. D., Wu, A. M., Gambhir, S. S. (2006). Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19: 391–400.Google Scholar
Loening, A. M., Wu, A. M., Gambhir, S. S. (2007). Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4: 641–643.Google Scholar
Gammon, S. T., Leevy, W. M., Gross, S., Gokel, G. W., Piwnica-Worms, D. (2006). Spectral unmixing of multicolored bioluminescence emitted from heterogeneous biological sources. Anal Chem 78: 1520–1527.Google Scholar
Bradbury, M. S., Panagiotakos, G., Chan, B. K., Tomishima, M., Zanzonico, P., Vider, J., Ponomarev, V., Studer, L., Tabar, V. (2007). Optical bioluminescence imaging of human ES cell progeny in the rodent CNS. J Neurochem 102: 2029–2039.Google Scholar
Muller-Taubenberger, A., Anderson, K. I. (2007). Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 77: 1–12.Google Scholar
Troy, T., Jekic-McMullen, D., Sambucetti, L., Rice, B. (2004). Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3: 9–23.Google Scholar
Shanerm, N. C., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567–1572.Google Scholar
Gilad, A. A., Winnard, P. T., Zijl, P. C., Bulte, J. W. (2007). Developing MR reporter genes: promises and pitfalls. NMR Biomed 20, 275–290.CrossRefGoogle Scholar
Ray, P., Bauer, E., Iyer, M., Barrio, J. R., Satyamurthy, N., Phelps, M. E., Herschman, H. R., Gambhir, S. S. (2001). Monitoring gene therapy with reporter gene imaging. Semin Nucl Med 31: 312–320.Google Scholar
Jacobs, A., Dubrovin, M., Hewett, J., Sena-Esteves, M., Tan, C. W., Slack, M., Sadelain, M., Breakefield, X. O., Tjuvajev, J. G. (1999). Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1: 154–161.Google Scholar
Hoggarth, J., Jones, A. E., Meredith, D. M. (2004). Functional expression of thymidine kinase in human leukaemic and colorectal cells, delivered as EGFP fusion protein by herpesvirus saimiri-based vector. Cancer Gene Therapy 11, 613–624.CrossRefGoogle Scholar
Crasto, C. J., Feng, J. A. (2000). LINKER: a program to generate linker sequences for fusion proteins. Protein Engineering 13, 309–312.CrossRefGoogle Scholar
Robinson, C. R., Sauer, R. T. (1998). Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc Nat Acad Sci USA 95, 5929–5934.CrossRefGoogle Scholar
Gustavsson, M., Lethao, S. D., Teeri, T. T., Hult, K., Martinelle, M. (2001). Stable linker peptides for a cellulose-binding domain-lipase fusion protein expressed in Pichia pastoris. Protein Engineering 14, 711–715.CrossRefGoogle Scholar
Witte, V., Wolf, H. D. (1996). Clostripain linker deletion variants yield active enzyme in Escherichia coli: A possible function of the linker pepetide as intramolecular inhibitor of Clostripain automaturation. Curr Microbiol 33: 281–286.Google Scholar
Maeda, Y., Ueda, H., Kazami, J., Kawano, G., Suzuki, E., Nagamune, T. (1997). Engineering of functional chimeric protein G-Vargula luciferase. Anal Biochem 249: 147–152.Google Scholar
Arai, R., Ueda, H., Kitayama, A., Kamiya, N., Nagamune, T. (2001). Design of linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering 14: 529–532.Google Scholar
Soling, A., Theiss, C., Jungmichel, S., Rainov, N.G. (2004). A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma. Genet Vaccines 2: 7.Google Scholar
Stoneley, M., Willis, A. E. (2004). Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23: 3200–3207.Google Scholar
Ngoi, S. M., Chien, A. C., Lee, C. G. (2004). Exploiting internal ribosome entry sites in gene therapy vector design. Current Gene Therapy 4: 15–31.Google Scholar
Chappell, S. A., Edelman, G. M., and Mauro, V. P. (2004). Biochemical and functional analysis of a 9-nt RNA sequence that affects translation efficiency in eukaryotic cells. Proc Natl Acad Sci U S A 101: 9590–9594.Google Scholar
Wang, Y., Iyer, M., Annala, A. J., Chappell, S., Mauro, V., Gambhir, S. S. (2005). Noninvasive monitoring of target gene expression by imaging reporter gene expression in living animals using improved bicistronic vectors. J Nucl Med 46: 667–674.Google Scholar
Sun, X., Annala, A. J., Yaghoubi, S. S., Barrio, J. R., Nguyen, K. N., Toyokuni, T., Satyamurthy, N., Namavari, M., Phelps, M. E., Herschman, H. R., Gambhir, S. S. (2001). Quantitative imaging of gene induction in living animals. Gene Ther 8: 1572–1579.Google Scholar
Gafni, Y., Pelled, G., Zilberman, Y., Turgeman, G., Apparailly, F., Yotvat, H., Galun, E., Gazit, Z., Jorgensen, C., Gazit, D. (2004). Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther 9: 587–595.Google Scholar
Rueger, M. A., Winkeler, A., Thomas, A. V., Kracht, L. W., Jacobs, A. H. (2008). Molecular imaging-guided gene therapy of gliomas. Handb Exp Pharmacol341–359.CrossRefGoogle Scholar
Gray, S. J., Samulski, R. J. (2008). Optimizing gene delivery vectors for the treatment of heart disease. Expert Opin Biol Ther 8: 911–922.Google Scholar
Briat, A., Vassaux, G. (2006). Preclinical applications of imaging for cancer gene therapy. Expert Rev Mol Med 8: 1–19.Google Scholar
So, M. K., Kang, J. H., Chung, J. K., Lee, Y. J., Shin, J. H., Kim, K. I., Jeong, J. M., Lee, D. S., Lee, M. C. (2004). In vivo imaging of retinoic acid receptor activity using a sodium/iodide symporter and luciferase dual imaging reporter gene. Mol Imaging 3: 163–171.Google Scholar
De, A., Lewis, X. Z., Gambhir, S. S. (2003). Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol Ther 7: 681–691.Google Scholar
Ray, S., Paulmurugan, R., Patel, M. R., Ahn, B. C., Wu, L., Carey, M., Gambhir, S. S. (2008). Noninvasive imaging of therapeutic gene expression using a bidirectional transcriptional amplification strategy. Mol Ther 16: 1848–1856.Google Scholar
Bogt, K. E., Sheikh, A. Y., Schrepfer, S., Hoyt, G., Cao, F., Ransohoff, K. J., Swijnenburg, R. J., Pearl, J., Lee, A., Fischbein, M., Contag, C. H., Robbins, R. C., Wu, J. C. (2008). Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 118: S121–S129.Google Scholar
Swijnenburg, R. J., Schrepfer, S., Cao, F., Pearl, J. I., Xie, X., Connolly, A. J., Robbins, R. C., Wu, J. (2008). In vivo imaging of embryonic stem cells reveals patterns of survival and rejection following transplantation. Stem Cells and Development 17: 1023–1029.Google Scholar
Swijnenburg, R. J., Schrepfer, S., Govaert, J. A., Cao, F., Ransohoff, K., Sheikh, A. Y., Haddad, M., Connolly, A. J., Davis, M. M., Robbins, R. C., Wu, J. C. (2008). Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A 105: 12991–12996.Google Scholar
Li, Z., Suzuki, Y., Huang, M., Cao, F., Xie, X., Connolly, A. J., Yang, P. C., Wu, J. C. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells (Dayton, Ohio) 26: 864–873.Google Scholar
Cao, F., Drukker, M., Lin, S., Sheikh, A. Y., Xie, X., Li, Z., Connolly, A. J., Weissman, I. L., Wu, J. C. (2007). Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning and Stem Cells 9: 107–117.Google Scholar
Cao, F., Lin, S., Xie, X., Ray, P., Patel, M., Zhang, X., Drukker, M., Dylla, S. J., Connolly, A. J., Chen, X., Weissman, I. L., Gambhir, S. S., Wu, J. C. (2006). In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113: 1005–1014.Google Scholar
Cao, F., Bogt, K. E., Sadrzadeh, A., Xie, X., Sheikh, A. Y., Wang, H., Connolly, A. J., Robbins, R. C., Wu, J. C. (2007). Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells and Development 16: 883–891.Google Scholar
Lee, S. W., Padmanabhan, P., Ray, P., Gambhir, S. S., Doyle, T., Contag, C., Goodman, S. B., Biswal, S. (2008). Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury. J Orthop Res.Google Scholar
Ray, P., Pimenta, H., Paulmurugan, R., Berger, F., Phelps, M. E., Iyer, M., Gambhir, S. S. (2002). Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc Nat Acad Sci USA 99: 3105–3110.Google Scholar
Luker, G. D., Sharma, V., Pica, C. M., Dahlheimer, J. L., Li, W., Ochesky, J., Ryan, C. E., Piwnica-Worms, H., Piwnica-Worms, D. (2002). Noninvasive imaging of protein-protein interactions in living animals. Proc Natl Acad Sci U S A 99: 6961–6966.Google Scholar
Luker, G. D., Sharma, V., Pica, C. M., Prior, J. L., Li, W., Piwnica-Worms, D. (2003). Molecular imaging of protein-protein interactions: controlled expression of p53 and large T-antigen fusion proteins in vivo. Cancer Res 63: 1780–1788.Google Scholar
Serganova, I., Doubrovin, M., Vider, J., Ponomarev, V., Soghomonyan, S., Beresten, T., Ageyeva, L., Serganov, A., Cai, S., Balatoni, J., Blasberg, R., Gelovani, J. (2004). Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Research 64: 6101–6108.Google Scholar
Ponomarev, V., Doubrovin, M., Serganova, I., Beresten, T., Vider, J., Shavrin, A., Ageyeva, L., Balatoni, J., Blasberg, R., Tjuvajev, J. G. (2003). Cytoplasmically retargeted HSV1-tk/GFP reporter gene mutants for optimization of noninvasive molecular-genetic imaging. Neoplasia 5: 245–254.Google Scholar
Ray, P., Wu, A. M., Gambhir, S. S. (2003). Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 63: 1160–1165.Google Scholar
Ray, P., De, A., Min, J. J., Tsien, R. Y., Gambhir, S. S. (2004). Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64: 1323–1330.Google Scholar
Deroose, C. M., De, A., Loening, A. M., Chow, P. L., Ray, P., Chatziioannou, A. F., Gambhir, S. S. (2007). Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J Nucl Med 48: 295–303.Google Scholar
Ponomarev, V., and Doubrovin, I. S. M., Vider, J., Sharvin, A., Beresten, T., Ivanova, A., Ageyeva, L., Tourkova, V., Balatoni, J., Bornmann, W., Blasberg, R., Tjuvajev, J. Gelovani. (2004). A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31: 740–751.Google Scholar
Ray, P., De, A., Patel, M., Gambhir, S. S. (2008). Monitoring caspase-3 activation with a multimodality imaging sensor in living subjects. Clin Cancer Res 14: 5801–5809.Google Scholar
Ponomarev, V., Dubrovin, M., Lyddane, C., Beresten, T., Balatoni, J., Bornman, W., Finn, R., Akhurst, T., Larson, S., RBlasberg, R., Sadelain, M., Tjuvajev, J.G. (2001). Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3: 480–488.Google Scholar
Koehne, G., Doubrovin, M., Doubrovina, E., Zanzonico, P., Gallardo, H. F., Ivanova, A., Balatoni, J., Teruya-Feldstein, J., Heller, G., May, C., Ponomarev, V., Ruan, S., Finn, R., Blasberg, R. G., Bornmann, W., Riviere, I., Sadelain, M., O'Reilly, R. J., Larson, S. M., Tjuvajev, J. G. (2003). Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21: 405–413.Google Scholar
Kim, Y., Dubey, P., Gambhir, S.S., Witte, O.N. (2004). Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Molecular Imaging Biology 6: 331–340.Google Scholar
Shu, C. J., Guo, S., Kim, Y. J., Shelly, S. M., Nijagal, A., Ray, P., Gambhir, S. S., Radu, C. G., Witte, O. N. (2005). Visualization of a primary anti-tumor immune response by positron emission tomography. Proc Natl Acad Sci U S A 102: 17412–17417.Google Scholar
Yaghoubi, S. S., Creusot, R. J., Ray, P., Fathman, C. G., Gambhir, S. S. (2007). Multimodality imaging of T-cell hybridoma trafficking in collagen-induced arthritic mice: image-based estimation of the number of cells accumulating in mouse paws. J Biomed Opt 12: 064025.Google Scholar
Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., Levi, J., Smith, B. R., Ma, T. J., Oralkan, O., Cheng, Z., Chen, X., Dai, H., Khuri-Yakub, B. T., Gambhir, S. S. (2008). Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3: 557–562.Google Scholar
Loimas, S., Wahlfors, J., Jänne, J. (1998). Herpes simplex virus thymidine kinase-green fluorescent protein fusion gene: new tool for gene transfer studies and gene therapy. Biotechniques 24: 614–618.Google Scholar
Uch, R., Gerolami, R., Faivre, J., Hardwigsen, J., Mathieu, S., Mannoni, P., Bagnis, C. (2003). Hepatoma cell-specific ganciclovir-mediated toxicity of a lentivirally transduced HSV-TkEGFP fusion protein gene placed under the control of rat alpha-fetoprotein gene regulatory sequences. Cancer Gene Therapy 10: 689–695.Google Scholar
Ponomarev, V., Doubrovin, M., Lyddane, C., Beresten, T., Balatoni, J., Bornman, W., Finn, R., Akhurst, T., Larson, S., Blasberg, R., Sadelain, M., Tjuvajev, J. G. (2001). Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3: 480–488.Google Scholar
Luker, G. D., Luker, K. E., Sharma, V., Pica, C. M., Dahlheimer, J. L., Ocheskey, J. A., Fahrner, T. J., Milbrandt, J., Piwnica-Worms, D. (2002). In vitro and in vivo characterization of a dual-function green fluorescent protein–HSV1-thymidine kinase reporter gene driven by the human elongation factor 1 alpha promoter. Mol Imaging 1: 65–73.Google Scholar
Richard, J.C., Factor, P., Welch, L.C., Schuster, D.P. (2003). Imaging the spatial distribution of transgene expression in the lungs with positron emission tomography. Gene Ther 10: 2074–2080.Google Scholar
Ponomarev, V., Doubrovin, M., Shavrin, A., Serganova, I., Beresten, T., Ageyeva, L., Cai, C., Balatoni, J., Alauddin, M., Gelovani, J. (2007). A human-derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. J Nucl Med 48: 819–826.Google Scholar
Yu, Y., Szalay, A. (2002). A Renilla luciferase-Aequorea GFP (ruc-gfp) fusion gene construct permits real-time detection of promoter activation by exogenously administered mifepristone in vivo. Molecular Genetics Genomics 268: 160–168.Google Scholar
Xie, X., Chan, K. S., Cao, F., Huang, M., Li, Z., Lee, A. C., Weissman, I. L., Wu, J. C. (2008). Imaging of STAT3 signaling pathway during mouse embryonic stem cell differentiation. Stem Cells and Development 18: 205–214.Google Scholar
Soling, A., Simm, A., Rainov, N. (2002). Intracellular localization of Herpes simplex virus type 1 thymidine kinase fused to different fluorescent proteins depends on choice of fluorescent tag. FEBS Lett 527: 153–158.Google Scholar
Brader, P., Riedl, C. C., Woo, Y., Ponomarev, V., Zanzonico, P., Wen, B., Cai, S., Hricak, H., Fong, Y., Blasberg, R., Serganova, I. (2007). Imaging of hypoxia-driven gene expression in an orthotopic liver tumor model. Mol Cancer Ther 6: 2900–2908.Google Scholar
Likar, Y., Dobrenkov, K., Olszewska, M., Vider, E., Shenker, L., Cai, S., Pillarsetty, N., Hricak, H., Ponomarev, V. (2008). A new acycloguanosine-specific supermutant of herpes simplex virus type 1 thymidine kinase suitable for PET imaging and suicide gene therapy for potential use in patients treated with pyrimidine-based cytotoxic drugs. J Nucl Med 49: 713–720.Google Scholar
Dobrenkov, K., Olszewska, M., Likar, Y., Shenker, L., Gunset, G., Cai, S., Pillarsetty, N., Hricak, H., Sadelain, M., Ponomarev, V. (2008). Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. J Nucl Med 49: 1162–1170.Google Scholar
Minn, A. J., Kang, Y., Serganova, I., Gupta, G. P., Giri, D. D., Doubrovin, M., Ponomarev, V., Gerald, W. L., Blasberg, R., Massague, J. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. The Journal of Clinical Investigation 115: 44–55.Google Scholar
Padmanabhan, P., Otero, J., Ray, P., Paulmurugan, R., Hoffman, A. R., Gambhir, S. S., Biswal, S., Ulaner, G. A. (2006). Visualization of telomerase reverse transcriptase (hTERT) promoter activity using a trimodality fusion reporter construct. Journal of Nuclear Medicine 47: 270–277.Google Scholar
Wu, J. C., Spin, J.M., Cao, F., Lin, S., Xie, X., Gheysens, O., Chen, I. Y., Sheikh, A. Y., Robbins, R. C., Tsalenko, A., Gambhir, S. S., Quertermous, T. (2006). Transcriptional profiling of reporter genes used for molecular imaging of embryonic stem cell transplantation. Physiological Genomics 25: 29–38.Google Scholar
Doubrovin, M., Ponomarev, V., I. Serganova, I., Soghomonian, S., Myagawa, T., Beresten, T., Ageyeva, L., Sadelain, M., Koutcher, J., Blasberg, R. G., Tjuvajev, J. G. (2003). Development of a new reporter gene system–dsRed/xanthine phosphoribosyltransferase-xanthine for molecular imaging of processes behind the intact blood-brain barrier. Molecular Imaging 2: 93–112.Google Scholar
Xing, L., Deng, X., Kotedia, K., Ackerstaff, E., Ponomarev, V., Clifton Ling, C., Koutcher, J. A., Li, G. C. (2008). Non-invasive molecular and functional imaging of cytosine deaminase and uracil phosphoribosyltransferase fused with red fluorescence protein. Acta Oncologica (Stockholm, Sweden) 47: 1211–1220.Google Scholar
Moroz, M. A., Serganova, I., Zanzonico, P., Ageyeva, L., Beresten, T., Dyomina, E., Burnazi, E., Finn, R. D., Doubrovin, M., Blasberg, R. G. (2007). Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med 48: 827–836.Google Scholar
Kutschka, I., Chen, I. Y., Kofidis, T., Degenfeld, G., Sheikh, A. Y., Hendry, S. L., Hoyt, G., Pearl, J., Blau, H. M., Gambhir, S. S., Robbins, R. C. (2007). In vivo optical bioluminescence imaging of collagen-supported cardiac cell grafts. J Heart Lung Transplant 26: 273–280.Google Scholar
Jacobs, A. H., Winkeler, A., Hartung, M., Slack, M., Dittmar, C., Kummer, C., Knoess, C., Galldiks, N., Vollmar, S., Wienhard, K., Heiss, W. D. (2003). Improved herpes simplex virus type 1 amplicon vectors for proportional coexpression of positron emission tomography marker and therapeutic genes. Hum Gene Ther 14: 277–297.Google Scholar
Shin, J. H., Chung, J. K., Kang, J. H., Lee, Y. J., Kim, K. I., So, Y., Jeong, J. M., Lee, D. S., Lee, M. C. (2004). Noninvasive imaging for monitoring of viable cancer cells using a dual-imaging reporter gene. J Nucl Med 45: 2109–2115.Google Scholar
Che, J., Doubrovin, M., Serganova, I., Ageyeva, L., Zanzonico, P., Blasberg, R. (2005). hNIS-IRES-eGFP dual reporter gene imaging. Mol Imaging 4: 128–136.Google Scholar
Cohen, B., Dafni, H., Meir, G., Harmelin, A., Neeman, M. (2005). Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7: 109–117.Google Scholar
Cohen, B., Ziv, K., Plaks, V., Israely, T., Kalchenko, V., Harmelin, A., Benjamin, L. E., Neeman, M. (2007). MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 13: 498–503.Google Scholar
Winkeler, A., Sena-Esteves, M., Paulis, L. E., Li, H., Waerzeggers, Y., Ruckriem, B., Himmelreich, U., Klein, M., Monfared, P., Rueger, M. A., Heneka, M., Vollmar, S., Hoehn, M., Fraefel, C., Graf, R., Wienhard, K., Heiss, W. D., Jacobs, A. H. (2007). Switching on the lights for gene therapy. PLoS ONE 2: e528.Google Scholar
Weissleder, R., Moore, A., Mahmood, U., Bhorade, R., Benveniste, H., Chiocca, E. A., Basilion, J. P. (2000). In vivo magnetic resonance imaging of transgene expression. Nat Med 6: 351–355.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×