Book contents
- Frontmatter
- Contents
- Preface
- Conference participants
- Conference photograph / poster
- 1 Physics of H2 and HD
- 2 Formation - Destruction
- 3 Observations and Models
- Non Stationary C-shocks: H2 Emission in Molecular Outflows
- The Ortho/Para Ratio in C and J-type Shocks
- Theoretical Models of Photodissociation Fronts
- ISO Spectroscopy of H2 in Star Forming Regions
- Observations of the H2 Ortho-Para Ratio in Photodissociation Regions
- H2 Emission from CRL618
- Hydrogen in Photodissociation Regions: NGC2023 and NGC7023
- A Pre-FUSE View of H2
- H2 Absorption Line Measurements with ORFEUS
- Ultraviolet Observations of Molecular Hydrogen in Interstellar Space
- FUSE and Deuterated Molecular Hydrogen
- ISO-SWS Observations of H2 in Galactic Sources
- H2 in Molecular Supernova Remnants
- 3D Integral Field H2 Spectroscopy in Outflows
- Near-Infrared Imaging and [OI] Spectroscopy of IC443 using 2MASS and ISO
- ISOCAM Spectro-imaging of the Supernova Remnant IC443
- Spatial Structure of a Photo-Dissociation Region in Ophiucus
- Tracing H2 Via Infrared Dust Extinction
- The Small Scale Structure of H2 Clouds
- Hot Chemistry in the Cold Diffuse Medium: Spectral Signature in the H2 Rotational Lines
- H2 Observations of the OMC-1 Outflow with the ISO-SWS
- 4 Extragalactic and Cosmology
- 5 Outlook
- Author index
Observations of the H2 Ortho-Para Ratio in Photodissociation Regions
from 3 - Observations and Models
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Conference participants
- Conference photograph / poster
- 1 Physics of H2 and HD
- 2 Formation - Destruction
- 3 Observations and Models
- Non Stationary C-shocks: H2 Emission in Molecular Outflows
- The Ortho/Para Ratio in C and J-type Shocks
- Theoretical Models of Photodissociation Fronts
- ISO Spectroscopy of H2 in Star Forming Regions
- Observations of the H2 Ortho-Para Ratio in Photodissociation Regions
- H2 Emission from CRL618
- Hydrogen in Photodissociation Regions: NGC2023 and NGC7023
- A Pre-FUSE View of H2
- H2 Absorption Line Measurements with ORFEUS
- Ultraviolet Observations of Molecular Hydrogen in Interstellar Space
- FUSE and Deuterated Molecular Hydrogen
- ISO-SWS Observations of H2 in Galactic Sources
- H2 in Molecular Supernova Remnants
- 3D Integral Field H2 Spectroscopy in Outflows
- Near-Infrared Imaging and [OI] Spectroscopy of IC443 using 2MASS and ISO
- ISOCAM Spectro-imaging of the Supernova Remnant IC443
- Spatial Structure of a Photo-Dissociation Region in Ophiucus
- Tracing H2 Via Infrared Dust Extinction
- The Small Scale Structure of H2 Clouds
- Hot Chemistry in the Cold Diffuse Medium: Spectral Signature in the H2 Rotational Lines
- H2 Observations of the OMC-1 Outflow with the ISO-SWS
- 4 Extragalactic and Cosmology
- 5 Outlook
- Author index
Summary
Observations of the near-infrared spectrum of molecular hydrogen in photo-dissociation regions has become a standard tool for revealing the detailed physical conditions and complex density structures of molecular clouds. Most recently, consideration has been give to the detailed behaviour of the ratio of ortho-to-para excited states, and the information that this ratio may contain regarding the history of the molecular cloud (Draine & Bertoldi 1996, Sternberg & Neufeld 1999). This paper will review NIR observations of the H2 spectrum with particular reference to the ortho-para ratios observed. Recent spectroscopy of both galactic and extragalactic sources provide some interesting constraints on the models.
Introduction
Modelling of the H2 emission from photodissociation regions (PDRs) has reached a very high level of sophistication a decade after the first observations of H2 fluorescent emission, from the planetary nebula NGC2023. The earliest models, which predicted the response of low density H2 gas to a moderate intensity UV field (Black & van Dishoeck 1987, Sternberg & Dalgarno 1998) have been expanded to include the effects of collisional excitation of the lowest H2 energy levels (Burton, Hollenbach & Tielens 1990, Sternberg 1991) and of self-shielding of dense H2 (Draine & Bertoldi 1996). Observations of the H2 far-red and near-infrared spectrum confirm the model results for emission arising in energy levels as high as Ek > 40,000K (Draine 2000). Recently, theoretical attention has turned to the observed ortho-para ratio of H2 and the potential that this measure may hold for furthering our understanding of the past and present physical conditions in the PDR.
- Type
- Chapter
- Information
- Molecular Hydrogen in Space , pp. 143 - 150Publisher: Cambridge University PressPrint publication year: 2000