Book contents
- Frontmatter
- Contents
- Preface
- Conference participants
- Conference photograph / poster
- 1 Physics of H2 and HD
- 2 Formation - Destruction
- Experiments with Trapped Ions and Nanoparticles
- Laboratory Studies of Molecular Hydrogen Formation on Surfaces of Astrophysical Interest
- The Formation of H2 and Other Simple Molecules on Interstellar Grains
- The Interaction of H Atoms with Interstellar Dust Particles: Models
- The Energetics and Efficiency of H2 Formation on the Surface of Simulated Interstellar Grains
- Probing the Connection between PAHs and Hydrogen (H, H2) in the Laboratory and in the Interstellar Medium
- 3 Observations and Models
- 4 Extragalactic and Cosmology
- 5 Outlook
- Author index
The Energetics and Efficiency of H2 Formation on the Surface of Simulated Interstellar Grains
from 2 - Formation - Destruction
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Conference participants
- Conference photograph / poster
- 1 Physics of H2 and HD
- 2 Formation - Destruction
- Experiments with Trapped Ions and Nanoparticles
- Laboratory Studies of Molecular Hydrogen Formation on Surfaces of Astrophysical Interest
- The Formation of H2 and Other Simple Molecules on Interstellar Grains
- The Interaction of H Atoms with Interstellar Dust Particles: Models
- The Energetics and Efficiency of H2 Formation on the Surface of Simulated Interstellar Grains
- Probing the Connection between PAHs and Hydrogen (H, H2) in the Laboratory and in the Interstellar Medium
- 3 Observations and Models
- 4 Extragalactic and Cosmology
- 5 Outlook
- Author index
Summary
This paper reports the theoretical and experimental work on H2 formation on interstellar dust mimics. These studies are being carried out under the auspices of the UCL Centre for Cosmic Chemistry and Physics.
Introduction
The purpose of this article is to report on the current state of work at the UCL Centre for Cosmic Chemistry and Physics, a consortium of scientists at University College London addressing problems of chemistry arising in astronomy. All the work currently in progress in this consortium is concerned with H2 formation on surfaces, and it consists of both theoretical and experimental programmes.
The Centre was formed a few years ago when it was realised that advances in both experimental and theoretical techniques now make it possible to address in a realistic manner some problems of longstanding and fundamental interest in astronomy. The expertise at UCL, both in theory and experiment, is very strong on surface reactions; the current motivation from astronomy also emphasises the gas/dust interaction (Williams 1998). It was decided, therefore, to undertake a long-term and coordinated programme on surface processes of relevance to astronomy. Of course, the most fundamental interaction is that leading to H2 formation on dust. There is currently some important experimental and theoretical work being carried out in this particular area, and much of this work has been reported at this meeting. Nevertheless, it was felt that the UCL consortium could make a useful contribution without simply replicating the experiments and calculations of others.
- Type
- Chapter
- Information
- Molecular Hydrogen in Space , pp. 99 - 106Publisher: Cambridge University PressPrint publication year: 2000
- 3
- Cited by