Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T20:47:16.864Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2012

Eric D. Feigelson
Affiliation:
Pennsylvania State University
G. Jogesh Babu
Affiliation:
Pennsylvania State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Modern Statistical Methods for Astronomy
With R Applications
, pp. 434 - 461
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, G. O. (1958) The distribution of rich clusters of galaxies, Astrophys. J. Suppl., 3, 211–288CrossRefGoogle Scholar
Abraham, J. and 457 coauthors (2008) Observation of the suppression of the flux of cosmic rays above 4 × 1019 EV, Phys. Rev. Lett., 101, 061101Google Scholar
Adler, J. (2010) R in a Nutshell, O'Reilly, Sebastopol CAGoogle Scholar
Adler, D. & Murdoch, D. (2010) rgl: 3D visualization device system (OpenGL), R package version 0.92.794, http://CRAN.R-project.org/package=rgl
Agresti, A. (2002) An Introduction to Categorical Data Analysis, 2nd ed. Wiley-Interscience, New YorkCrossRefGoogle Scholar
Aigner, D. J. & Goldberger, A. S. (1970) Estimation of Pareto's Law from grouped observations, J. Amer. Stat. Assn., 65, 712–723CrossRefGoogle Scholar
Aigrain, S. & Irwin, M. (2004) Practical planet prospecting, Mon. Not. Royal Astro. Soc., 350, 331–345CrossRefGoogle Scholar
Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle, in Second International Symposium on Information Theory (B. N., Petrov & F., Csaki, eds.), Akademia Kiado, Budapest, pp. 267–281Google Scholar
Akritas, M. G. & Bershady, G. A. (1996) Linear regression for astronomical data with measurement errors and intrinsic scatter, Astrophys. J., 470, 706–714Google Scholar
Akritas, M. G. & Siebert, J. (1996) A test for partial correlation with censored astronomical data, Mon. Not. Royal Astro. Soc., 278, 919–924CrossRefGoogle Scholar
Akritas, M. G., Murphy, S. A. & LaValley, M. P. (1995) The Theil–Sen estimator with doubly censored data and applications to astronomy, J. Amer. Stat. Assn., 90, 170–177CrossRefGoogle Scholar
Albert, J. (2009) Bayesian Computation with R, Springer, BerlinCrossRefGoogle Scholar
Aldrich, J. (1997) R. A. Fisher and the making of maximum likelihood 1912–1922, Statist. Sci., 12, 162–176Google Scholar
Alexander, T. (1997) Is AGN variability correlated with other AGN properties? ZDCF analysis of small samples of sparse light curves, in Astronomical Time Series (D., Maoz et al., eds.), Reidel, Dordrecht, pp. 163–166Google Scholar
Andersson, J. (2002) An improvement of the GPH estimator, Economics Lett., 77, 137–146CrossRefGoogle Scholar
Andersson, J. (2007) On the estimation of correlations for irregularly spaced time series, NHH Dept. of Finance & Management Science Discussion Paper No. 2007/19. Available at SSRN: http://ssrn.com/abstract=1020943
Andrews, F. (2010) latticist: A graphical user interface for exploratory visualisation, R package version 0.9-43, http://latticist.googlecode.com/
Ankerst, M., Breunig, M. M., Kriegel, H.-P. & Sander, J. (1999) OPTICS: Ordering Points To Identify theClustering Structure, in Proc. ACMSIGMOD99 Int.Conf. on Management of Data, ACM Press, pp. 49–60Google Scholar
Anselin, L. (1995) Local indicators of spatial association – LISA, Geographical Analysis, 27, 93–115Google Scholar
Anselin, L. & Rey, S. J. editors (2010) Perspectives on Spatial Data Analysis, Springer, BerlinCrossRef
Apanasovich, T. V., Carroll, R. J. & Maity, A. (2009) Density estimation in the presence of heteroscedastic measurement error, Electronic J. Statist., 3, 318–348Google Scholar
Arnold, B. C. (1983) Pareto Distributions, International Co-operative Publishing House, DevonGoogle Scholar
Ashman, K. M. & Zepf, S. E. (1998) Globular Cluster Systems, Cambridge University PressCrossRefGoogle Scholar
Atwood, W. B. et al. (2009) The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission, Astrophys. J., 697, 1071–1102Google Scholar
Avni, Y. & Tananbaum, H. (1986) X-ray properties of optically selected QSOs, Astrophys. J., 305, 83–99CrossRefGoogle Scholar
Avni, Y., Soltan, A., Tananbaum, H. & Zamorani, G. (1980) A method for determining luminosity functions incorporating both flux measurements and flux upper limits, with applications to the average X-ray to optical luminosity ratio for quasars, Astrophys. J., 238, 800–807CrossRefGoogle Scholar
Babu, G. J. & Feigelson, E. D. (1996) Astrostatistics, Chapman & Hall, LondonGoogle Scholar
Babu, G. J. & Rao, C. R. (1993) Bootstrap methodology, in Handbook of Statistics, vol. 9, Computational Statistics (C. R., Rao, ed.), Elsevier, Amsterdam, pp. 627–659Google Scholar
Babu, G. J. & Rao, C. R. (2003) Confidence limits to the distance of the true distribution from a misspecified family by bootstrap, J. Statist. Plann. Inference, 115, 471–478CrossRefGoogle Scholar
Babu, G. J. & Rao, C. R. (2004) Goodness-of-fit tests when parameters are estimated, Sankhyā, 66, 63–74Google Scholar
Babu, G. J. & Singh, K. (1983) Inference on means using the bootstrap, Annals Statist., 11, 999–1003CrossRefGoogle Scholar
Baddeley, A. (2008) Analysing spatial point patterns in R, CSIRO, available on-line at http://www.csiro.au/files/files/pn0y.pdf
Baddeley, A. & Turner, R. (2005) Spatstat: An R package for analyzing spatial point patterns, J. Statistical Software, 12, 1–42CrossRefGoogle Scholar
Ball, N. M. & Brunner, R. J. (2010) Data mining and machine learning in astronomy, Rev. Mod. Phys.D, 19, 1049–1106Google Scholar
Bally, J. & Reipurth, B. (2006) The Birth of Stars and Planets, Cambridge University PressGoogle Scholar
Baluev, R. V. (2008) Assessing the statistical significance of periodogram peaks, Mon. Not. Royal Astro. Soc., 385, 1279–1285Google Scholar
Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. (1986) The statistics of peaks of Gaussian random fields, Astrophys. J., 304, 15–61CrossRefGoogle Scholar
Barnett, V. (1999) Comparative Statistical Inference, John Wiley, New YorkCrossRefGoogle Scholar
Basu, S. & Jones, C. E. (2004) On the power-law tail in the mass function of protostellar condensations and stars, Mon. Not. R. Astron. Soc., 347, L47–L51Google Scholar
Baty, F. & Delignette-Muller, M. L. (2009) nlstools: tools for nonlinear regression diagnostics, R package version 0.0-9
Bauke, H. (2007) Parameter estimation for power-law distributions by maximum likelihood methods, Eur. Phys. J.B, 58, 167–173CrossRefGoogle Scholar
Behrend, R. et al. (2006) Four new binaryminor planets: (854) Frostia, (1089) Tama, (1313) Berna, (4492) Debussy, Astron. & Astrophys., 446, 1177–1184Google Scholar
Bell, E. F. et al. (2004) Nearly 5000 distant early-type galaxies in COMBO-17: A red sequence and its evolution since z ∼ 1, Astrophys. J., 608, 752–767Google Scholar
Belloni, T., Klein-Wolt, M., Méndez, M., van der Klis, M. & van Paradijs, J. (2000) A model-independent analysis of the variability of GRS 1915+105, Astron. Astrophys., 355, 271–290Google Scholar
Benedict, L. H., Nobach, H. & Tropea, C. (2000) Estimation of turbulent velocity spectra from laser Doppler data, Meas. Sci. Technol., 11, 1089–1104CrossRefGoogle Scholar
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. Roy. Stat. Soc.B., 57, 289–300Google Scholar
Beran, J. (1989) Statistics for Long-Memory Processes, Chapman & Hall, LondonGoogle Scholar
Berkson, J. (1980) Minimum chi-square, not maximum likelihood (with discussion), Annals Statistics, 8, 457–487CrossRefGoogle Scholar
Bevington, P. R. (1969) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New YorkGoogle Scholar
Bevington, P. & Robinson, D. K. (2002) Data Reduction and Error Analysis for the Physical Sciences, 3rd ed., McGraw-Hill, New YorkGoogle Scholar
Bickel, P. & Rosenblatt, M. (1973) On some global measures of the deviations of density function estimators, Ann. of Statistics, 1, 1071–1095CrossRefGoogle Scholar
Billingsley, P. (1999) Convergence of Probability Measures, Wiley-Interscience, New YorkCrossRefGoogle Scholar
Bivand, R. S., Pebesma, E. J. & Gómez-Rubio, V. (2008) Applied Spatial Data Analysis with R, Springer, BerlinGoogle Scholar
Bivand, R., with contributions by many others (2010) spdep: Spatial dependence: weighting schemes, statistics and models, R package version 0.5-26, http://CRAN.R-project.org/package=spdep
Blanton, M. R. (2004) The galaxy luminosity function and luminosity density at redshift z = 0.1, Astrophys. J., 592, 819–838Google Scholar
Blanton, M. R., Lupton, R.H., Schlegel, D. F., Strauss, M.A., Brinkmann, J., Fukugita, M. & Loveday, J. (2005), The properties and luminosity function of extremely low luminosity galaxies, Astrophys. J., 631, 208–230Google Scholar
Boggs, P. T., Byrd, R. H. & Schnabel, R. B. (1987) A stable and efficient algorithm for nonlinear orthogonal distance regression, SIAM J. Sci. & Stat. Comput., 8, 1052–1078CrossRefGoogle Scholar
Bowman, A. W. & Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis, Clarendon Press, OxfordGoogle Scholar
Bowman, A.W. & Azzalini, A. (2010) R package “sm”: nonparametric smoothing methods (version 2.2-4), http://www.stats.gla.ac.uk/~adrian/sm
Box, G. E. P. & Draper, N. R. (1987) Empirical Model-Building and Response Surfaces, John Wiley, New YorkGoogle Scholar
Box, G. E. P. & Pierce, D. A. (1970) Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, J. Amer. Stat. Assn., 65, 1509–1526CrossRefGoogle Scholar
Boyce, P. J. (2003) GammaFinder: a Java application to find galaxies in astronomical spectral line datacubes, M.S. thesis, http://users.cs.cf.ac.uk/AntoniaJ.Jones/GammaArchive/Theses/PeterBoyceGammaFinder.pdfGoogle Scholar
Brazdil, P., Giraud-Carrier, C., Soares, C. & Vilalta, R. (2009) Metalearning: Applications to Data Mining, Springer, BerlinGoogle Scholar
Breiman, L. (2001) Random forests, Machine Learning, 45(1), 5–32. See also http://www.stat.berkeley.edu/breiman/RandomForestsGoogle Scholar
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1998) Classification and Regression Trees, CRC Press, Bora RatonGoogle Scholar
Breiman, L., Last, M. & Rice, J. (2003) Random forests: Finding quasars, in Statistical Challenges in Astronomy (E. D., Feigelson & G. J., Babu eds.), Springer, BerlinGoogle Scholar
Bretthorst, G. L. (2003) Frequency estimation and generalized Lomb–Scargle periodograms, in Statistical Challenges in Astronomy (E. D., Feigelson & G. J., Babu, eds.), Springer, Berlin, pp. 309–329Google Scholar
Breusch, T. S. & Pagan, A. R. (1979) Simple test for heteroscedasticity and random coefficient variation, Econometrica, 47, 1287–1294CrossRefGoogle Scholar
Brillinger, D. R. (1984) Statistical inference for irregularly observed processes, in Time Series Analysis of Irregularly Observed Data (E., Parzen, ed.), Springer, Berlin, pp. 38–57Google Scholar
Britt, D. T. & Consolmagno, G. J. (2003) Stony meteorite porosities and densities: A review of the data through 2001, Meteor. Planet. Sci., 38, 1161–1180CrossRefGoogle Scholar
Britt, D. T., Yeomans, D., Housen, K. & Consolmagno, G. (2002) Asteroid density, porosity and structure, in Asteroids III (W. F., Bottke et al., eds.), University of Arizona Press, pp. 485–500Google Scholar
Brodsky, B. E. & Darkhovsky, B. S. (1993) Nonparametric Methods in Change Point Problems, Springer, BerlinCrossRefGoogle Scholar
Bronaugh, D. & Werner, W. for the Pacific Climate Impacts Consortium (2009) zyp: Zhang + Yue-Pilon trends package, R package version 0.9-1
Brönnimann, H. & Chazelle, B. (1998) Optimal slope selection via cuttings, Comp. Geom. Theory & Appl., 10, 23–29Google Scholar
Brooks, S., Gelman, A., Jones, G. & Meng, X.-L. (2011) Handbook of Markov Chain Monte Carlo, CRC Press, Bora RatonCrossRefGoogle Scholar
Brown, A. (1950) On the determination of the convergent point of a moving cluster from proper motions, Astrophys. J., 112, 225–239CrossRefGoogle Scholar
Brown, B.W., Hollander, M. & Korwar, R.M. (1974) Nonparametric tests of independence for censored datawith applications to heart transplant studies, in Reliability and Biometry (F., Proschan & R. J., Serfling, eds.), SIAM, Philadelphia, pp. 327–354Google Scholar
Brown, L. D., Cai, T. T. & Das Gupta, A. (2001) Interval estimation for a binomial proportion, Statist. Sci., 16, 101–133Google Scholar
Buccheri, R. (1992) Search for periodicities in high-energy gamma-ray astronomical data, in Statistical Challenges in Modern Astronomy (E. D., Feigelson & G. J., Babu, eds.), Springer, BerlinGoogle Scholar
Buckley, J. & James, I. (1979) Linear regressionwith censored data, Biometrika, 66, 429–36CrossRefGoogle Scholar
Budavári, T., Wild, V., Szalay, A. S., Dobos, L. & Yip, C.-W. (2009) Reliable eigenspectra for new generation surveys, Mon. Not. Royal Astro. Soc., 394, 1496–1502Google Scholar
Buonaccorsi, J. P. (2010) Measurement Error: Models, Methods, and Applications, Chapman & Hall, LondonCrossRefGoogle Scholar
Burnham, K. P. & Anderson, D. (2002) Model Selection and Multi-Modal Inference, 2nd ed., Springer, BerlinGoogle Scholar
Caimmi, R. (2011) Bivariate least squares linear regression: Towards a unified analytic formalism. I. Functional models, New Astron., 16, 337–356CrossRefGoogle Scholar
Cameron, A. C. & Trivedi, P. K. (1998) Regression Analysis of Count Data, Cambridge University PressCrossRefGoogle Scholar
Carroll, R. J., Ruppert, D., Stefanski, L. A. & Crainiceanu, C. M. (2006) Measurement Error in Nonlinear Models: A Modern Perspective, 2nd ed., Chapman & Hall, LondonCrossRefGoogle Scholar
Cash, W. (1979) Parameter estimation in astronomy through application of the likelihood ratio, Astrophys. J., 228, 939–947CrossRefGoogle Scholar
Chabrier, G. (2003) Galactic stellar and the substellar Initial Mass Function, Pub. Astron. Soc. Pacific, 115, 763–795CrossRefGoogle Scholar
Chambers, J. M. (2008) Software for Data Analysis: Programming with R, Springer, BerlinCrossRefGoogle Scholar
Chatfield, C. (2004) The Analysis of Time Series: An Introduction, 6th ed., Chapman & Hall/CRC, Bota RatonGoogle Scholar
Chatterjee, A., Yarlagadda, S. & Chakrabarti, B. K., eds. (2005) Econophysics of Wealth Distributions, Springer-VerlagItaliaCrossRef
Chaudhuri, P., Ghosh, A. K. & Hannu Oja, H. (2009) Classification based on hybridization of parametric and nonparametric classifiers, IEEE Trans. Pattern Anal. Machine Intell., 31, 1153–1164CrossRefGoogle ScholarPubMed
Cheeseman, P. & Stutz, J. (1995) Bayesian classification (AutoClass): Theory and results, in Advances in Knowledge Discovery and Data Mining (U., Fayyad et al., eds.), AAAI Press, pp. 153–180Google Scholar
Chen, C.-H., Härdle, W. & Unwin, A., eds. (2008) Handbook of Data Visualization, Springer, Berlin
Chen, C.-H., Tsai, W.-Y., & Chao, W.-H. (1996) The product-moment correlation coefficient and linear regression for truncated data, J. Amer. Stat. Assn., 91, 1181–1186CrossRefGoogle Scholar
Chen, J. (2006) Introducing hidden Markov models to LAMOST automatic data processing, Proc. SPIE, 6270, 627022.Google Scholar
Chen, J. & Gupta, A. K. (2000) Parametric Statistical Change Point Analysis, Birkhäuser, BostonCrossRefGoogle Scholar
Chen, S. X. (1996) Empirical likelihood confidence intervals for nonparametric density estimation, Biometrika, 83, 329–341CrossRefGoogle Scholar
Chernoff, H. & Lehmann, E. L. (1954) The use of maximum likelihood estimates in χ2 tests for goodness of fit, Ann. Math. Stat., 25, 579–586CrossRefGoogle Scholar
Chetwynd, A. & Diggle, P. (1998) On estimating the reduced second moment measure of a stationary spatial point process, Australian J. Stat., 40, 11–15CrossRefGoogle Scholar
Chew, V. (1971) Point estimation of the parameter of the binomial distribution, Amer. Statist., 15, 47–50Google Scholar
Choi, Y.-Y., Park, C., Kim, J., Gott, J. R., Weinberg, D. H., Vogeley, M. S. & Kim, S. S. (2010) Galaxy clustering topology in the Sloan Digital Sky Survey main galaxy sample: A test for galaxy formation models, Astrophys. J. Suppl., 190, 181–202CrossRefGoogle Scholar
Cleveland, W. S. & Loader, C. (1996) Smoothing by local regression: Principles and methods, in Statistical Theory and Computational Aspects of Smoothing (W., Härdle & M. G., Schimek, eds.), Springer, Berlin, pp. 10–49Google Scholar
Clyde, M. A., Berger, J. O., Bullard, F., Ford, E. B., Jefferys, W. H., Luo, R., Paulo, R. & Loredo, T. (2007) Current challenges in Bayesian model choice, in Statistical Challenges in Modern Astronomy IV (G. J., Babu & E. D., Feigelson, eds.), Astron. Soc. Pacific, 371, 224–240Google Scholar
Cohen, A. C. (1991) Truncated and Censored Samples: Theory and Applications, Marcel Dekker, New YorkCrossRefGoogle Scholar
Conover, W. J. (1999) Practical Nonparametric Statistics, 3rd ed., John Wiley, New YorkGoogle Scholar
Constantine, W. & Percival, D. (2010). fractal: Insightful fractal time series modeling and analysis, R package version 1.0-3, http://CRAN.R-project.org/package=fractal
Cook, D. & Swayne, D. F. (2007) Interactive and Dynamic Graphics for Data Analysis: With Examples Using R and GGobi, Springer, BerlinCrossRefGoogle Scholar
Cook, R. D. (1979) Influential observations in linear regression, J. Amer. Stat. Assn., 74, 169–174CrossRefGoogle Scholar
Cousins, R. D. (1995) Why isn't every physicist a Bayesian?, Amer. J. Physics, 63, 398–410CrossRefGoogle Scholar
Cowan, G. (1998) The small-N problem in high energy physics, in Statistical Challenges in Modern Astronomy IV (G. J., Babu & E. D., Feigelson, eds.), Astron. Soc. Pacific, 371, 75Google Scholar
Cowpertwait, P. S. P. & Metcalfe, A. V. (2009) Introductory Time Series with R, Springer, BerlinGoogle Scholar
Cox, D. R. (1958) Planning of Experiments, John Wiley, New YorkGoogle Scholar
Cox, D. R. (1972) Regression models and life-tables, J. Royal Stat. Soc. Ser B., 34, 187–220Google Scholar
Cox, D. R. (2006) Principles of Statistical Inference, Cambridge University PressCrossRefGoogle Scholar
Crawford, D. F., Jauncey, D. L. & Murdoch, H. S. (1970) Maximum-likelihood estimation of the slope from number-flux counts of radio sources, Astrophys. J., 162, 405–410CrossRefGoogle Scholar
Crawley, M. J. (2007) The R Book, John Wiley, New YorkCrossRefGoogle Scholar
Cummins, D. J., Filloon, T. G. & Nychka, D. (2001) Confidence intervals for nonparametric curve estimates: Toward more uniform pointwise coverage, J. Amer. Stat. Assoc., 96, 233–246CrossRefGoogle Scholar
D'Agostino, R. B. & Stephens, M. A., eds. (1986) Goodness-of-Fit Techniques, Marcel Dekker, New York
Dalgaard, P. (2008) Introductory Statistics with R, 2nd ed., Springer, BerlinCrossRefGoogle Scholar
Davies, P. L. & Kovac, A. (2004) Densities, spectral densities and modality, Ann. Statist., 32, 1093–1136Google Scholar
Davis, A., Marshak, A., Wiscombe, W. & Cahalan, R. (1994) Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated, J. Geophys. Res., 99, D4, 8055–8072CrossRefGoogle Scholar
Deeming, T. J. (1968) The analysis of linear correlation in astronomy, Vistas in Astron., 10, 125–142CrossRefGoogle Scholar
Deeming, T. J. (1975) Fourier analysis with unequally-spaced data, Astrophys. Space Sci., 36, 137–158CrossRefGoogle Scholar
de Jager, O. C., Raubenheimer, B. C. & Swanepoel, J. W. H. (1989) A poweful test for weak periodic signals with unknown light curve shape in sparse data, Astron. Astrophys., 221, 180–190Google Scholar
Delaigle, A. & Meister, A. (2008) Density estimation with heteroscedastic error, Bernoulli, 14, 562–579CrossRefGoogle Scholar
Delaigle, A., Fan, J. & Carroll, R. J. (2009) A design-adaptive local polynomial estimator for the errors-in-variables problem, J. Amer. Stat. Assoc., 104, 348–359CrossRefGoogle ScholarPubMed
Della Ceca, R. et al. (1994), The properties of X-ray∼selected active galactic nuclei. III. The radio-quiet versus radio-loud samples, Astrophys. J., 430, 533–544CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. Roy. Statist. Soc., 39, 1–38Google Scholar
Dennis, B. & Patil, G. P. (1984) The gamma distribution and the weight multimodal gamma distributions as models of population abundance, Math. Biosci., 68, 187–212CrossRefGoogle Scholar
de Vaucouleurs, G. (1948) Recherches sur les nebuleuses extragalactiques, Annales d'Astrophysique, 11, 247–287Google Scholar
Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns, 2nd ed., Arnold, LondonGoogle Scholar
Diggle, P. J. & Ribeiro, P. J. (2007) Model-based Geostatistics, Springer, BerlinGoogle Scholar
Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D. and Weingessel, A. (2010) e1071: Misc Functions of the Department of Statistics (e1071), TU Wien, R package version 1.5-24, http://CRAN.R-project.org/package=e1071
Djorgovski, S. & Davis., M. (1987) Fundamental properties of elliptical galaxies, Astrophys. J., 313, 59–68CrossRefGoogle Scholar
Dobigeon, N., Tournert, J.-Y. & Scargle, J. D. (2007) Joint segmentation of multivariate astronomical time series: Bayesian sampling with a hierarchical model, IEEE Trans. Signal Process., 55, 414–423CrossRefGoogle Scholar
Drinkwater, M. J., Parker, Q. A., Proust, D., Slezak, E. & Quintana, H. (2004) The large scale distribution of galaxies in the Shapley Supercluster, Pub. Astron. Soc. Australia, 21, 89–96CrossRefGoogle Scholar
Duda, R. O., Hart, P. E. & Stork, D. G. (2001) Pattern Classification, 2nd ed., John Wiley, New YorkGoogle Scholar
Durbin, J. & Koopman, S. J. (2001) Time Series Analysis by State Space Methods, Oxford University PressGoogle Scholar
Durbin, J. & Watson, G. S. (1950) Testing for serial correlation in least squares regression I, Biometrika, 37, 409–428Google ScholarPubMed
Dworetsky, M. M. (1983) A period-finding method for sparse randomly spaced observations of “How long is a piece of string?”, Mon. Not. Royal Astro. Soc., 203, 917–924CrossRefGoogle Scholar
Ebeling, H. & Wiedenmann, G. (1993) Detecting structure in two dimensions combining Voronoi tessellation and percolation, Phys. Rev. E, 47, 704–710CrossRefGoogle ScholarPubMed
Edelson, R. A. & Krolik, J. H. (1988) The discrete correlation function – A new method for analyzing unevenly sampled variability data, Astrophys. J., 333, 646–659CrossRefGoogle Scholar
Efron, B. (1967) The two sample problem with censored data, Proc. Fifth Berkeley Symp., 4, 831–853Google Scholar
Efron, B. (1982) The jackknife, the bootstrap and other resampling plans, in CBMS-NSF Regional Conf. Ser. in Applied Mathematics, 38, SIAM, PhiladelphiaGoogle Scholar
Efron, B. (2004) Bayesians, frequentists, and physicists, in Proc. PHYSTAT2003: Statistical Problems in Particle Physics, Astrophysics, and Cosmology, SLAC, paper MOAT003Google Scholar
Efron, B. & Petrosian, V. (1992) A simple test for truncated data with applications to redshift surveys, Astrophys. J., 399, 345–352CrossRefGoogle Scholar
Efron, B. & Tibshirani, R. J. (1993) An Introduction to the Bootstrap, Chapman & Hall, LondonCrossRefGoogle Scholar
Efstathiou, G., Ellis, R. S. & Peterson, B. A. (1988) Analysis of a complete galaxy redshift survey. II – The field-galaxy luminosity function, Mon. Not. Royal Astro. Soc., 232, 431–461CrossRefGoogle Scholar
Einasto, M and 12 coauthors (2010) The Sloan great wall: Rich clusters, Astron. Astrophys., 522, A92CrossRefGoogle Scholar
Eisenstein, D. J. et al. (2005) Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J., 633, 560–574CrossRefGoogle Scholar
Eisenstein, D. J., et al. (2006) A catalog of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey Data Release 4, Astrophys. J. Suppl., 167, 40–58CrossRefGoogle Scholar
Elsner, J. B. & Tsonis, A. A. (1996) Singular Spectral Analysis: A New Tool in Time Series Analysis, Plenum Press, New YorkCrossRefGoogle Scholar
Emmanoulopoulos, D., McHardy, I. M. & Uttley, P. (2010) On the use of structure functions to study blazar variability: Caveats and problems, Mon. Not. Royal Astro. Soc., 404, 931–946CrossRefGoogle Scholar
Engle, R. F. & Russell, J. R. (1998) Autoregressive conditional duration: A new model for irregularly spaced transaction data, Econometrica, 66, 1127–62CrossRefGoogle Scholar
EPA (2002) Calculating upper confidence limits for exposure point concentrations at hazardous waste sites, http://www.epa.gov/swerrims/riskassessment/pdf/ucl.pdf
Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. (1996) A density-based algorithm for discovering clusters in large spatial databases with noise, in Proc. 2nd Intl. Conf. Knowledge Discovery and Data Mining (KDD-96) (E., Simoudis, J., Han & U. M., Fayyad, eds.), AAAI Press, pp. 226–231Google Scholar
Evans, M., Hastings, N. & Peacock, B. (2000) Statistical Distributions, 3rd ed., John Wiley, New YorkGoogle Scholar
Everitt, B. S., Landau, S. & Leese, M. (2001) Cluster Analysis, 4th ed., Arnold, LondonGoogle Scholar
Faber, S. M. et al. (2007) Galaxy luminosity functions to z ∼ 1 from DEEP2 and COMBO-17: Implications for red galaxy formation, Astrophys. J., 665, 265–294CrossRefGoogle Scholar
Fan, J. & Yao, Q. (2003) Nonlinear Time Series: Nonparametric and Parametric Methods, Springer, BerlinCrossRefGoogle Scholar
Faraway, J. J. (2006) Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall, LondonGoogle Scholar
Feigelson, E. D. (1997) Time series problems in astronomy: An introduction, in Applications of Time Series Analysis in Astronomy and Meteorology (T. Subba, Rao et al., eds.), Chapman & Hall, LondonGoogle Scholar
Feigelson, E. D. (2007) Discussion on “Nonparametric estimation of dark matter distributions” by Wang, et al., in Statistical Challenges in Modern Astronomy IV (G. J., Babu & E. D., Feigelson, eds.), ASP Conf. Ser., 371, 280–283Google Scholar
Feigelson, E. D. & Babu, G. J. (1992) Linear regression in astronomy. II, Astrophys. J., 397, 55–67CrossRefGoogle Scholar
Feigelson, E. D. & Babu, G. J. (2012) Statistical Challenges in Modern Astronomy V, Springer, BerlinCrossRefGoogle Scholar
Feigelson, E. D. & Nelson, P. I. (1985) Statistical methods for astronomical data with upper limits I: Univariate distributions, Astrophys. J., 293, 192–206CrossRefGoogle Scholar
Fender, R. & Belloni, T. (2004) GRS 1915+105 and the disc-jet coupling in accreting black hole systems, Ann. Rev. Astro. Astrophys., 42, 317–364CrossRefGoogle Scholar
Fermi, E. (1949) On the origin of the cosmic radiation, Phys. Rev., 785, 1169–1174Google Scholar
Feroz, F., Hobson, M. P., & Bridges, M. (2009) MULTINEST: An efficient and robust Bayesian inference tool for cosmology and particle physics, M.N.R.A.S., 398, 1601–1614Google Scholar
Filzmoser, P. & Varmuza, K. (2010) chemometrics: Multivariate statistical analysis in chemometrics, R package version 1.2, http://CRAN.R-project.org/package=chemometrics
Finlay, A. O., Banerjee, S. & Carlin, B. P. (2007) spBayes: An R package for univariate and multivariate hierarchical point-referenced spatial models, J. Statistical Software, 19(4), 1–24Google Scholar
Fisher, N. I., Lewis, T. & Embleton, B. J. J. (1987) Statistical Analysis of Spherical Data, Cambridge University PressCrossRefGoogle Scholar
Fisher, R. A. (1922) On the mathematical foundations of theoretical statistics, Phil. Trans. Royal Soc., A, 222, 309–368CrossRefGoogle Scholar
Fisher, R. A. (1973) Statistical Methods and Scientific Inference, 3rd ed., Macmillan, LondonGoogle Scholar
Florek, K., Lukaszewicz, J., Prkal, J., Steinhaus, H. & Zubrzycki, S. (1951) Sur la liaison et la division des points d'un ensemble fini, Colloq. Math., 2, 282–285CrossRefGoogle Scholar
Ford, E. B. & Gregory, P. C. (2007) Bayesian model selection and extrasolar planet detection, in Statistical Challenges in Modern Astronomy IV (G. J., Babu & E. D., Feigelson, eds.), ASP, Conf. Ser. 371, 189–205Google Scholar
Fortin, M.-J. & Dale, M. (2005) Spatial Analysis: A Guide for Ecologists, Cambridge University PressGoogle Scholar
Foster, G. (1996) Wavelets for period analysis of unevenly sampled time series, Astron. J., 112, 1709–1729CrossRefGoogle Scholar
Fotheringham, A. S. & Rogerson, P. A., eds. (2009) The SAGE Handbook of Spatial Analysis, Sage, LondonCrossRef
Fotheringham, A. S., Brunsdon, C. & Charlton, M. (2002) Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, John Wiley, New YorkGoogle Scholar
Fox, J. (2002) An R and S-Plus Companion to Applied Regression, Sage, LondonGoogle Scholar
Fraley, C. (S original by Chris Fraley, U. Washington, Seattle. R port by Fritz Leisch at TU-Wien; since 2003–12: Martin Maechler; fdGPH(), fdSperio(), etc. by Valderio Reisen and Artur Lemonte) (2009) fracdiff: Fractionally differenced ARIMA aka ARFIMA(p,d,q) models, R package version 1.3-2, http://CRAN.R-project.org/package=fracdiff
Fraley, C. & Raftery, A. E. (2002) Model-based clustering, discriminant analysis, and density estimation, J. Amer. Stat. Assn., 97, 611–631CrossRefGoogle Scholar
Fraley, C. & Raftery, A. E. (2007) Bayesian regularization for normal mixture estimation and model-based clustering, J. Classification, 24, 155–181CrossRefGoogle Scholar
Fraser, A. M. (2009) Hidden Markov Models and Dynamical Systems, SIAM, PhiladelphiaGoogle Scholar
Freedman, D. & Diaconis, P. (1981) On the histogram as a density estimator: L2 theory, Zeitschrift Wahrscheinlichkeitstheorie verw. Gebiete, 57, 453–476CrossRefGoogle Scholar
Friedman, J. H. (1984) A variable span scatterplot smoother, Laboratory for Computational Statistics, Stanford University Technical Report No. 5CrossRefGoogle Scholar
Freedman, W. L. & Madore, B. F. (2010) The Hubble constant, Ann. Rev. Astron. Astrophys., 48, 673–710CrossRefGoogle Scholar
Freund, Y. & Schapire, R. (1997) A decision-theoretical generalization of online learning and an application to boosting, J. Comput. Syst. Sci., 55, 119–139CrossRefGoogle Scholar
Gehrels, N. (1986) Confidence limits for small numbers of events in astrophysical data, Astrophys. J., 303, 336–346CrossRefGoogle Scholar
Geisser, S. (2006) Modes of Parametric Statistical Inference, Wiley-Interscience, New YorkGoogle Scholar
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003) Bayesian Data Analysis, 2nd ed., Chapman & Hall, LondonGoogle Scholar
Gemerman, D. & Lopes, H. F. (2006) Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd ed., CRC Press, Boca RatonGoogle Scholar
Gencay, R., Selcuk, F. & Whitcher, B. (2001) An Introduction to Wavelets and Other Filtering Methods in Finance and Economics, Academic Press, New YorkGoogle Scholar
Gentleman, R. & Vandal, A. C. (2002) Nonparametric estimation of the bivariate CDF for arbitrarily censored data, Canadian J. Stat., 30, 557–571CrossRefGoogle Scholar
Geweke, J. and Porter-Hudak, S. (1983) The estimation and application of long memory time series models, J. Time Series Anal., 4, 221–238CrossRefGoogle Scholar
Ghosh, J. K., Delampady, M. & Samanta, T. (2006) An Introduction to Bayesian Analysis: Theory and Methods, Springer, BerlinGoogle Scholar
Ghysels, E., Sinko, A. & Valkanov, R. (2007) MIDAS regressions: Further results and new directions, Econometric Reviews, 26, 53–90CrossRefGoogle Scholar
Goldstein, M. L., Morris, S. A., & Yen, G. G. (2004) Problems with fitting to the power-law distribution, Eur. Phys. J. B, 41, 255–258CrossRefGoogle Scholar
Gorban, A., Kegl, B., Wunsch, D. & Zinovyev, A., eds. (2007) Principal Manifolds for Data Visualisation and Dimension Reduction, Springer, Berlin
Gower, J. C. & Hand, D. J. (1996), Biplots, Chapman & Hall, LondonGoogle Scholar
Graham, M. J., Fitzpatrick, M. J. & McGlynn, T. A., eds. (2008) The National Virtual Observatory: Tools and Techniques for Astronomical Research, ASP Conf. Ser 382., Astronomical Society of t he Pacific
Grandell, J. (1997) Mixed Poisson Processes, Chapman & Hall, LondonCrossRefGoogle Scholar
Greene, W. H. (2003) Econometric Analysis, 6th ed., Prentice-Hall, Englewood CliffsGoogle Scholar
Greenwood, P. E. & Nikulin, M. S. (1996) A Guide to Chi-Squared Testing, John Wiley, New YorkGoogle Scholar
Gregory, P. C. (2005) Bayesian Logical Data Analysis for t he Physical Sciences: A Comparative Approach with Mathematica Support, Cambridge University PressCrossRefGoogle Scholar
Gregory, P. C. & Loredo, T. J. (1992) A new method for t he detection of a periodic signal of unknown shape and period, Astrophys. J., 398, 146–168CrossRefGoogle Scholar
Griffin, E., Hanisch, R. & Seaman, R., eds. (2012) New Horizons in Time Domain Astronomy, IAU Symp. 285, ASP Conf. Ser. Vol. 387, Astronomical Society of the Pacific, San Francisco
Gross, J. (2010) nortest: Tests for nor mality, R package version 1.0.
Grothendieck, G. (2010) nls2: Non-linear regression with brute force. R package version 0.1-3, http://CRAN.R-project.org/package=n1s2
Guis, V. & Barge, P. (2005) An image-processing method to detect planetary transits: The “gauging” filter, Publ. Astron. Soc. Pacific, 117, 160–172CrossRefGoogle Scholar
Hacking, I. (1990) The Taming of Chance, Cambridge University PressCrossRefGoogle Scholar
Haight, F. A. (1967) Handbook of the Poisson Distribution, John Wiley, New YorkGoogle Scholar
Hald, A. (1998) A History of Mathematical Statistics from 1750 to 1930, Springer, BerlinGoogle Scholar
Hald, A. (2003) A History of Probability and Statistics and Their Applications before 1750, Springer, BerlinGoogle Scholar
Hall, P. (2008) Nonparametric methods for estimating periodic functions, with applications in astronomy, in COMPSTAT 2008 Proceedings in Computational Statistics, Springer, Berlin, pp. 3–18Google Scholar
Hall, P., Racine, J. S. & Li, Q. (2004) Cross-validation and the estimation of conditional probability densities, J. Amer. Stat. Assn., 99, 1015–1026CrossRefGoogle Scholar
Hall, P., Watson, G. S. & Cabrera, J. (1987) Kernel density estimation with spherical data, Biometrika, 74, 751–62CrossRefGoogle Scholar
Halley, E. (1693) An estimate of the degrees of the mortality of mankind drawn from curious tables of the births and funerals at the city of Breslaw, Phil. Trans. Roy. Soc. London, 17, 596–610CrossRefGoogle Scholar
Hand, D. J. (2010) Statistics: An Overview, in Inter national Encyclopedia of Statistical Science (M., Lovrik, ed.), Springer, New YorkGoogle Scholar
Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D., Schlesinger, B. M., Teuben, P. J., Thompson, R. W. & Warnock, A. (2001) Definition of the Flexible Image Transport System (FITS), Astron. Astrophys., 376, 359–380Google Scholar
Hansen, C. & Johnson, C. R. (2004), The Visualization Handbook, Elsevier, AmsterdamGoogle Scholar
Hao, J. and 13 coauthors (2010) A GMBCG galaxy cluster catalog of 55, 424 rich clusters from SDSS DR7, Astrophys. J. Suppl., 191, 254–274CrossRefGoogle Scholar
Harikrishnan, K. P., Misra, R. & Ambika, G. (2011) Nonlinear times eries analysis of the light curves from the black hole system GRS1915+105, Res. Astron. Astrophys., 11, 71–79CrossRefGoogle Scholar
Hartigan, J. A. & Hartigan, P. M. (1985) The dip test of unimodality, Ann. Statist., 13, 70–84CrossRefGoogle Scholar
Hastie, T. & Tibshirani, R. (1996) Discriminant adaptive nearest neighbor classification, IEEE Trans. Pattern Anal. Machine Intell., 18, 607–616CrossRefGoogle Scholar
Hastie, T., Tibshirani, R. & Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, BerlinCrossRefGoogle Scholar
Hayfield, T. & Racine, J. S. (2008) Nonparametric econometrics: The np package, Journal Statist. Software, 27(5), http://www.jstatsoft.org/v27/i05/CrossRefGoogle Scholar
Helsel, D. R. (2005) Nondetects and Data Analysis: Statistics for Censored Environmental Data, Wiley-Interscience, New YorkGoogle Scholar
Hennig, C. (2010) fpc: Flexible procedures for clustering, R package version 2.0-3, http://CRAN.R-project.org/package=fpc
Hernquist, L. (1990) An analytical model for spherical galaxies and bulges, Astrophys. J., 356, 359–364Google Scholar
Hertz, P. & Feigelson, E. D. (1995) A sample of astronomical time series, in Applications of Time Series Analysis in Astronomy and Meteorology (T. Subba, Rao et al., eds.), Chapman & Hall, London, pp. 340–356Google Scholar
Higdon, R. & Schafer, D. W. (2001) Maximum likelihood computations for regression with measurement error, Comput. Statist. & Data Analysis, 35, 283–299CrossRefGoogle Scholar
Higgins, J. J. (2004) An Introduction to Modern Nonparametric Statistics, Thomson/Brooks-Cole, BelmontGoogle Scholar
Hilbe, J. M. (2011) Negative Binomial Regression, 2nd ed., Cambridge University PressCrossRefGoogle Scholar
Hinneburg, A. & Keim, D. A. (1998) An efficient approach to clustering in large multimedia databases with noise, in Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining (KDD'98), pp. 58–65Google Scholar
Ho, L.C. et al. (2001) Detection of nuclear X-ray s ources in nearby galaxies with Chandra, Astrophys. J., 549, L51–L54Google Scholar
Hobson, M. P., Parkinson, D., Jaffee, A. H., Liddle, A. J. & Mukherjee, P. (2010) Bayesian Methods in Cosmology, Cambridge University PressGoogle Scholar
Hogg, D. W., Myers, A. D. & Bovy, J. (2010) Inferring the eccentricity distribution, Astrophys. J., 725, 2166–2175Google Scholar
Hogg, R., McKean, J. & Craig, A. (2005) Introduction to Mathematical Statistics, 6th ed., Prentice-Hall, Englewood CliffsGoogle Scholar
Hogg, R. V. & Tanis, E. (2009) Probability and Statistical Inference, 8th ed., Prentice-Hall, Englewood CliffsGoogle Scholar
Holtzman, J. A., Watson, A. M., Baum, W. A., Grillmair, C. J., Groth, E. J., Light, R. M., Lynds, R. & O'Neil, E. J. (1998) The luminosity function and Initial Mass Function in the Galactic bulge, Astron. J., 115, 1946–1957CrossRefGoogle Scholar
Hopkins, P. F., Richards, G. T. & Hernquist, L. (2007) An observational determination of the bolometric quasar luminosity function, Astrophys. J., 654, 731–753Google Scholar
Hörmann, W., Leydold, J. & Derfiinger, G. (2004) Automatic Nonuniform Random Variate Generation, Springer, BerlinCrossRefGoogle Scholar
Horne, J. H. & Baliunas, S. L. (1986) A prescription for period analysis of unevenly sampled time series, Astrophys. J., 302, 757–763CrossRefGoogle Scholar
Hosmer, D. W., Lemeshow, S. & May, S. (2008) Applied Survival Analysis, Wiley-Interscience, New YorkCrossRefGoogle Scholar
Hou, A., Parker, L. C., Harris, W. E. & Wilman, D. J. (2009) Statistical tools for classifying galaxy group dynamics, Astrophys. J., 702, 1199–1210Google Scholar
Howell, L. W. (2002) Maximum likelihood estimation of the broken power law spectral parameters with detector design applications, Nucl. Instr. Methods Phys. Res. A, 489, 422–438Google Scholar
Hubble, E. P. (1926) Extragalactic nebulae, Astrophys. J., 64, 321–369CrossRefGoogle Scholar
Hubble, E. P. (1930) Distribution of luminosity in elliptical nebulae, Astrophys. J., 71, 231–276CrossRefGoogle Scholar
Hubble, E. & Humason, M. L. (1931) The velocity–distance relation among extra-galactic nebulae, Astrophys. J., 74, 43–80CrossRefGoogle Scholar
Huber, P. J. (1967) The behavior of maximum likelihood estimates under nonstandard conditions, in Proc. Fifth Berkeley Symposium in Mathematical Statistics and Probability, University of California PressGoogle Scholar
Huber, P. J. & Ronchetti, E. M. (2009) Robust Statistics, 2nd ed., John Wiley, New YorkCrossRefGoogle Scholar
Huber-Carol, C., Balakrishnan, N., Nikulin, M. S. & Mesbah, M., eds. (2002) Goodness-of-Fit Tests and Model Validity, Birkhäuser, BostonCrossRef
Hubert, M., Rousseeuw, P. J. & Van Aelst, S. (2005) Multivariate outlier detection and robustness, in Handbook of Statistics (C. R., Rao et al., eds.), vol. 24, Elsevier, Amsterdam, pp. 263–302Google Scholar
Huet, S., Bouvier, A., Poursat, M.-A. & Jolivet, E. (2004) Statistical Tools for Nonlinear Regression: A Practical Guide with S-PLUS and R Examples, 2nd ed., Springer, BerlinGoogle Scholar
Hufnagel, B. R. & Bregman, J. N. (1992) Optical and radio variability in blazars, Astrophys. J., 386, 473–484Google Scholar
Hurvich, C., Deo, R. & Brodsky, J. (1998) The mean squared error of Geweke and Porter-Hudak's estimator of the memory parameter of a long-memory time series, J. Time Series Analysis, 19, 19–46CrossRefGoogle Scholar
Hutchinson, T. P. & Lai, C. D. (1990) Continuous Bivariate Distributions, Emphasising Applications, Rumsby Scientific Publishing, AustraliaGoogle Scholar
Ihaka, R. & Gentleman, R. (1996) R: A language for data analysis and graphics, J. Comput. Graph. Statist., 5, 299–314Google Scholar
Ihaka, R. & Lang, D. T. (2008) Back to the future: Lisp as a base for as tatistical computing system, in COMPSTAT 2008: Proc. Computational Statistics (P., Brito, ed.), pp. 21–34Google Scholar
Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. (2008) Statistical Analysis and Modelling of Spatial Point Patterns, John Wiley, New YorkGoogle Scholar
Ingram, A. & Done, C. (2010) A physical interpretation of the variability powers pectral components in accreting neutron stars, Mon. Not. Royal Astro. Soc., 405, 2447–2452Google Scholar
Inselberg, A. (2009) Parallel Coordinates: Visual Multidimensional Geometry and Its Applications, Springer, BerlinCrossRefGoogle Scholar
Irony, T. Z. (1992) Bayesian estimation for discrete distributions, J. Appl. Stat., 19, 533–549CrossRefGoogle Scholar
Isobe, T., Feigelson, E. D. & Nelson, P. I. (1986) Statistical methods for astronomical data with upper limits II: Correlation and regression, Astrophys. J., 306, 490–507CrossRefGoogle Scholar
Isobe, T., Feigelson, E. D., Akritas, M. G. & Babu, G. J. (1990) Linear regression in astronomy, Astrophys. J., 364, 104–113CrossRefGoogle Scholar
Ivezić, Z. et al. (2002) Optical and radio properties of extragalactic sources observed by the FIRST survey and the Sloan Digital Sky Survey, Astron. J., 124, 2353–2400CrossRefGoogle Scholar
Izenman, A. J. (2008) Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning, Springer, BerlinCrossRefGoogle Scholar
James, F. (2006) Statistical Methods in Experimental Physics, 2nd ed., World Scientific, SingaporeCrossRefGoogle Scholar
Jammalamadaka, S. R. & SenGupta, A. (2001) Topics in Circular Statistics, World Scientific, SingaporeCrossRefGoogle Scholar
Johnson, N. L., Kemp, A. W. & Kotz, S. (2005) Univariate Discrete Distributions, 3rd ed., Wiley-Interscience, New YorkCrossRefGoogle Scholar
Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994) Continuous Univariate Distributions, 2nd ed., Vols 1 and 2, Wiley-Interscience, New YorkGoogle Scholar
Johnson, N. L., Kotz, S. & Balakrishnan, N. (1997) Discrete Multivariate Distributions, Wiley-Interscience, New YorkGoogle Scholar
Johnson, R. A. & Wichern, D. W. (2007) Applied Multivariate Statistical Analysis, 6th ed., Prentice-Hall, Englewood CliffsGoogle Scholar
Johnstone, I. M. & Titterington, D. M. (2009) Statistical challenges of high-dimensional data, Phil. Trans. Royal Soc. A, 367, 4237–4253Google Scholar
Jones, A. J. (2004) New tools in non-linear modelling and prediction, Comput. Manag. Sci., 1, 109–149CrossRefGoogle Scholar
Jones, O., Maillardet, R. & Robinson, A. (2009) Introduction to Scientific Programming and Simulation Using R, CRC Press, Bora RatonGoogle Scholar
Jonker, P. G., van der Klis, M., Homan, J., Méndez, M., Lewin, W. H. G., Wijnands, R. & Zhang, W. (2002) Low- and high-frequency variability as a function of spectral properties in the bright X-ray binary GX 5–1, Mon. Not. Royal Astro. Soc., 333, 665–678CrossRefGoogle Scholar
Jung, J. (1970) The derivation of absolute magnitudes from proper motions and radial velocities and the calibration of the H.R. diagram II, Astron. Astrophys., 4, 53–69Google Scholar
Jupp, P. E. & Mardia, K. V. (1989) Unified view of the theory of directional statistics, 1975–1985, Intl. Statist. Review, 57, 261–294Google Scholar
Kaplan, E. L. & Meier, P. (1958) Nonparametric estimation from incomplete observations, J. Amer. Stat. Assn., 53, 457–481CrossRefGoogle Scholar
Kapteyn, J. C. & van Rhijn, P. J. (1920) On the distribution of the stars in space especially in the high Galactic latitudes, Astrophys. J., 52, 23–38CrossRefGoogle Scholar
Karypis, G., Han, E.-H. & Kumar, V. (1999) Chameleon: A hierarchical clustering algorithm using dynamic modeling, IEEE Comput., 32(8), 68–75CrossRefGoogle Scholar
Kashyap, V. L., van Dyk, D. A., Connors, A., Freeman, P. E., Siemiginowska, A., Xu, J. & Zezas, A. (2010) On computing upper limits to source intensities, Astrophys. J., 719, 900–914Google Scholar
Kaufman, L. & Rousseeuw, P. J. (1990) Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley, New YorkCrossRefGoogle Scholar
Kazin, E. A. and 11 coauthors (2010) The baryonic acoustic feature and large-scale clustering in the Sloan Digital Sky Survey luminous red galaxy sample, Astrophys. J., 710, 1444–1461Google Scholar
Keiding, N. & Gill, R. D. (1990) Random truncation models and Markov processes, Ann. Stat., 18, 582–602CrossRefGoogle Scholar
Kelly, B. C. (2007) Some aspects of measurement error in linear regression of astronomical data, Astrophys. J., 665, 1489–1506Google Scholar
Kingman, J. F. C. (1993) Poisson Processes, Clarendon Press, OxfordGoogle Scholar
Kitagawa, G. & Gersch, W. (1996) Smoothness Priors Analysis of Time Series, Springer, BerlinCrossRefGoogle Scholar
Kitaura, F. S., Jasche, J., Li, C., Ensslin, T. A., Metcalf, R. B., Wandelt, B. D., Lemson, G. & White, S. D. M. (2009) Cosmic cartography of the large-scale structure with Sloan Digital Sky Survey data release 6, Mon. Not. Royal Astro. Soc., 400, 183–203Google Scholar
Klein, J. P. & Moeschberger, M. L. (2005) Survival Analysis: Techniques for Censored and Truncated Data, 2nd ed., Springer, BerlinGoogle Scholar
Koen, C. (1990) Significance testing of periodogram ordinates, Astrophys. J., 348, 700–702Google Scholar
Koen, C. & Kondlo, L. (2009) Fitting power-law distributions to data with measurement errors, Mon. Not. Royal Astro. Soc., 397, 495–505Google Scholar
Koen, C. & Lombard, F. (1993) The analysis of indexed astronomical time series. I. Basic methods, Mon. Not. Royal Astro. Soc., 263, 287–308CrossRefGoogle Scholar
Koenker, R. (2005) Quantile Regression, Cambridge University PressCrossRefGoogle Scholar
Koenker, R. (2010) quantreg: Quantile Regression, R package version 4.53, http://CRAN. R-project.org/package=quantreg
Kohavi, R. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection, Proc. 12th Intl. Joint Conference on Artificial Intelligence, 1137–1143Google Scholar
Komsta, L. & Novomestky, F. (2007) moments: Moments, cumulants, skewness, kurtosis and related tests, R package version 0.11, http://www.r-project.org, http://www.komsta.net/
Konishi, S. & Kitagawa, G. (2008) Information Criteria and Statistical Modeling, Springer, BerlinCrossRefGoogle Scholar
Kormendy, J., Fisher, D. B., Cornell, M. E. & Bender, R. (2009) Structure and formation of elliptical and spheroidal galaxies, Astrophys. J. Suppl., 182, 216–309CrossRefGoogle Scholar
Kotz, S., Balakrishnan, N. & Johnson, N. L. (2000) Continuous Multivariate Distributions, 2nd ed., Vols 1 and 2, Wiley-Interscience, New YorkCrossRefGoogle Scholar
Kovács, G., Zucker, S. & Mazeh, T. (2002) A box-fitting algorithm in the search for periodic transits, Astron. Astrophys., 391, 369–377Google Scholar
Koyama, S. & Shinomoto, S. (2004) Histogram bin width selection for time-dependent Poisson processes, J. Physics A, 37, 7255–7265CrossRefGoogle Scholar
Kraus, D. (2008). surv2sample: Two-sample tests for survival analysis, R package version 0.1-2, http://www.davidkraus.net/surv2sample/
Krishnamoorthy, K. (2006) Handbook of Statistical Distributions with Applications, Chapman & Hall, LondonCrossRefGoogle Scholar
Kroupa, P. (2001) On the variation of the initial mass function, Mon. Not. Royal Astro. Soc., 322, 231–246CrossRefGoogle Scholar
Kruschke, J. K. (2011) Doing Bayesian Data Analysis: A Tutorial with R and BUGS, Academic Press, New YorkGoogle Scholar
Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. (2005) Applied Linear Statistical Models, 5th ed., McGraw-Hill, New TorkGoogle Scholar
Lafler, J. & Kinman, T. D. (1965) An RR Lyrae star survey with the Lick 20-inch astrograph II. The calculation of RR Lyrae periods by electronic computer, Astrophys. J. Suppl., 11, 216CrossRefGoogle Scholar
Lahiri, P., ed. (2001) Model Selection, Institute of Mathematical Statisitcs
Lang, D. T., Swayne, D., Wickham, H. & Lawrence, M. (2010) rggobi: Interface between R and GGobi, R package version 2.1.16, http://CRAN.R-project.org/package=rggobi
LaValley, M., Isobe, T. & Feigelson, E. (1992) ASURV: Astronomy survival analysis package, in Astronomical Data Analysis Software and Systems I (D., Worrall et al., eds.), ASP Conf. Ser. 25, 245–247Google Scholar
Lawless, J. F. (2003) Statistical Models and Methods for Lifetime Data, 2nd ed., John Wiley, New YorkGoogle Scholar
Lawson, A. B. & Denison, D. G. T., eds. (2002) Spatial Cluster Modelling, Chapman & Hall/CRC, Boca RatonCrossRef
Leahy, D. A., Elsner, R. F. & Weisskopf, M. C. (1983) On searches for periodic pulsed emission: The Rayleigh test compared to epoch folding, Astrophys. J., 272, 256–258CrossRefGoogle Scholar
Lean, J. (1990) Evolution of the 155 day periodicity in sunspot areas during solar cycles 12 to 21, Astrophys. J., 363, 718–727CrossRefGoogle Scholar
Lee, E. T. & Wang, J. W. (2003) Statistical Methods for Survival Data Analysis, 3rd ed., Wiley-Interscience, New YorkCrossRefGoogle Scholar
Lee, J. A. & Verleysen, M. (2009) Nonlinear Dimensionality Reduction, Springer, BerlinGoogle Scholar
Lee, L. (2010) NADA: Nondetects And Data Analysis for environmental data, R package version 1.5-3, http://CRAN.R-project.org/package=NADA
Leggett, S. K. et al. (2000) The missing link: Early methane (“T”) dwarfs in the Sloan Digital Sky Survey, Astrophys. J., 536, L35–L38CrossRefGoogle ScholarPubMed
Lehmann, E. L. & Casella, G. (1998) Theory of Point Estimation, 2nd ed., Springer, BerlinGoogle Scholar
Lehmann, E. L. & Romano, J. P. (2005) Testing Statistical Hypotheses, 3rd ed., Springer, BerlinGoogle Scholar
Leisch, F. (2006) A toolbox for K-centroids cluster analysis, Comput. Statist. Data Anal., 51, 526–544CrossRefGoogle Scholar
Leisch, F. (2010) Neighborhood graphs, stripes and shadow plots for cluster visualization, Statist. Comput., 20, 451–469CrossRefGoogle Scholar
Levy, M. & Solomon, S. (1996) Power laws are logarithmic Boltzmann laws, Intl. J. Mod. Phys. C, 7, 595–601CrossRefGoogle Scholar
Lieshout, M. N. M. van & Baddeley, A. J. (1996) A nonparametric measure of spatial interaction in point patterns, Statistica Neerlandica, 3, 344–361Google Scholar
Ligges, U. & Mächler, M. (2003) Scatterplot3d – an R package for visualizing multivariate data, J. Statist. Software, 8(11), 1–20CrossRefGoogle Scholar
Lilliefors, H. W. (1969) On the Kolmogorov–Smirnov test for the exponential distribution with mean unknown, J. Amer. Statist. Assn., 64, 387–389Google Scholar
Loader, C. (1999) Local Regression and Likelihood, Springer, New YorkGoogle Scholar
Loh, J. M. (2008) A valid and fast spatial bootstrap for correlation functions, Astrophys. J., 681, 726–734CrossRefGoogle Scholar
Lomb, N. R. (1976) Least squares frequency analysis unequally spaced data, Astrophys. Space Sci., 39, 447–46CrossRefGoogle Scholar
London, D. (1997) Survival Models and Their Estimation, 3rd. ed., ACTEX, Winsted, CTGoogle Scholar
Loredo, T. (1992) Promise of Bayesian inference for astrophysics, in Statistical Challenges in Modern Astronomy (Feigelson, E. D., & Babu, G. J., eds.), Springer, Berlin, pp. 275–306Google Scholar
Lucy, L. B. (1974) An iterative technique for the rectification of observed distributions, Astron. J., 79, 745–754CrossRefGoogle Scholar
Luhman, K. L. et al. (2008) The disk population of the Chamaeleon I star-forming region, Astrophys. J., 675, 1375–1406CrossRefGoogle Scholar
Luhman, K. L., Allen, P. R., Espaillat, C., Hartmann, L. & Calvet, N. (2010) The disk population of the Taurus star-forming region, Astrophys. J. Suppl., 186, 111–174CrossRefGoogle Scholar
Lund, U. & Agostinelli, C. (2009) CircStats: Circular Statistics, from “Topics in Circular Statistics” 2001, R package version 0.2-4, http://CRAN.R-project.org/package=CircStats
Lupton, R. (1993) Statistics in Theory and Practice, Princeton University PressGoogle Scholar
Lynden-Bell, D. (1971) A method of allowing for known observational selection in small samples applied to 3CR quasars, Mon. Not. Royal Astro. Soc., 155, 95–118CrossRefGoogle Scholar
Lynden-Bell, D., Faber, S. M., Burstein, D., Davies, R. L., Dressler, A., Terlevich, R. J. & Wegner, G. (1988) Spectroscopy and photometry of elliptical galaxies. V – Galaxy streaming toward the new supergalactic center, Astrophys. J., 326, 19–49CrossRefGoogle Scholar
Maechler, M. (2010) diptest: Hartigan's dip test statistic for unimodality – corrected code (based on Fortran, S-plus from Dario Ringach and NYU.edu), R package version 0.25-3, http://CRAN.R-project.org/package=diptest
Maechler, M. and many others (2010) sfsmisc: Utilities from Seminar fuer Statistik ETH Zurich. R package version 1.0-11, http://CRAN.R-project.org/package=sfsmisc
Maíz Apellániz, J. & Úbeda, L. (2005) Numerical biases on Initial Mass Function determinations created by binning, Astrophys. J., 629, 873–880CrossRefGoogle Scholar
Mallat, S. G. (2009) A Wavelet Tour of Signal Processing, 3rd ed., Academic Press, New YorkGoogle Scholar
Maller, A. H., McIntosh, D. H., Katz, N. & Weinberg, M. D. (2005) The galaxy angular correlation functions and power spectrum from the Two Micron All Sky Survey, Astrophys. J., 619, 147–160CrossRefGoogle Scholar
Maloney, P. R. et al. (2005) A fluctuation analysis of the Bolocam 1.1 mm Lockman Hole survey, Astrophys. J., 635, 1044–1052CrossRefGoogle Scholar
Mandel, K. S., Wood-Vasey, W. M., Friedman, A. S. & Kirshner, R. P. (2009) Type Ia supernova light-curve inference: Hierarchical Bayesian analysis in the near-infrared, Astrophys. J., 704, 629–651CrossRefGoogle Scholar
Mandelkern, M. (2002) Setting confidence intervals for bounded parameters (with commentaries), Statist. Sci., 17, 149–172Google Scholar
Marchis, F. et al. (2006) A low density of 0.8 g cm−3 for the Trojan binary asteroid 617 Patroclus, Nature, 439, 565–567CrossRefGoogle Scholar
Mardia, K. V. (1962) Multivariate Pareto distributions, Ann. Math. Statist., 33, 1008–1015CrossRefGoogle Scholar
Maronna, R. A. & Martin, R. D. (2006) Robust Statistics: Theory and Methods, John Wiley, ChichesterCrossRefGoogle Scholar
Marquardt, D. W. & Acuff, S. K. (1984) Direct quadratic spectrum estimation with irregularly spaced data, in Time Series Analysis of Irregularly Observed Data (E., Parzen, ed.), Lecture Notes in Statistics, 25, Springer, BerlinGoogle Scholar
Marsland, S. (2009) Machine Learning: An Algorithmic Perspective, CRC Press, Boca RatonGoogle Scholar
Martínez, V. J. & Saar, E. (2001) Statistics of the Galaxy Distribution, Chapman & Hall/CRC, Boca RatonCrossRefGoogle Scholar
Maschberger, T. & Kroupa, P. (2009) Estimators for the exponent and upper limit, and goodness-of-fit tests for (truncated) power-law distributions, Mon. Not. Royal Astro. Soc., 395, 931–942CrossRefGoogle Scholar
Matsumoto, M. & Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simu., 8, 3–30Google Scholar
McDermott, J. P., Babu, G. J., Liechty, J.C. & Lin, D.K. (2007) Data skeletons: simultaneous estimation of multiple quantiles for massive streaming datasets with applications to density estimation, Statist. Comput., 17, 311–321CrossRefGoogle Scholar
McLachlan, G. J. & Krishnan, T. (2008) The EM Algorithm and Extensions, 2nd ed., John Wiley, New YorkCrossRefGoogle Scholar
McLachlan, G. & Peel, D. (2000) Finite Mixture Models, Wiley-Interscience, New YorkCrossRefGoogle Scholar
Mészáros, P. (2006) Gamma ray bursts, Rept. Prog. Phys., 69, 2259–2321CrossRefGoogle Scholar
Meyer, D., Zeileis, A. & Hornik, K. (2006) The Strucplot framework: Visualizingmulti-way contingency tables with vcd, J. Statist. Software, 17 (3), 1CrossRefGoogle Scholar
Milborrow, S. derived from mda:mars by Trevor Hastie and Rob Tibshirani. (2010) earth: Multivariate Adaptive Regression Spline Models, R package version 2.4-5, http://CRAN.R-project.org/package=earth
Miller, C. J., Nichol, R. C., Genovese, C. & Wasserman, L. (2002), A nonparametric analysis of the cosmic microwave background power spectrum, Astrophys. J., 565, L67–L70CrossRefGoogle Scholar
Minsky, M. L. & Papert, S. A. (1969) Perceptrons, MIT Press, Cambridge, MAGoogle Scholar
Mitzenmacher, M. (2004) A brief history of generativemodels for power law and lognormal distributions, Internet Math., 1, 226–251CrossRefGoogle Scholar
Möller, J. & Waagepetersen, R. (2003) Statistical Inference and Simulation for Spatial Point Processes, CRC, Boca RatonCrossRefGoogle Scholar
Morbey, C. L. & Griffin, R. F. (1987) On the reality of certain spectroscopic orbits, Astrophys. J., 317, 343–352CrossRefGoogle Scholar
Moreira, C., de Uña-Álvarez, J. & Crujeiras, R. (2010) DTDA:An R package to analyze randomly truncated data, J. Statist. Software, 37(7), 1–20, http://www.jstatsoft.org/v37/i07CrossRefGoogle Scholar
Mukherjee, S., Feigelson, E. D., Babu, J. G., Murtagh, F., Fraley, C. & Raftery, A. (1998) Three types of gamma-ray bursts, Astrophys. J., 508, 314–327CrossRefGoogle Scholar
Müller, D. W. & Sawitzki, G. (1991) Excess mass estimates and tests for multimodality, J. Amer. Statist. Assoc., 86, 738–746.Google Scholar
Müller, P. & Quintana, F. A. (2004) Nonparametric Bayesian data analysis, Statistical Science, 19, 95–110Google Scholar
Nadarajah, S. & Kotz, S. (2006) R programs for computing truncated distributions, J. Statist. Software, 16, Code Snippet 2CrossRefGoogle Scholar
Nantais, J. B., Huchra, J. P., Barmby, P., Olsen, K. A. & Jarrett, T. H. (2006) Nearby spiral globular cluster systems I: Luminosity functions, Astron. J., 131, 1416–1425CrossRefGoogle Scholar
Narayan, R. & Nityananda, R. (1986) Maximum entropy image restoration in astronomy, Ann. Rev. Astron. Astrophys., 24, 127–170CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S. & White, S. D. M. (1997) A universal density profile from hierarchical clustering, Astrophys. J., 490, 493–508CrossRefGoogle Scholar
Nelder, J. & Wedderburn, R. (1972) Generalized linear models, J. Royal Stat. Soc., Ser. A, 135, 370–384Google Scholar
Neter, J., Wasserman, W. & Kutner, M. H. (1978) Applied Linear Statistical Models, McGraw-Hill, New YorkGoogle Scholar
Newman, M. E. J. (2005) Power laws, Pareto distributions and Zipf 's law, Contemp. Phys., 46, 323–351CrossRefGoogle Scholar
Nichols-Pagel, G. A., Percival, D. B., Reinhall, P. G. & Riley, J. J. (2008) Should structure functions be used to estimate power laws in turbulence? A comparative study, Physica D: Nonlin. Phen., 237, 665–677CrossRefGoogle Scholar
Nocedal, J. & Wright, S. J. (2006) Numerical Optimization, 2nd ed., Springer, BerlinGoogle Scholar
Norris, J. P., Hertz, P., Wood, K. S., Vaughan, B. A., Michelson, P. F., Mitsuda, K. & Dotani, T. (1990) Independence of short time scale fluctuations of quasi-periodic oscillations and low frequency noise in GX5-1, Astrophys. J., 361, 514–526CrossRefGoogle Scholar
Nousek, J. A. (2006) Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data, Astrophys. J., 642, 389–400CrossRefGoogle Scholar
Okabe, A., Boots, B., Sugihara, K. & Chiu, S. N. (1999) Spatial Tesselations: Concepts and Applications of Voronoi Diagrams, John Wiley, New YorkGoogle Scholar
Ord, J. K. & Getis, A. (2001) Testing for local spatial autocorrelation in the present of global autocorrelation, J. Regional Sci., 41, 411–432CrossRefGoogle Scholar
Osborne, C. (1991) Statistical calibration: A review, Intl. Statist. Rev., 59, 309–336CrossRefGoogle Scholar
Palma, W. (2007) Long-Memory Time Series: Theory and Methods, Wiley-Interscience, New YorkCrossRefGoogle Scholar
Palmer, D.M. (2009) A fast chi-squared technique for period search of irregularly sampled data, Astrophys. J., 695, 496–502CrossRefGoogle Scholar
Paltani, S. (2004) Searching for periods in X-ray observations using Kuiper's test. Application to the ROSAT PSPC archive, Astron. Astrophys., 420, 789–797CrossRefGoogle Scholar
Panik, M. J. (2005) Advanced Statistics from an Elementary Point of View, Academic Press, San DiegoGoogle Scholar
Papadakis, I. E. & Lawrence, A. (1993) Improved methods for power spectrum modelling of red noise, Mon. Not. Royal Astro. Soc., 261, 612–624CrossRefGoogle Scholar
Park, T., Kashyap, V. L., Siemiginowska, A., van Dyk, D. A., Zezas, A., Heinke, C. & Wargelin, B. J. (2006) Bayesian estimation of hardness ratios: Modeling and computations, Astrophys. J., 652, 610–628CrossRefGoogle Scholar
Parzen, E., ed. (1984) Time Series Analysis of Irregularly Spaced Data, Lecture Notes in Statistics, vol. 25, Springer, Berlin
Peacock, J. A. (1983), Two-dimensional goodness-of-fit testing in astronomy, Mon. Not. Royal Astron. Soc., 202, 615–627CrossRefGoogle Scholar
Pebesma, E. J. (2004) Multivariable geostatistics in S: The gstat package, Comput. Geosci., 30, 683–691CrossRefGoogle Scholar
Peebles, P. J. E. (1973) Statistical analysis of catalogs of extragalactic objects. I. Theory, Astrophys. J., 185, 413–440CrossRefGoogle Scholar
Pelt, J. (2009) High frequency limits in periodicity search from irregularly spaced data, Baltic Astron., 18, 83–92Google Scholar
Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E. & Goldberger, A. L. (1994) Mosaic organization of DNA nucleotides, Phys. Rev. E, 49, 1685–1689CrossRefGoogle ScholarPubMed
Percival, D. B. (1993) Three curious properties of the sample variance and autocovariance for stationary processes with unknown mean, Amer. Statist., 47, 274–276Google Scholar
Percival, D. B. & Walden, A. T. (1993) Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques, Cambridge University PressCrossRefGoogle Scholar
Percival, D.B. & Walden, A. T. (2000) Wavelet Methods for Time Series Analysis, Cambridge University PressCrossRefGoogle Scholar
Perryman, M. A. C. et al. (1998) The Hyades: distance, structure, dynamics, and age, Astron. Astrophys., 331, 81–120Google Scholar
Peterson, B. M., Wanders, I., Horne, K., Collier, S., Alexander, T., Kaspi, S. & Maoz, D. (1998) On uncertainties in cross-correlation lags and the reality of wavelength-dependent continuum lags in active galactic nuclei, Publ. Astron. Soc. Pacific, 110, 660–670CrossRefGoogle Scholar
Polonik, W. (1999) Concentration and goodness-of-fit in higher dimensions: (Asymptotically) distribution-free methods, Ann. Statist., 27, 1210–1229Google Scholar
Porter, T. M. (1986) The Rise of Statistical Thinking: 1820–1900, Princeton University PressGoogle Scholar
Press, W. H. (1978) Flicker noises in astronomy and elsewhere, Comments Astrophys., 7, 103–119Google Scholar
Press, W. H. & Schechter, P. (1974) Formation of galaxies and clusters of galaxies by self-similar gravitational condensation, Astrophys. J., 187, 425–438CrossRefGoogle Scholar
Press, W. H. & Teukolsky, S. A. (1997) Numerical Recipes: Does this paradigm have a future?, Computers in Physics, 11, 416CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A. & Vetterling, W. T. (2007) Numerical Recipes: The Art of Scientific Computing, Cambridge University PressGoogle Scholar
Press, W. J. & Rybicki, G. B. (1989) Fast algorithm for spectral analysis of unevenly sampled data, Astrophys. J., 338, 277–280CrossRefGoogle Scholar
Priestley, M. B. (1983) Spectral Analysis and Time Series, 2 vols., Academic Press, New YorkGoogle Scholar
Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A. (2002) Statistics, handle with care: Detecting multiple model components with the likelihood ratio test, Astrophys. J., 571, 545–559CrossRefGoogle Scholar
Protheroe, R. J. (1987) Periodic analysis of gamma-ray data, Proc. Astro. Soc. Australia, 7, 167–172CrossRefGoogle Scholar
Quenouille, M. (1949) Approximate tests of correlation in time series, J. Roy. Statist. Soc., Ser. B, 11, 18–84Google Scholar
Quinlan, J. R. (1993) C4.5: Programs for Machine Learning, Morgan Kaufmann, New YorkGoogle Scholar
R Development Core Team (2010) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria
Rao, C. R. (1997) Statistics and Truth: Putting Chance to Work, 2nd ed., World Scientific, SingaporeCrossRefGoogle Scholar
Rao, C. R., Wegman, E. J. & Solka, J. L., eds. (2005), Data Mining and Data Visualization, Handbook of Statistics vol. 24, Elsevier, AmsterdamCrossRef
Reed, W. J. & Hughes, B. D. (2002) From gene families and genera to incomes and internet file sizes: Why power laws are so common in nature, Phys. Rev. E., 66, 67103–67107CrossRefGoogle ScholarPubMed
Reed, W. J. & Jorgensen, M. (2004) The double Pareto-lognormal distribution: A new parametric model for size distributions, Commun. Stat. Theory Meth., 33, 1733–1753CrossRefGoogle Scholar
Reegen, P. (2007) SigSpec. I. Frequency- and phase-resolved significance in Fourier space, Astron. Astrophys., 467, 1353–1371CrossRefGoogle Scholar
Reipurth, B., Rodŕ–guez, L. F., Anglada, G. & Bally, J. (2004) Radio continuum jets from protostellar objects, Astron. J., 127, 1736–1746CrossRefGoogle Scholar
Reisen, V. A. (1994) Estimation of the fractional difference parameter in the ARFIMA (p, d, q) model using the smoothed periodogram, J. Time Series Anal., 15, 335–350CrossRefGoogle Scholar
Remy, N., Boucher, A. & Wu, J. (2009) Applied Geostatistics with SGeMS, Cambridge University PressCrossRefGoogle Scholar
Renner, S., Rauer, H., Erikson, A., Hedelt, P., Kabath, P., Titz, R. & Voss, H. (2008) The BAST algorithm for transit detection, Astron. Astrophys., 492, 617–620CrossRefGoogle Scholar
Ribeiro, P. J. & Diggle, P. J. (2001) geoR: a package for geostatistical analysis, R-NEWS, 1(2), 15–18Google Scholar
Rice, J. A. (2007) Mathematical Statistics and Data Analysis, 3rd ed., Duxbury PressGoogle Scholar
Richardson, W. H. (1972) Bayesian-based iterative method for image restoration, J. Optical Soc. Amer., 62, 55–59CrossRefGoogle Scholar
Rieger, E., Kanbach, G., Reppin, C., Share, G. H., Forrest, D. J. & Chupp, E. L. (1984) A 154-day periodicity in the occurrence of hard solar flares?, Nature, 312, 623–625CrossRefGoogle Scholar
Ripley, B. D. (1988) Statistical Inference for Spatial Processes, Cambridge University PressCrossRefGoogle Scholar
Ritz, C. & Streibig, J. C. (2008) Nonlinear Regression with R, Springer, BerlinGoogle Scholar
Rivoira, A. & Fleury, G. A. (2004) A consistent nonparametric spectral estimator for randomly sampled signals, IEEE Trans. Signal Proc. 52, 2383–2395CrossRefGoogle Scholar
Roberts, D. H., Lehar, J. & Dreher, J. W. (1987) Time series analysis with CLEAN. I. Derivation of a spectrum. Astron. J., 93, 968–989CrossRefGoogle Scholar
Robinson, P. D. (1995) Log-periodogram regression of time series with long range dependence, Annals Stat., 23, 1048–1072CrossRefGoogle Scholar
Robinson, P. D., ed. (2003) Time Series with Long Memory, Oxford University Press
Ross, S. (2010) Introduction to Probability Models, 10th ed., Academic Press, New YorkGoogle Scholar
Rossini, A. J., Tierney, L. & Li, N. (2007) Simple parallel statistical computing in R, J. Comput. Graph. Statist., 16, 399–420CrossRefGoogle Scholar
Rowlingson, B. & Diggle, P. (1993) Splancs: Spatial point pattern analysis code in S-Plus. Comput. Geosci., 19, 627–655CrossRefGoogle Scholar
Santos, N. C., García Lípez, R. J., Israelian, G., Mayor, M., Rebolo, R., García-Gil, A., Pérez de Taoro, M. R. & Randich, S. (2002) Beryllium abundances in stars hosting giant planets, Astron. Astrophys., 386, 1028–1038CrossRefGoogle Scholar
Sarkar, D. (2008) Lattice: Multivariate Data Visualization with R, Springer, BerlinCrossRefGoogle Scholar
Saslaw, W. C. (2000) The Distribution of the Galaxies: Gravitational Clustering in Cosmology, Cambridge University PressGoogle Scholar
Scargle, J. D. (1982) Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 263, 835–853CrossRefGoogle Scholar
Scargle, J. D. (1992) Chaotic processes in astronomical data, in Statistical Challenges in Modern Astronomy (E. D., Feigelson & G. J., Babu, eds.), Springer, Berlin, pp. 411–436Google Scholar
Scargle, J. D. (1998) Studies in astronomical time series analysis. V. Bayesian blocks, a new method to analyze structure in photon counting data, Astrophys. J., 504, 405CrossRefGoogle Scholar
Scargle, J. D. (2003) Advanced tools for astronomical time series and image analysis, in Statistical Challenges in Modern Astronomy (E. D., Feigelson & G. J., Babu, eds.), Springer, New York, pp. 293–308Google Scholar
Scargle, J. D., Steiman-Cameron, T., Young, K., Donoho, D. L., Crutchfield, J. P. & Imamura, J. (1993) The quasi-periodic oscillations and very low frequency noise of Scorpius X-1 as transient chaos – A dripping handrail?, Astrophys. J., 411, L91–L94CrossRefGoogle Scholar
Schechter, P. (1976) An analytic expression for the luminosity function for galaxies, Astro-phys. J., 203, 297–306CrossRefGoogle Scholar
Schechtman, E. & Spiegelman, C. (2007) Mitigating the effect of measurement errors in quantile estimation, Stat. Prob. Lett., 77, 514–524CrossRefGoogle Scholar
Schlesinger, F. (1916) The determination of the orbit of a spectroscopic binary by the method of least-squares, Publ. Allegheny Obs., 1(6), 33–44Google Scholar
Schmee, J. & Hahn, G. J. (1979) A simple method for regression analysis with censored data, Technometrics, 21, 417–432CrossRefGoogle Scholar
Schmidt, M. (1968) Space distribution and luminosity functions of quasi-stellar radio sources, Astrophys. J., 151, 393–409CrossRefGoogle Scholar
Schmitt, J. H. M. M. (1985) Statistical analysis of astronomical data containing upper bounds: General methods and examples drawn from X-ray astronomy, Astrophys. J., 293, 178CrossRefGoogle Scholar
Schneider, D. P. et al. (2007) The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release, Astron. J., 134, 102–117CrossRefGoogle Scholar
Schneider, D. P. et al. (2010) The Sloan Digital Sky Survey Quasar Catalog. V. Seventh Data Release, Astron. J., 139, 2360–2373CrossRefGoogle Scholar
Schwarzenberg-Czerny, A. (1989) On the advantage of using analysis of variance for period search, Mon. Not. Royal Astro. Soc., 241, 153–165CrossRefGoogle Scholar
Schwarzenberg-Czerny, A. (1999) Optimum period search: Quantitative analysis, Astro-phys. J., 516, 315–323CrossRefGoogle Scholar
Scott, D. W. (1979) On optimal and data-based histograms, Biometrika 66, 605–610CrossRefGoogle Scholar
Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice and Visualization, John Wiley, New YorkCrossRefGoogle Scholar
Scott, D. W. (2009) (S original by David W. Scott, R port by Albrecht Gebhardt adopted to recent S-PLUS by Stephen Kaluzny) ash: David Scott's ASH routines, R package version 1.0-12, http://CRAN.R-project.org/package=ash
Scott, D. W. & Sain, S. R. (2005) Multidimensional density estimation, in Data Mining and Data Visualization (C.R., Rao et al., eds.), Handbook of Statistics, vol. 24, Elsevier, AmsterdamGoogle Scholar
Secker, J. & Harris, W. E. (1993) A maximum likelihood analysis of globular cluster luminosity distributions in the Virgo ellipticals, Astron. J., 105, 1358–1368CrossRefGoogle Scholar
Sen, P. K. 1968. Estimates of the regression coefficient based on Kendall's τ,J. Amer. Stat. Assoc., 63, 1379–1389CrossRefGoogle Scholar
Sérsic, J. L. (1968) Atlas de Galaxias Australes, Obs. Astronómico de CórdobaGoogle Scholar
Shao, J. (1993) Linear model selection by cross-validation, J. Amer. Stat. Assoc., 88, 486–494CrossRefGoogle Scholar
Shapiro, H. S. & Silverman, R. A. (1960) Alias-free sampling of random noise, J. Soc. Indust. Appl. Math., 8, 225–248CrossRefGoogle Scholar
Sheather, S. J. (2009) A Modern Approach to Regression with R, Springer, BerlinCrossRefGoogle Scholar
Sheynin, O. B. (1973) On the prehistory of the theory of probability, Arch. Hist. Exact Sci., 12, 97–141Google Scholar
Shkedy, Z., Decin, L., Molenberghs, G. & Aerts, C. (2007) Estimating stellar parameters from spectra using a hierarchical Bayesian approach, Mon. Not. Royal Astro. Soc., 377, 120–132CrossRefGoogle Scholar
Shmueli, G., Minka, T., Kadane, J. B., Borle, S. & Boatwright, P. B. (2005) A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution, J. Royal Stat. Soc. Ser. C, 54, 127–142Google Scholar
Shumway, R. H. & Stoffer, D. S. (2006) Time Series Analysis and Its Applications with R Examples, 2nd ed., Springer, BerlinGoogle Scholar
Sicilia-Aguilar, A. et al. (2009) The long-lived disks in the η Chamaeleontis cluster, Astrophys. J., 701, 1188–1203CrossRefGoogle Scholar
Silverman, B. W. (1981) Using kernel density estimates to investigate multimodality, J. Amer. Stat. Assn., Ser B, 43, 97–99Google Scholar
Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis, Chapman & Hall, LondonCrossRefGoogle Scholar
Silverman, B. W. (1998) Density Estimation, Chapman & Hall/CRC, LondonGoogle Scholar
Simonetti, J. H., Cordes, J. M. & Heeschen, D. S. (1985) Flicker of extragalactic radio sources at two frequencies, Astrophys. J., 296, 46–59CrossRefGoogle Scholar
Simpson, P. B. (1951) Note on the estimation of a bivariate distribution function, Ann. Math. Stat., 22, 476–478.CrossRefGoogle Scholar
Simpson, T. (1756) A letter to the Right Honorable George Earl of Macclesfield, President of the Royal Society, on the advantage of taking the mean of a number of observations, in practical astronomy, Phil. Trans. Royal Soc. London, 49, 82–93Google Scholar
Singh, K. (1981) On the asymptotic accuracy of Efron's bootstrap, Ann. Statist., 9, 1187–1195CrossRefGoogle Scholar
Skellam, J. G. (1946) The frequency distribution of the difference between two Poisson variates belonging to different populations, J. Royal Stat. Soc. Series A, 109, 296CrossRefGoogle ScholarPubMed
Slanina, F. (2004) Inelastically scattering particles and wealth distribution in an open economy, Phys. Rev. E, 69, 046102CrossRefGoogle Scholar
Slutsky, E. (1913) On the criterion of goodness of fit of the regression lines and on the best method of fitting them to the data, J. Royal Stat. Soc., 77, 78–84CrossRefGoogle Scholar
Sneath, P. H. A. (1957) The application of computers to taxonomy, J. Gen. Microbiol., 17, 201–226Google ScholarPubMed
Solanki, S. K., Krivova, N. A., Schüssler, M. & Fligge, M. (2002) Search for a relationship between solar cycle amplitude and length, Astron. Astrophys., 396, 1029–1035CrossRefGoogle Scholar
Solomon, S. & Richmond, R. (2002) Stable power laws in variable economies; Lotka–Volterra implies Pareto–Zipf, Euro. Phys J. B, 27, 257–261CrossRefGoogle Scholar
Speed, T. (1992) Discussion: Statistics, mathematical statistics, and reality, in Statistical Challenges in Modern Astronomy (E. D., Feigelson & G. J., Babu, eds.), Springer, BerlinGoogle Scholar
Springel, V. et al. (2005) Simulations of the formation, evolution and clustering of galaxies and quasars, Nature, 435, 629–636CrossRefGoogle ScholarPubMed
Srivastava, S., Gupta, M. R. & Frigyik, B. A. (2007) Bayesian quadratic discriminant analysis, J. Machine Learn. Res., 8, 1277–1305Google Scholar
Starck, J.-L. & Murtagh, F. (2006) Astronomical Image and Data Analysis, 2nd ed., Springer, BerlinCrossRefGoogle Scholar
Starck, J.-L., Murtagh, F. D. & Bijaoui, A. (1998) Image Processing and Data Analysis: The Multiscale Approach, Cambridge University PressCrossRefGoogle Scholar
Starck, J.-L., Murtagh, F. & Fadili, J. (2010) Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, Cambridge University PressCrossRefGoogle Scholar
Staudenmayer, J., Ruppert, D. & Buonaccorsi, J. P. (2008) Density estimation in the presence of heteroscedastic measurement error, J. Amer. Stat. Assoc., 103, 726–736CrossRefGoogle Scholar
Stellingwerf, R. F. (1978) Period determination using phase dispersion minimization, Astrophys. J., 224, 953–960CrossRefGoogle Scholar
Stephens, M. A. (1974) EDF statistics for goodness of fit and some comparisons, J. Amer. Stat. Assn., 69, 730–737CrossRefGoogle Scholar
Stigler, S. M. (1986) The History of Statistics: The Measurement of Uncertainty before 1900, Harvard University PressGoogle Scholar
Stone, C. J. (1984) An asymptotically optimal window selection rule for kernel density estimators, Annals Statist., 12, 1285–1297CrossRefGoogle Scholar
Stone, M. (1977) Asymptotics for and against cross-validation, Biometrika 64, 29–35.CrossRefGoogle Scholar
Stoyan, D. (2006) Fundamentals of point process statistics, in Case Studies in Spatial Point Process Modeling (A., Baddeley et al., eds.), Springer, Berlin, pp. 3–22Google Scholar
Stoyan, D. & Stoyan, H. (1994) Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics, John Wiley, New YorkGoogle Scholar
Sturrock, P. A. & Scargle, J. D. (2009) A Bayesian assessment of p-values for significance estimation of power spectra and an alternative procedure, with application to solar neutrino data, Astrophys. J., 706, 393–398CrossRefGoogle Scholar
Sutton, C. D. (2005), Classification and regression trees, bagging, and boosting, in Data Mining and Data Visualization (C. R., Rao et al., eds.), Handbook for Statistics vol. 24, Elsevier, Amsterdam p. 303CrossRefGoogle Scholar
Swanepoel, J. W. H., de Beer, C. F. & Loots, H. (1996) Estimation of the strength of a periodic signal from photon arrival times, Astrophys. J., 467, 261–264CrossRefGoogle Scholar
Tago, E., Saar, E., Tempel, D., Einasto, J., Einasto, M., Nurmi, P. & Heinäämaki, P. (2010) Groups of galaxies in the SDSS Data Release 7: Flux- and volume-limited samples, Astron. Astrophys., 514, A102CrossRefGoogle Scholar
Takeuchi, T. T. & Ishii, T. T. (2004) A general formulation of the source confusion statistics and application to infrared galaxy surveys, Astrophys. J., 604, 40–62CrossRefGoogle Scholar
Takezawa, K. (2005) Introduction to Nonparametric Regression, Wiley-Interscience, New YorkCrossRefGoogle Scholar
Tamuz, O., Mazeh, T. & Zucker, S. (2005) Correcting systematic effects in a large set of photometric light curves, Mon. Not. Royal Astro. Soc., 356, 1466–1470CrossRefGoogle Scholar
Teerikorpi, P. (1997) Observational selection bias affecting the determination of the extragalactic distance scale, Ann. Rev. Astro. Astrophys., 35, 101–136CrossRefGoogle Scholar
Telea, A. C. (2007) Data Visualization: Principles and Practice, A. K. Peters, Naticp, MAGoogle Scholar
Templ, M. (2010) clustTool: GUI for clustering data with spatial information, R package version 1.6.5, http://CRAN.R-project.org/package=clustTool
Theus, M. (2008) High-dimensional data visualization, in Handbook of Data Visualization (C., Chen, ed.) Springer, BerlinGoogle Scholar
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso, J. Royal. Statist. Soc. B, 58, 267–288Google Scholar
Totsuji, H. & Kihara, T. (1969) The correlation function for the distribution of galaxies, Pub. Astron. Soc. Japan, 21, 221–229Google Scholar
Townshend, R. H. D. (2010) Fast calculation of the Lomb–Scargle periodogram using graphics processing units, Astrophys. J. Suppl., 191, 247–253Google Scholar
Tremaine, S. et al. (2002) The slope of the black hole mass versus velocity dispersion correlation, Astrophys. J., 574, 740–753CrossRefGoogle Scholar
Tripodis, Y. & Buonaccorsi, J. P. (2009) Prediction and forecasting in linear models with measurement error, J. Stat. Plan. Infer., 139, 4039–4050CrossRefGoogle Scholar
Trotta, R. (2008) Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys., 49, 71–104CrossRefGoogle Scholar
Trumpler, R. J. & Weaver, H. F. (1953) Statistical Astronomy, Dover, New YorkGoogle Scholar
Tsai, W.-Y. (1990) Testing the assumption of independence of truncation time and failure time, Biometrika, 77, 169–77CrossRefGoogle Scholar
Tukey, J. (1977) Exploratory Data Analysis, Addison-Wesley, Reading MAGoogle Scholar
Valdes, F. (1982) Resolution classifier, in Instrumentation in Astronomy IV, SPIE, 331, 465–472Google Scholar
van der Klis, M. (1989) Quasi-periodic oscillations and noise in low mass X-ray binaries, Ann. Rev. Astron. Astrophys., 27, 517–553CrossRefGoogle Scholar
van der Klis, M. (2000) Millisecond oscillations in X-ray binaries, Ann. Rev. Astron. Astrophys., 38, 717–760Google Scholar
van Dyk, D. A., Connors, A., Kashyap, V. L. & Siemiginowska, A. (2001) Analysis of energy spectra with low photon counts via Bayesian posterior simulation, Astrophys. J., 548, 224–243CrossRefGoogle Scholar
van Leeuwen, F. (2007) Validation of the new Hipparcos reduction, Astron. Astrophys., 474, 653–664CrossRefGoogle Scholar
Vapnik, V. (2000) The Nature of Statistical Learning Theory, Springer, BerlinCrossRefGoogle Scholar
Varmuza, K. & Filzmoser, P. (2009) Introduction to Multivariate Statistical Analysis in Chemometrics, CRC Press, Boca RatonCrossRefGoogle Scholar
Veilleux, S. & Osterbrock, D. E. (1987) Spectral classification of emission-line galaxies, Astrophys. J. Suppl., 63, 295–310CrossRefGoogle Scholar
Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S, 4th ed., Springer, BerlinCrossRefGoogle Scholar
Vio, R., Andreani, P. & Biggs, A. (2010) Unevenly-sampled signals: a general formalism for the Lomb—Scargle periodogram, Astron. Astrophys., 519, id. A85CrossRefGoogle Scholar
Vio, R., Strohmer, T. & Wamsteker, W. (2000), On the reconstruction of irregularly sampled time series, Pub. Astron. Soc. Pacific, 112, 74–90CrossRefGoogle Scholar
Vio, R., Kristensen, N. R., Madsen, H. & Wamsteker, W. (2005) Time series analysis in astronomy: Limits and potentialities, Astron. Astrophys., 435, 773–780CrossRefGoogle Scholar
Vogt, S. S., Butler, R. P., Rivera, E. J., Haghighipour, N., Henry, G. W. & Williamson, M. H. (2010) The Lick—Carnegie Exoplanet Survey: A 3.1 M? planet in the habitable zone of the nearby M3V star Gliese 581, Astrophys. J., 723, 954–965CrossRefGoogle Scholar
Volk, P. B., Rosenthal, F., Hahmann, M., Habich, D. & Lehner, W. (2009) Clustering uncertain data with possible worlds, in IEEE 25th Conf. Data Engineering (ICDE '09), pp. 1625–1632Google Scholar
von Neumann, J. (1941) Distribution of the ratio of the mean square successive difference to the variance, Ann. Math. Stat., 12, 367–395Google Scholar
Wackernagel, H. (1995) Multivariate Geostatistics: An Introduction with Applications, Springer, BerlinCrossRefGoogle Scholar
Wall, J. V. & Jenkins, C. R. (2003) Practical Statistics for Astronomers, Cambridge University PressCrossRefGoogle Scholar
Wand, M. P. & Jones, M. C. (1995) Kernel Smoothing, Chapman and Hall, LondonCrossRefGoogle Scholar
Wang, J., Feigelson, E. D., Townsley, L. K., Román-Zúñiga, C. G., Lada, E. & Garmire, G. (2009) A Chandra study of the Rosette star-forming complex. II. Clusters in the Rosette Molecular Cloud, Astrophys. J., 696, 47–65CrossRefGoogle Scholar
Wang, L. (1998) Estimation of censored linear errors-in-variables models, J. Econometrics, 84, 383–400CrossRefGoogle Scholar
Wang, X., Woodroofe, M., Walker, M. G., Mateo, M. & Olszewski, E. (2005) Estimating dark matter distributions, Astrophys. J., 626, 145–158CrossRefGoogle Scholar
Wang, X.-F. & Wang, B. (2010) decon: Deconvolution estimation in measurement error models, R package version 1.2-1, http://CRAN.R-project.org/package=decon
Warner, R. M. (1998) Spectral Analysis of Time-Series Data, Guilford Press, New YorkGoogle Scholar
Wasserman, L. (2004) All of Statistics: A Concise Course in Statistical Inference, Springer, BerlinCrossRefGoogle Scholar
Way, M. J., Scargle, J. D., Ali, K. & Srivastava, A. N., eds. (2011) Advances in Machine Learning and Data Mining for Astronomy, Chapman & Hall, London
Webbink, R. F. (1985) Structure parameters of galactic globular clusters, in Dynamics of Star Clusters, Reidel, Dordrecht, pp. 541–577Google Scholar
Wei, W. W. S. (2006) Time Series Analysis: Univariate and Multivariate Method, 2nd ed., Pearson, HarlowGoogle Scholar
Weinstein, M. A. et al. (2004) An empirical algorithm for broadband photometric redshifts of quasars from the Sloan Digital Sky Survey, Astrophys. J. Suppl., 155, 243–256CrossRefGoogle Scholar
Wells, D. C., Greisen, E. W. & Harten, R. H. (1981) FITS – a Flexible Image Transport System, Astron. Astrophys. Suppl., 44, 363–370Google Scholar
Wheatland, M. S. (2000) Do solar flares exhibit an interval-size relationship?, Solar Phys., 191, 381–399CrossRefGoogle Scholar
Whitcher, B. (2010) waveslim: Basic wavelet routines for one-, two- and three-dimensional signal processing, R package version 1.6.4, http://CRAN.R-project.org/package=waveslim
White, H. (1982) Maximum likelihood estimation of misspecified models, Econometrica, 50, 1–25CrossRefGoogle Scholar
Whitmore, B. C. (1984) An objective classification system for spiral galaxies. I. The two dominant dimensions, Astrophys. J., 278, 61–80CrossRefGoogle Scholar
Whittle, P. (1962) Gaussian estimation in stationary time series, Bull. Inst. Internat. Statist., 39, 105–129Google Scholar
Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis, Springer, BerlinGoogle Scholar
Wielen, R., Jahreiss, J. & Krüser, R. (1983) The determination of the luminosity function of nearby stars, in The Nearby Stars and the Stellar Luminosity Function, L. Davis Press, Schenectady, NY, pp. 163–170Google Scholar
Williams, G. J. (2009) Rattle: A data mining GUI for R, The R Journal, 1(2), 45–55, http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf.Google Scholar
Wilson, R. E. & Devinney, E. J. (1971) Realization of accurate close-binary light curves: Application to MR Cygni, Astrophys. J., 166, 605–619CrossRefGoogle Scholar
Winkler, G. (2002) Image Analysis, Random Fields and Markov Chain Monte Carlo: A Mathematical Introduction, 2nd ed., Springer, BerlinGoogle Scholar
Winston, E. et al. (2007) A combined Spitzer and Chandra survey of young stellar objects in the Serpens cloud core, Astrophys. J., 669, 493–518CrossRefGoogle Scholar
Witten, I. H., Frank, E. & Hall, M. A. (2011) Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed., Morgan Kaufman, New YorkGoogle Scholar
Wolf, C., Meisenheimer, K., Rix, H.-W., Borch, A., Dye, S. & Kleinheinrich, M. (2003) The COMBO-17 survey: Evolution of the galaxy luminosity function from 25 000 galaxies with 0.2 < z < 1.2, Astron. Astrophys., 401, 73–98CrossRefGoogle Scholar
Wolpert, D. H. & Macready, W. G. (1997) No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67–82CrossRefGoogle Scholar
Wolynetz, M. S. (1979) Algorithm AS 138: Maximum likelihood estimation from confined and censored normal data, Applied Stat., 28, 185–195Google Scholar
Woodroofe, M. (1985) Estimating a distribution function with truncated data, Annals Statist., 13, 163–177CrossRefGoogle Scholar
Wu, C. F. J. (1983) On the convergence properties of the EM Algorithm, Annals Statist., 11, 95–103CrossRefGoogle Scholar
Wu, C. F. J. (1986) Jackknife, bootstrap and other resampling methods in regression analysis, Annals Statist., 14, 1261–1295Google Scholar
Wu, X.-B. & Jia, Z. (2010) Quasar candidate selection and photometric redshift estimation based on SDSS and UKIDSS data, Mon. Not. Royal Astron. Soc., 406, 1583–1594Google Scholar
Yèche, C. et al. (2010) Artificial neural networks for quasar selection and photometric redshift determination, Astron. Astrophys., 523, id. A14CrossRefGoogle Scholar
Yee, T. W. (2010) The VGAM package for categorical data analysis, J. Statist. Software, 32(10), 1–34, http://www.jstatsoft.org/v32/i10/CrossRefGoogle Scholar
York, D. (1966) Least-squares fitting of a straight line. Canad. J. Phys., 44, 1079–1086CrossRefGoogle Scholar
York, D. et al. (2000) The Sloan Digital Sky Survey: Technical summary, Astron. J., 20, 1579–1587Google Scholar
Young, G. A. & Smith, R. L. (2005) Essentials of Statistical Inference, Cambridge University PressCrossRefGoogle Scholar
Zamorani, G. et al. (1981) X-ray properties of quasars with the Einstein Observatory. II, Astrophys. J., 245, 357–374CrossRefGoogle Scholar
Zechmeister, M. & Kürster, M. (2009), The generalised Lomb–Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms, Astron. Astrophys., 496, 577–584CrossRefGoogle Scholar
Zeileis, A. & Grothendieck, G. (2005) zoo: S3 infrastructure for regular and irregular time series, J. Statist. Software, 14, 1–27CrossRefGoogle Scholar
Zhang, T., Ramakrishnan, R. & Livny, M. (1997) BIRCH: A new data clustering algorithm and its applications, Data Mining & Knowledge Discovery, 1, 141–182CrossRefGoogle Scholar
Zoubir, A. M. & Iskander, D. R. (2004), Bootstrap Techniques for Signal Processing, Cambridge University PressCrossRefGoogle Scholar
Zwicky, F. (1937) On the masses of nebulae and of clusters of nebulae, Astrophys. J., 86, 217–246CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Eric D. Feigelson, Pennsylvania State University, G. Jogesh Babu, Pennsylvania State University
  • Book: Modern Statistical Methods for Astronomy
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015653.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Eric D. Feigelson, Pennsylvania State University, G. Jogesh Babu, Pennsylvania State University
  • Book: Modern Statistical Methods for Astronomy
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015653.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Eric D. Feigelson, Pennsylvania State University, G. Jogesh Babu, Pennsylvania State University
  • Book: Modern Statistical Methods for Astronomy
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015653.017
Available formats
×