Published online by Cambridge University Press: 14 December 2023
In this chapter, we move on to coupling, another probabilistic technique with a wide range of applications (far beyond discrete stochastic processes). The idea behind the coupling method is deceptively simple: to compare two probability measures, it is sometimes useful to construct a joint probability space with the corresponding marginals. We begin by defining coupling formally and deriving its connection to the total variation distance through the coupling inequality. We illustrate the basic idea on a classical Poisson approximation result, which we apply to the degree sequence of an Erdos–Renyi graph. Then we introduce the concept of stochastic domination and some related correlation inequalities. We develop a key application in percolation theory. Coupling of Markov chains is the next topic, where it serves as a powerful tool to derive mixing time bounds. Finally, we end with the Chen–Stein method for Poisson approximation, a technique that applies in particular in some natural settings with dependent variables.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.