Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T22:34:52.014Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 October 2011

Isabelle Chalendar
Affiliation:
Université Lyon I
Jonathan R. Partington
Affiliation:
University of Leeds
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Y.A., Abramovich and C. D., Aliprantis. An Invitation to Operator Theory. Graduate Studies in Mathematics, 50. American Mathematical Society, Providence, RI, 2002.Google Scholar
[2] Y.A., Abramovich, C. D., Aliprantis, and O., Burkinshaw. Invariant subspaces of operators on lp-spaces. J. Funct. Anal., 115(2):418–424, 1993.Google Scholar
[3] Y.A., Abramovich, C. D., Aliprantis, and O., Burkinshaw. Invariant subspace theorems for positive operators. J. Funct. Anal., 124(1):95–111, 1994.Google Scholar
[4] Y.A., Abramovich, C. D., Aliprantis, and O., Burkinshaw. Invariant subspaces for positive operators acting on a Banach space with basis. Proc. Amer. Math. Soc., 123(6):1773–1777, 1995.Google Scholar
[5] C.D., Aliprantis and O., Burkinshaw. Positive Operators. Springer, Dordrecht, 2006. Reprint of the 1985 original.Google Scholar
[6] G. R., Allan. Sums of idempotents and a lemma of N. J. Kalton. Studia Math., 121:185–192, 1996.Google Scholar
[7] D., Alpay, L., Baratchart, and J., Leblond. Some extremal problems linked with identification from partial frequency data. In R. F., Curtain, A., Bensoussan, and J.-L., Lions, eds., Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems (Sophia-Antipolis, 1992), pages 563–573. Springer, Berlin, 1993.Google Scholar
[8] C., Ambrozie and V., Müller. Invariant subspaces for polynomially bounded operators. J. Funct. Anal., 213(2):321–345, 2004.Google Scholar
[9] G., Androulakis. A note on the method of minimal vectors. In Trends in Banach Spaces and Operator Theory (Memphis, TN, 2001), pages 29–36. Contemporary Mathematics, 321. American Mathematical Society, Providence, RI, 2003.Google Scholar
[10] G., Androulakis and A., Flattot. Hyperinvariant subspaces for weighted composition operators on Lp ([0, 1]d). J. Operator Theory, in press.
[11] S., Ansari and P., Enflo. Extremal vectors and invariant subspaces. Trans. Amer. Math. Soc., 350(2):539–558, 1998.Google Scholar
[12] C., Apostol. Ultraweakly closed operator algebras. J. Operator Theory, 2:49–61, 1979.Google Scholar
[13] C., Apostol. Functional calculus and invariant subspaces. J. Operator Theory, 4:159–190, 1980.Google Scholar
[14] C., Apostol, H., Bercovici, C., Foias, and C., Pearcy. Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I. J. Funct. Anal., 63(3):369–404, 1985.Google Scholar
[15] C., Apostol, H., Bercovici, C., Foias, and C., Pearcy. Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. II. Indiana Univ. Math. J., 34(4):845–855, 1985.Google Scholar
[16] C., Apostol, L. A., Fialkow, D. A., Herrero, and D., Voiculescu. Approximation of Hilbert Space Operators, Volume II. Research Notes in Mathematics, 102. Pitman (Advanced Publishing Program), Boston, MA, 1984.Google Scholar
[17] S. A., Argyros and R. G., Haydon. A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem. Preprint, 2009 arXiv:0903.3921.
[18] N., Aronszajn and K. T., Smith. Invariant subspaces of completely continuous operators. Ann. Math. (2), 60:345–350, 1954.Google Scholar
[19] A., Atzmon. An operator without invariant subspaces on a nuclear Fréchet space. Ann. Math., 117:660–694, 1983.Google Scholar
[20] A., Atzmon. On the existence of hyperinvariant subspaces. J. Operator Theory, 11(1):3–40, 1984.Google Scholar
[21] A., Atzmon and G., Godefroy. An application of the smooth variational principle to the existence of non-trivial invariant subspaces. C. R. Acad. Sci. Paris Sér. I Math., 332(2):151–156, 2001.Google Scholar
[22] A., Atzmon, G., Godefroy, and N. J., Kalton. Invariant subspaces and the exponential map. Positivity, 8(2):101–107, 2004.Google Scholar
[23] L., Baratchart and J., Leblond. Hardy approximation to Lp functions on subsets of the circle with 1 ≤ p < ∞. Constr. Approx., 14(1):41–56, 1998.Google Scholar
[24] S., Barclay. Banach spaces of analytic vector-valued functions. PhD thesis, University of Leeds, 2008.
[25] S., Barclay. A solution to the Douglas–Rudin problem for matrix-valued functions. Proc. London Math. Soc., 99:757–786, 2009.Google Scholar
[26] F., Bayart and É., Matheron. Dynamics of Linear Operators. Cambridge Tracts in Mathematics, 179. Cambridge University Press, Cambridge, 2009.Google Scholar
[27] B., Beauzamy. Introduction to Banach Spaces and Their Geometry. Notas de Matemática [Mathematical Notes], 86. North-Holland, Amsterdam, 1982.Google Scholar
[28] B., Beauzamy. Un opérateur sans sous-espace invariant: Simplification de l'exemple d'Enflo. Integr. Equat. Oper. Th., 8(3):314–384, 1985.Google Scholar
[29] B., Beauzamy. Introduction to Operator Theory and Invariant Subspaces. North-Holland Mathematical Library, 42. North-Holland, Amsterdam, 1988.Google Scholar
[30] R., Becker. Ordered Banach Spaces. Travaux en Cours [Works in Progress], 68. Hermann Éditeurs des Sciences et des Arts, Paris, 2008. With a preface by Gilles Godefroy.Google Scholar
[31] H., Bercovici. Factorization theorems and the structure of operators on Hilbert space. Ann. Math., 128:399–413, 1988.Google Scholar
[32] H., Bercovici. Operator Theory and Arithmetic in H∞. Mathematical Surveys and Monographs, 26. American Mathematical Society, Providence, RI, 1988.Google Scholar
[33] H., Bercovici. Notes on invariant subspaces. Bull. Amer. Math. Soc., 23(1):1–36, 1990.Google Scholar
[34] H., Bercovici, C., Foias, and C., Pearcy. Dilation theory and systems of simultaneous equations in the predual of an operator algebra, I. Michigan Math. J., 30:335–354, 1983.Google Scholar
[35] H., Bercovici, C., Foias, and C., Pearcy. Dual Algebras With Applications to Invariant Subspaces and Dilation Theory. CBMS Regional Conference Series in Mathematics, 56. American Mathematical Society, Providence, RI, 1985.Google Scholar
[36] H., Bercovici, C., Foias, and C., Pearcy. Two Banach space methods and dual operator algebras. J. Funct. Anal., 78:306–345, 1988.Google Scholar
[37] C. A., Berenstein and R., Gay. Complex Variables. Graduate Texts in Mathematics, 125. Springer, New York, 1991.Google Scholar
[38] C. A., Berger and J.G., Stampfli. Mapping theorems for the numerical range. Amer. J. Math., 89:1047–1055, 1967.Google Scholar
[39] A. R., Bernstein and A., Robinson. Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos. Pac. J. Math., 16:421–431, 1966.Google Scholar
[40] E., Bishop and R.R., Phelps. A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc., 67:97–98, 1961.Google Scholar
[41] E., Bishop and R.R., Phelps. The support functionals of a convex set. In Convexity: Proc. Sympos. Pure Math., Vol. VII, pages 27–35. American Mathematical Society, Providence, RI, 1963.Google Scholar
[42] D. P., Blecher and A. M., Davie. Invariant subspaces for an operator on L2 (Π) composed of a multiplication and a translation. J. Operator Theory, 23(1):115–123, 1990.Google Scholar
[43] R. P., Boas. Entire Functions. Academic Press, New York, 1954.Google Scholar
[44] B., Bollobás. An extension to the theorem of Bishop and Phelps. Bull. London Math. Soc., 2:181–182, 1970.Google Scholar
[45] F. F., Bonsall. Decompositions of functions as sums of elementary functions. Quart. J. Math. Oxford Ser. (2), 37(146):129–136, 1986.Google Scholar
[46] F. F., Bonsall and J., Duncan. Numerical Ranges, II. London Mathematical Society Lecture Notes Series, 10. Cambridge University Press, New York, 1973.Google Scholar
[47] P. S., Bourdon and A., Flattot. Images of minimal-vector sequences under weighted composition operators on L2(D). In J.A., Ball, V., Bolotnikov, J.W., Helton, L., Rodman, and I. M., Spitkovsky, eds., Topics in Operator Theory, Volume 1: Operators, Matrices and Analytic Functions, pages 39–52. Operator Theory: Advances and Applications, 202. Birkhäuser, Basel, 2010.Google Scholar
[48] J., Bourgain. A problem of Douglas and Rudin on factorization. Pac. J. Math., 121(1):47–50, 1986.Google Scholar
[49] L., Brown, A., Shields, and K., Zeller. On absolutely convergent exponential sums. Trans. Amer. Math. Soc., 96:162–183, 1960.Google Scholar
[50] S., Brown. Some invariant subspaces for subnormal operators. Integr. Equat. Oper. Th., 1:310–333, 1978.Google Scholar
[51] S., Brown. Contractions with spectral boundary. Integr. Equat. Oper. Th., 11:49–63, 1988.Google Scholar
[52] S., Brown and B., Chevreau. Toute contraction à calcul fonctionnel isométrique est réflexive. C. R. Acad. Sci. Paris Sér. I Math., 307:185–188, 1988.Google Scholar
[53] S., Brown, B., Chevreau, and C., Pearcy. Contractions with rich spectrum have invariant subspaces. J. Operator Theory, 1(1):123–136, 1979.Google Scholar
[54] S., Brown, B., Chevreau, and C., Pearcy. On the structure of contraction operators, II. J. Funct. Anal., 76(1):30–55, 1988.Google Scholar
[55] S. R., Caradus. Universal operators and invariant subspaces. Proc. Amer. Math. Soc., 23:526–527, 1969.Google Scholar
[56] L., Carleson. An interpolation problem for bounded analytic functions. Amer. J. Math., 80:921–930, 1958.Google Scholar
[57] G., Cassier and I., Chalendar. The group of the invariants of a finite Blaschke product. Complex Variables, 42:193–206, 2000.Google Scholar
[58] G., Cassier, I., Chalendar, and B., Chevreau. New examples of contractions illustrating membership and non-membership in the classes An,m. Acta Sci. Math. (Szeged), 64:707–731, 1998.Google Scholar
[59] G., Cassier, I., Chalendar, and B., Chevreau. Some mapping theorems for the classes An,m and boundary sets. Proc. London Math. Soc., 79(1):222–240, 1999.Google Scholar
[60] G., Cassier and T., Fack. Contractions in von Neumann algebras. J. Funct. Anal., 135(2):297–338, 1996.Google Scholar
[61] I., Chalendar. The operator-valued Poisson kernel and its application. Irish Math. Soc. Bull., 51:21–44, 2003.Google Scholar
[62] I., Chalendar and J., Esterle. L1-factorization for C00-contractions with isometric functional calculus. J. Funct. Anal., 154:174–194, 1998.Google Scholar
[63] I., Chalendar, A., Flattot, and N., Guillotin-Plantard. On the spectrum of multivariable weighted composition operators. Arch. Math. (Basel), 90(4) 353–359, 2008.Google Scholar
[64] I., Chalendar, A., Flattot, and J.R., Partington. The method of minimal vectors applied to weighted composition operators. In The Extended Field of Operator Theory, pages 89–105. Operator Theory: Advances and Applications, 171. Birkhäuser, Basel, 2007.Google Scholar
[65] I., Chalendar, E., Fricain, A. I., Popov, D., Timotin, and V. G., Troitsky. Finitely strictly singular operators between James spaces. J. Funct. Anal., 256(4):1258–1268, 2009.Google Scholar
[66] I., Chalendar and F., Jaeck. On the contractions in the classes An,m. J. Operator Theory, 38(2):265–296, 1997.Google Scholar
[67] I., Chalendar, J., Leblond, and J.R., Partington. Approximation problems in some holomorphic spaces, with applications. In Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), pages 143–168. Operator Theory: Advances and Applications, 129. Birkhäuser, Basel, 2001.Google Scholar
[68] I., Chalendar and J. R., Partington. L1 factorizations for some perturbations of the unilateral shift. C. R. Acad. Sci. Paris Sér. I Math., 332:115–119, 2001.Google Scholar
[69] I., Chalendar and J. R., Partington. Constrained approximation and invariant subspaces. J. Math. Anal. Appl., 280(1):176–187, 2003.Google Scholar
[70] I., Chalendar and J. R., Partington. On the structure of invariant subspaces for isometric composition operators on H2(D) and H2(ℂ+). Arch. Math. (Basel), 81(2):193–207, 2003.Google Scholar
[71] I., Chalendar and J. R., Partington. Spectral density for multiplication operators with applications to factorization of L1 functions. J. Operator Theory, 50(2):411–422, 2003.Google Scholar
[72] I., Chalendar and J. R., Partington. Convergence properties of minimal vectors for normal operators and weighted shifts. Proc. Amer. Math. Soc., 133(2):501–510, 2005.Google Scholar
[73] I., Chalendar and J. R., Partington. Variations on Lomonosov's theorem via the technique of minimal vectors. Acta Sci. Math. (Szeged), 71(3–4):603–617, 2005.Google Scholar
[74] I., Chalendar and J. R., Partington. Invariant subspaces for products of Bishop operators. Acta Sci. Math. (Szeged), 74(3–4):719–727, 2008.Google Scholar
[75] I., Chalendar, J. R., Partington, and E., Pozzi. Multivariable weighted composition operators: Point spectrum and cyclic vectors. In J. A., Ball, V., Bolotnikov, J.W., Helton, L., Rodman, and I. M., Spitkovsky, eds., Topics in Operator Theory, Volume 1: Operators, Matrices and Analytic Functions, pages 63–85. Operator Theory: Advances and Applications, 202. Birkhäuser, Basel, 2010.Google Scholar
[76] I., Chalendar, J. R., Partington, and M., Smith. Approximation in reflexive Banach spaces and applications to the invariant subspace problem. Proc. Amer. Math. Soc., 132(4):1133–1142, 2004.Google Scholar
[77] I., Chalendar, J. R., Partington, and R.C., Smith. L1 factorizations, moment problems and invariant subspaces. Studia Math., 167(2):183–194, 2005.Google Scholar
[78] B., Chevreau. Sur les contractions à calcul fonctionnel isométrique, II. J. Operator Theory, 20:269–293, 1988.Google Scholar
[79] B., Chevreau and C., Pearcy. Growth conditions on the resolvent and membership in the classes A and. J. Operator Theory, 16(2):375–385, 1986.Google Scholar
[80] B., Chevreau and C., Pearcy. On the structure of contraction operators, I. J. Funct. Anal., 76:1–29, 1988.Google Scholar
[81] V., Chkliar. Eigenfunctions of the hyperbolic composition operator. Integr. Equat. Oper. Th., 29(3):364–367, 1997.Google Scholar
[82] I., Colojoarǎ and C., Foiaş. Theory of Generalized Spectral Operators. Mathematics and its Applications, 9. Gordon and Breach Science Publishers, New York, 1968.Google Scholar
[83] J. B., Conway. The Theory of Subnormal Operators. Mathematical Surveys and Monographs, 36. American Mathematical Society, Providence, RI, 1991.Google Scholar
[84] J. B., Conway. A Course in Operator Theory. Graduate Studies in Mathematics, 21. American Mathematical Society, Providence, RI, 2000.Google Scholar
[85] C. C., Cowen and B.D., MacCluer. Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.Google Scholar
[86] R. E., Curto and F. H., Vasilescu. Automorphism invariance of the operator-valued Poisson transform. Acta Sci. Math. (Szeged), 57:65–78, 1993.Google Scholar
[87] H. G., Dales. Banach Algebras and Automatic Continuity. London Mathematical Society Monographs, New Series, 24. Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
[88] A. M., Davie. The approximation problem for Banach spaces. Bull. London Math. Soc., 5:261–266, 1973.Google Scholar
[89] A. M., Davie. Invariant subspaces for Bishop's operators. Bull. London Math. Soc., 6:343–348, 1974.Google Scholar
[90] L., de Branges and J., Rovnyak. Canonical models in quantum scattering theory. In Perturbation Theory and its Applications in Quantum Mechanics: Proceedings of an Advanced Seminar Conducted by The Mathematics Research Center, U.S. Army, and the Theoretical Chemistry Institute at the University of Wisconsin, Madison, WI, October 4–6, 1965, pages 295–392. Wiley, New York, 1966.Google Scholar
[91] R., Deville, G., Godefroy, and V., Zizler. A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal., 111(1):197–212, 1993.Google Scholar
[92] R., Deville, G., Godefroy, and V., Zizler. Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, 64. Longman Scientific & Technical, Harlow, 1993.Google Scholar
[93] Y., Domar. On the analytic transform of bounded linear functionals on certain Banach algebras. Studia Math., 53(3):203–224, 1975.Google Scholar
[94] P., Enflo. A counterexample to the approximation problem in Banach spaces. Acta Math., 130:309–317, 1973.Google Scholar
[95] P., Enflo. On the invariant subspace problem in Banach spaces. In Séminaire Maurey–Schwartz (1975–1976): Espaces Lp, Applications Radonifiantes et Géométrie des Espaces de Banach, Exp. Nos. 14–15. Centre de Mathématiques, École de Polytechnique, Palaiseau, 1976.Google Scholar
[96] P., Enflo. On the invariant subspace problem in Banach spaces. Acta Math., 158:213–313, 1987.Google Scholar
[97] P., Enflo. Extremal vectors for a class of linear operators. In Functional Analysis and Economic Theory (Samos, 1996), pages 61–64. Springer, Berlin, 1998.Google Scholar
[98] P., Enflo and T., Hõim. Some results on extremal vectors and invariant subspaces. Proc. Amer. Math. Soc., 131(2):379–387, 2003.Google Scholar
[99] Z., Ercan and S., Onal. Invariant subspaces for positive operators acting on a Banach space with Markushevich basis. Positivity, 8(2):123–126, 2004.Google Scholar
[100] J., Eschmeier. Representations of H∞(G) and invariant subspaces. Math. Ann., 298(1):167–186, 1994.Google Scholar
[101] J., Eschmeier. Invariant subspaces for spherical contractions. Proc. London Math. Soc., 75:157–176, 1997.Google Scholar
[102] J., Esterle and M., Zarrabi. Local properties of powers of operators. Arch. Math. (Basel), 65:53–60, 1995.Google Scholar
[103] G., Exner and Il Bong, Jung. Dual operator algebras and contractions with finite defect indices. J. Operator Theory, 36(1):107–119, 1996.Google Scholar
[104] C., Fefferman. Characterizations of bounded mean oscillation. Bull. Amer. Math. Soc., 77:587–588, 1971.Google Scholar
[105] C., Fefferman and E. M., Stein. Hp spaces of several variables. Acta Math., 129(3–4):137–193, 1972.Google Scholar
[106] M., Fekete. Über die verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Mathematische Zeitschrift, 17:228–249, 1923.Google Scholar
[107] A., Flattot. Hyperinvariant subspaces for Bishop-type operators. Acta Sci. Math. (Szeged), 74:687–716, 2008.Google Scholar
[108] J., Flores, P., Tradacete, and V. G., Troitsky. Invariant subspaces of positive strictly singular operators on Banach lattices. J. Math. Anal. Appl., 343(2):743–751, 2008.Google Scholar
[109] C., Foiaş. Sur certains théorèmes de J. von Neumann concernant les ensembles spectraux. Acta Sci. Math. (Szeged), 18:15–20, 1957.Google Scholar
[110] E., Gallardo-Gutiérrez and P., Gorkin. Minimal invariant subspaces for composition operators. J. Math. Pure. Appl., 95(3):245–259, 2011.Google Scholar
[111] E., Gallardo-Gutiérrez, P., Gorkin, and D., Suárez. Orbits of non-elliptic disc automorphisms on Hp. Preprint, 2010 arXiv:1002.3833.
[112] J. B., Garnett. Bounded Analytic Functions. Graduate Texts in Mathematics, 236. Springer, New York, 2007.Google Scholar
[113] R., Gellar. Operators commuting with a weighted shift. Proc. Amer. Math. Soc., 23:538–545, 1969.Google Scholar
[114] W. T., Gowers and B., Maurey. Banach spaces with small spaces of operators. Math. Ann., 307(4):543–568, 1997.Google Scholar
[115] S., Grivaux. Invariant subspaces for tridiagonal operators. Bull. Sci. Math., 126(8):681–691, 2002.Google Scholar
[116] P. R., Halmos. Spectra and spectral manifolds. Ann. Soc. Polon. Math., 25:43–49, 1952.Google Scholar
[117] P. R., Halmos. Invariant subspaces of polynomially compact operators. Pac. J. Math., 16:433–437, 1966.Google Scholar
[118] P. R., Halmos. A Hilbert Space Problem Book. Graduate Texts in Mathematics, 19, 2nd edition. Springer, New York, 1982.Google Scholar
[119] G. H., Hardy and E. M., Wright. An Introduction to the Theory of Numbers, 5th edition. Clarendon Press, Oxford University Press, New York, 1979.Google Scholar
[120] H., Hedenmalm. Maximal invariant subspaces in the Bergman space. Ark. Mat., 36(1):97–101, 1998.Google Scholar
[121] E., Heinz. Ein v. Neumannscher Satz über beschränkte Operatoren im Hilbertschen Raum. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Ila., Math.- Phys.-Chem. Abt., 5–6, 1952.Google Scholar
[122] D. A., Herrero. Approximation of Hilbert Space Operators, Volume 1. Pitman Research Notes in Mathematics Series, 224, 2nd edition. Longman Scientific & Technical, Harlow, 1989.Google Scholar
[123] E., Hille and R. S., Phillips. Functional Analysis and Semi-Groups. American Mathematical Society Colloquium Publications, 31. American Mathematical Society, Providence, RI, 1957.Google Scholar
[124] J. A. R., Holbrook. On the power-bounded operators of Sz.-Nagy and Foiaş. Acta Sci. Math. (Szeged), 29:299–310, 1968.Google Scholar
[125] N. D., Hooker. Lomonosov's hyperinvariant subspace theorem for real spaces. Math. Proc. Cambridge Philos. Soc., 89(1):129–133, 1981.Google Scholar
[126] F., John and L., Nirenberg. On functions of bounded mean oscillation. Comm. Pure Appl. Math., 14:415–426, 1961.Google Scholar
[127] Il, Bong Jung. Dual operator algebras and the classes Am,n, I. J. Operator Theory, 27:309–323, 1992.Google Scholar
[128] S., Kakutani. Topological properties of the unit sphere of a Hilbert space. Proc. Imp. Acad. Tokyo, 19:269–271, 1943.Google Scholar
[129] N. J., Kalton. Sums of idempotents in Banach algebras. Can. Math. Bull., 31(4): 448–451, 1988.Google Scholar
[130] T., Kato. Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math., 6:261–322, 1958.Google Scholar
[131] H. J., Kim. Hyperinvariant subspace problem for quasinilpotent operators. Integr. Equat. Oper. Th., 61(1):103–120, 2008.Google Scholar
[132] H. J., Kim. Hyperinvariant subspaces for quasinilpotent operators on Hilbert spaces. J. Math. Anal. Appl., 350(1):262–270, 2009.Google Scholar
[133] S. V., Kisliakov. Quantitative aspect of correction theorems. Zap. Nauchn. Sem. LOMI, 92:182–191, 1979.Google Scholar
[134] S. V., Kisliakov. A sharp correction theorem. Studia Math., 113(2):177–196, 1995.Google Scholar
[135] G., Koenigs. Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. École Norm. Sup. (3), 1:3–41, 1884.Google Scholar
[136] P., Koosis. The Logarithmic Integral, I. Cambridge University Press, Cambridge, 1988.Google Scholar
[137] M. G., Kreĭn and P. Ja., Nudel'man. Approximation of functions in L2(ω1, ω2) by transmission functions of linear systems with minimal energy. Problemy Peredači Informacii, 11(2):37–60, 1975. English translation.Google Scholar
[138] H.-O., Kreiss. Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren. Nordisk Tidskr. Informations-Behandling, 2:153–181, 1962.Google Scholar
[139] T. L., Lance and M. I., Stessin. Multiplication invariant subspaces of Hardy spaces. Can. J. Math., 49(1):100–118, 1997.Google Scholar
[140] J., Leblond and J. R., Partington. Constrained approximation and interpolation in Hilbert function spaces. J. Math. Anal. Appl., 234:500–513, 1999.Google Scholar
[141] A., Lebow. A power-bounded operator that is not polynomially bounded. Michigan Math. J., 15:397–399, 1968.Google Scholar
[142] J., Lindenstrauss and L., Tzafriri. Classical Banach Spaces, I: Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 92. Springer, Berlin, 1977.Google Scholar
[143] J. E., Littlewood. On inequalities in the theory of functions. Proc. London Math. Soc. (2), 23:481–519, 1925.Google Scholar
[144] M. X., Liu. On hyperinvariant subspaces of contraction operators on a Banach space whose spectrum contains the unit circle. Acta Math. Sin. (Engl. Ser.), 24(9):1471–1474, 2008.Google Scholar
[145] V. I., Lomonosov. Invariant subspaces for operators commuting with compact operators. Funct. Anal. Appl., 7:213–214, 1973.Google Scholar
[146] V. I., Lomonosov. On real invariant subspaces of bounded operators with compact imaginary part. Proc. Amer. Math. Soc., 115(3):775–777, 1992.Google Scholar
[147] G. W., MacDonald. Invariant subspaces for Bishop-type operators. J. Funct. Anal., 91(2):287–311, 1990.Google Scholar
[148] G. W., MacDonald. Decomposable weighted rotations on the unit circle. J. Operator Theory, 35(2):205–221, 1996.Google Scholar
[149] J., Mashreghi and T., Ransford. Binomial sums and functions of exponential type. Bull. London Math. Soc., 37:15–24, 2005.Google Scholar
[150] V., Matache. On the minimal invariant subspaces of the hyperbolic composition operator. Proc. Amer. Math. Soc., 119(3):837–841, 1993.Google Scholar
[151] V., Matache. The eigenfunctions of a certain composition operator. In Studies on Composition Operators (Laramie, WY, 1996), pages 121–136. Contemporary Mathematics, 213. American Mathematical Society, Providence, RI, 1998.Google Scholar
[152] A. J., Michaels. Hilden's simple proof of Lomonosov's invariant subspace theorem. Adv. Math., 25(1):56–58, 1977.Google Scholar
[153] R., Mortini. Cyclic subspaces and eigenvectors of the hyperbolic composition operator. In Travaux Mathématiques, Fasc. VII, pages 69–79. Séminaire de Mathématique de Luxembourg. Centre Universitaire du Luxembourg, Luxembourg, 1995.Google Scholar
[154] N. K., Nikolski. Operators, Functions, and Systems: An Easy Reading, Volume 1. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence, RI, 2002. Translated from the French by A. Hartmann.Google Scholar
[155] N. K., Nikolski. Operators, Functions, and Systems: An Easy Reading, Volume 2. Mathematical Surveys and Monographs, 93. American Mathematical Society, Providence, RI, 2002. Translated from the French by A. Hartmann and revised by the author.Google Scholar
[156] E., Nordgren, P., Rosenthal, and F. S., Wintrobe. Invertible composition operators on Hp. J. Funct. Anal., 73:324–344, 1987.Google Scholar
[157] E. A., Nordgren. Composition operators. Can. J. Math., 20:442–449, 1968.Google Scholar
[158] A., Octavio and M., Kosiek. Representations of H∞(DN) and absolute continuity for N-tuples of contractions. Houston J. Math., 23(3):529–537, 1997.Google Scholar
[159] R. I., Ovsepian and A., Pełczyński. On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in L2. Studia Math., 54(2):149–159, 1975.Google Scholar
[160] J. R., Partington. Interpolation, Identification and Sampling. London Mathematical Society Monographs, 17. Clarendon Press, Oxford University Press, New York, 1997.Google Scholar
[161] J. R., Partington. Linear Operators and Linear Systems. London Mathematical Society Student Texts, 60. Cambridge University Press, Cambridge, 2004.Google Scholar
[162] J. R., Partington and E., Pozzi. Universal shifts and composition operators. Operators and Matrices, in press.
[163] V. I., Paulsen. Completely Bounded Maps and Dilations. Pitman Research Notes in Mathematics Series, 146. Longman Scientific & Technical, Harlow, 1986.Google Scholar
[164] A., Pełczyński. All separable Banach spaces admit for every ε > 0 fundamental total and bounded by 1 + ε biorthogonal sequences. Studia Math., 55(3):295–304, 1976.Google Scholar
[165] G., Pisier. A polynomially bounded operator on Hilbert space which is not similar to a contraction. J. Amer. Math. Soc., 10(2):351–369, 1997.Google Scholar
[166] G., Pólya and G., Szegő. Problems and Theorems in Analysis, I. Classics in Mathematics. Springer, Berlin, 1998. Reprint of 1978 English translation from the German by Dorothee Aeppli.Google Scholar
[167] H., Radjavi and P., Rosenthal. Invariant Subspaces. Springer, Berlin, 1973.Google Scholar
[168] C., Read. A solution to the invariant subspace problem. Bull. London Math. Soc., 16:337–401, 1984.Google Scholar
[169] C., Read. A solution to the invariant subspace problem on the space ℓ1. Bull. London Math. Soc., 17:305–317, 1985.Google Scholar
[170] C., Read. A short proof concerning the invariant subspace problem. J. London Math. Soc., 34(2):335–348, 1986.Google Scholar
[171] C., Read. The invariant subspace problem for a class of Banach spaces, II: Hypercyclic operators. Israel J. Math., 63(1):1–40, 1988.Google Scholar
[172] C., Read. Strictly singular operators and the invariant subspace problem. Studia Math., 132(3):203–226, 1999.Google Scholar
[173] O., Rejasse. Factorization and reflexivity results for polynomially bounded operators. J. Operator Theory, 60(2):219–238, 2008.Google Scholar
[174] W. C., Ridge. Approximate point spectrum of a weighted shift. Trans. Amer. Math. Soc., 147:349–356, 1970.Google Scholar
[175] F., Riesz and B. Sz.-, Nagy. Functional Analysis. Frederick Ungar Publishing, New York, 1955. Translated by Leo F. Boron.Google Scholar
[176] G.-C., Rota. Note on the invariant subspaces of linear operators. Rend. Circ. Mat. Palermo (2), 8:182–184, 1959.Google Scholar
[177] G.-C., Rota. On models for linear operators. Comm. Pure Appl. Math., 13:469–472, 1960.Google Scholar
[178] W., Rudin. Function Theory in the Unit Ball of ℂn. Springer, Berlin, 1980.Google Scholar
[179] W., Rudin. Real and complex analysis, 3rd edition. McGraw-Hill, New York, 1987.Google Scholar
[180] W., Rudin. Functional Analysis, 2nd edition. International Series in Pure and Applied Mathematics. McGraw-Hill, New York, 1991.Google Scholar
[181] H. H., Schaefer. Banach Lattices and Positive Operators. Die Grundlehren der Mathematischen Wissenschaften, 215. Springer, New York, 1974.Google Scholar
[182] M., Schreiber. Unitary dilations of operators. Duke Math. J., 23:579–594, 1956.Google Scholar
[183] H. S., Shapiro and A. L., Shields. On some interpolation problems for analytic functions. Amer. J. Math., 83:513–532, 1961.Google Scholar
[184] J. H., Shapiro. Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. Springer, New York, 1993.Google Scholar
[185] A., Simonič. An extension of Lomonosov's techniques to non-compact operators. Trans. Amer. Math. Soc., 348(3):975–995, 1996.Google Scholar
[186] D., Slepian. On bandwidth. Proc. IEEE, 64(3):292–300, 1976.Google Scholar
[187] M., Smith. Constrained approximation in Banach spaces. Constr. Approx., 19(3): 465–476, 2003.Google Scholar
[188] M. N., Spijker, S., Tracogna, and B. D., Welfert. About the sharpness of the stability estimates in the Kreiss matrix theorem. Math. Comp., 72(242):697–713, 2003.Google Scholar
[189] B. Sz.-, Nagy. Sur les contractions de l'espace de Hilbert. Acta Sci. Math. (Szeged), 15:87–92, 1953.Google Scholar
[190] B. Sz.-, Nagy and C., Foiaş. On certain classes of power-bounded operators in Hilbert space. Acta Sci. Math. (Szeged), 27:17–25, 1966.Google Scholar
[191] B. Sz.-, Nagy and C., Foiaş. Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam, 1970. Translated from the French and revised.Google Scholar
[192] F. H., Szafraniec. Some spectral properties of operator-valued representations of function algebras. Ann. Polon. Math., 25:187–194. 1971/72.Google Scholar
[193] J. E., Thomson. Invariant subspaces for algebras of subnormal operators. Proc. Amer. Math. Soc., 96(3):462–464, 1986.Google Scholar
[194] T. T., Trent. Maximal invariant subspaces for. Proc. Amer. Math. Soc., 132(8):2429–2432, 2004.Google Scholar
[195] V. G., Troitsky. Lomonosov's theorem cannot be extended to chains of four operators. Proc. Amer. Math. Soc., 128(2):521–525, 2000.Google Scholar
[196] V. G., Troitsky. Minimal vectors in arbitrary Banach spaces. Proc. Amer. Math. Soc., 132(4):1177–1180, 2004.Google Scholar
[197] G., Valiron. Sur l'iteration des fonctions holomorphes dans un demi-plan. Bull. Sci. Math. (2), 55:105–128, 1931.Google Scholar
[198] F. H., Vasilescu. An operator-valued Poisson kernel. J. Funct. Anal., 110(1):47–72, 1992.Google Scholar
[199] F. H., Vasilescu. Operator-valued Poisson kernels and standard models in several variables. In R. E., Curto and P.E.T., Jørgensen, editors, Algebraic Methods in Operator Theory, pages 37–46. Birkhäuser, Boston, MA, 1994.Google Scholar
[200] J. L., Walsh. The Location of Critical Points of Analytic and Harmonic Functions. American Mathematical Society Colloquium Publications, 34. American Mathematical Society, New York, NY, 1950.Google Scholar
[201] J., Wermer. The existence of invariant subspaces. Duke Math. J., 19:615–622, 1952.Google Scholar
[202] D. J., Westwood. On C00-contractions with dominating spectrum. J. Funct. Anal., 66(1):96–104, 1986.Google Scholar
[203] K., Yan. Invariant subspaces for joint subnormal operators. Chinese Ann. Math. A., 9:561–566, 1988.Google Scholar
[204] A. C., Zaanen. Introduction to Operator Theory in Riesz Spaces. Springer, Berlin, 1997.Google Scholar
[205] M., Zarrabi. On polynomially bounded operators acting on a Banach space. J. Funct. Anal., 225(1):147–166, 2005.Google Scholar
[206] C., Zenger. On convexity properties of the Bauer field of values of a matrix. Num. Math., 12:96–105, 1968.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×