Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:15:36.138Z Has data issue: false hasContentIssue false

Chapter 5 - Patient Monitoring, Equipment, and Intravenous Fluids

Published online by Cambridge University Press:  12 December 2024

Richard D. Urman
Affiliation:
Ohio State University
Alan David Kaye
Affiliation:
Louisiana State University School of Medicine
Get access

Summary

The term “monitoring” is derived from the Latin word monere, which means “to warn.” Patient monitoring is important during sedation to ensure patient safety and decrease adverse events [1]. The standards for basic anesthetic monitoring as set forth by the American Society of Anesthesiologists (ASA) are intended to encourage quality patient care in all general anesthetics, regional anesthetics, and monitored anesthesia care.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hagan, KB, Thirumurthi, S, Gottumukkala, R, Vargo, J. Sedation in the endoscopy suite. Curr Treat Options Gastroenterol. 2016;14(2):194209. doi:10.1007/s11938-016-0089-8CrossRefGoogle ScholarPubMed
American Society of Anesthesiologists Committee on Standards and Practice Parameters. Standards for basic anesthetic monitoring. www.asahq.org/standards-and-guidelines/standards-for-basic-anesthetic-monitoringGoogle Scholar
Merchant, R, Chartrand, D, Dain, S, et al. Guidelines to the practice of anesthesia: revised edition 2015. Can J Anesth Can Anesth. 2015;62(1):5479. doi:10.1007/s12630-014-0232-8CrossRefGoogle Scholar
Poncette, AS, Mosch, L, Spies, C, et al. Improvements in patient monitoring in the intensive care unit: survey study. J Med Internet Res. 2020;22(6):e19091. doi:10.2196/19091CrossRefGoogle ScholarPubMed
Casabianca, AB, Becker, DE. Cardiovascular monitoring: physiological and technical considerations. Anesth Prog. 2009;56(2):5360. doi:10.2344/0003-3006-56.2.53CrossRefGoogle ScholarPubMed
American Society of Anesthesiologists Task Force on Sedation and Analgesia by Non-Anesthesiologists. Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology. 2002;96(4):100417. doi:10.1097/00000542-200204000-00031CrossRefGoogle Scholar
Sampson, M. Continuous ECG monitoring in hospital: part 2, practical issues. Br J Card Nurs. 2018;13(3):12834. doi:10.12968/bjca.2018.13.3.128CrossRefGoogle Scholar
Nedios, S, Romero, I, Gerds-Li, JH, Fleck, E, Kriatselis, C. Precordial electrode placement for optimal ECG monitoring: implications for ambulatory monitor devices and event recorders. J Electrocardiol. 2014;47(5):66976. doi:10.1016/j.jelectrocard.2014.04.003CrossRefGoogle ScholarPubMed
Whelton, PK, Carey, RM, Aronow, WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertens Dallas Tex 1979. 2018;71(6):e13115. doi:10.1161/HYP.0000000000000065Google Scholar
Gupta, R, Guptha, S. Strategies for initial management of hypertension. Indian J Med Res. 2010;132(5):53142.Google ScholarPubMed
Vincent, JL, De Backer, D. Circulatory shock. N Engl J Med. 2013;369:172634. doi:10.1056/NEJMra1208943CrossRefGoogle ScholarPubMed
Koutsaki, M, Thomopoulos, C, Achimastos, A, et al. Perioperative SBP changes during orthopedic surgery in the elderly: clinical implications. J Hypertens. 2019;37(8):17051713. doi:10.1097/HJH.0000000000002085CrossRefGoogle ScholarPubMed
Geddes, LA. The direct measurement of blood pressure. In Geddes, LA, ed., Handbook of Blood Pressure Measurement. Humana Press, 1991, 147. doi:10.1007/978-1-4684-7170-0_1CrossRefGoogle Scholar
Ogedegbe, G, Pickering, T. Principles and techniques of blood pressure measurement. Cardiol Clin. 2010;28(4):571586. doi:10.1016/j.ccl.2010.07.006CrossRefGoogle ScholarPubMed
Pickering, D, Stevens, S. How to measure and record blood pressure. Community Eye Health. 2013;26(84):76.Google ScholarPubMed
Berger, A. Oscillatory blood pressure monitoring devices. BMJ. 2001;323:919.CrossRefGoogle Scholar
Meidert, AS, Saugel, B. Techniques for non-invasive monitoring of arterial blood pressure. Front Med. 2018;4:231. doi:10.3389/fmed.2017.00231CrossRefGoogle ScholarPubMed
Goodman, CT, Kitchen, GB. Measuring arterial blood pressure. Anaesth Intensive Care Med. 2021;22(1):4953. doi:10.1016/j.mpaic.2020.11.007CrossRefGoogle Scholar
Folke, M, Cernerud, L, Ekström, M, Hök, B. Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput. 2003;41(4):377383. doi:10.1007/BF02348078CrossRefGoogle ScholarPubMed
Tobin, MJ. Respiratory monitoring during mechanical ventilation. Crit Care Clin. 1990;6(3):679709.CrossRefGoogle ScholarPubMed
Redmond, C. Transthoracic impedance measurements in patient monitoring. Analog Devices Inc., 2013. www.analog.com/en/resources/technical-articles/transthoracic-impedance-measurements-in-patient-monitoring.htmlGoogle Scholar
Criée, CP, Sorichter, S, Smith, HJ, et al. Body plethysmography: its principles and clinical use. Respir Med. 2011;105(7):95971. doi:10.1016/j.rmed.2011.02.006CrossRefGoogle ScholarPubMed
Massaroni, C, Nicolò, A, Lo Presti, D, et al. Contact-based methods for measuring respiratory rate. Sensors. 2019;19(4):908. doi:10.3390/s19040908CrossRefGoogle ScholarPubMed
Al-Khalidi, FQ, Saatchi, R, Burke, D, Elphick, H, Tan, S. Respiration rate monitoring methods: a review. Pediatr Pulmonol. 2011;46(6):5239. doi:10.1002/ppul.21416CrossRefGoogle ScholarPubMed
Brochard, L, Martin, GS, Blanch, L, et al. Clinical review: respiratory monitoring in the ICU: a consensus of 16. Crit Care. 2012;16(2):219. doi:10.1186/cc11146CrossRefGoogle ScholarPubMed
Jubran, A. Pulse oximetry. Crit Care. 1999;3(2):R11R17. doi:10.1186/cc341CrossRefGoogle ScholarPubMed
Crooks, CJ, West, J, Morling, JR, et al. Pulse oximeter measurements vary across ethnic groups: an observational study in patients with COVID-19. Eur Respir J. 2022;59(4):2103246. doi:10.1183/13993003.03246-2021CrossRefGoogle ScholarPubMed
Haymond, S, Cariappa, R, Eby, CS, Scott, MG. Laboratory assessment of oxygenation in methemoglobinemia. Clin Chem. 2005;51(2):43444. doi:10.1373/clinchem.2004.035154CrossRefGoogle ScholarPubMed
Tin, W, Lal, M. Principles of pulse oximetry and its clinical application in neonatal medicine. Semin Fetal Neonatal Med. 2015;20(3):1927. doi:10.1016/j.siny.2015.01.006CrossRefGoogle ScholarPubMed
Sessler, DI. Perioperative temperature monitoring. Anesthesiology. 2021;134(1):11118. doi:10.1097/ALN.0000000000003481CrossRefGoogle ScholarPubMed
Larach, MG, Gronert, GA, Allen, GC, Brandom, BW, Lehman, EB. Clinical presentation, treatment, and complications of malignant hyperthermia in North America from 1987 to 2006. Anesth Analg. 2010;110(2):498507. doi:10.1213/ANE.0b013e3181c6b9b2CrossRefGoogle ScholarPubMed
Kurz, A. Thermal care in the perioperative period. Best Pract Res Clin Anaesthesiol. 2008;22(1):3962. doi:10.1016/j.bpa.2007.10.004CrossRefGoogle ScholarPubMed
Crystal, GJ. Carbon dioxide and the heart: physiology and clinical implications. Anesth Analg. 2015;121(3):61023. doi:10.1213/ANE.0000000000000820CrossRefGoogle ScholarPubMed
Weaver, J. The latest ASA mandate: CO2 monitoring for moderate and deep sedation. Anesth Prog. 2011;58(3):11112. doi:10.2344/0003-3006-58.3.111CrossRefGoogle ScholarPubMed
Huttmann, SE, Windisch, W, Storre, JH. Techniques for the measurement and monitoring of carbon dioxide in the blood. Ann Am Thorac Soc. 2014;11(4):64552. doi:10.1513/AnnalsATS.201311-387FRCrossRefGoogle ScholarPubMed
Shah, R, Streat, DA, Auerbach, M, Shabanova, V, Langhan, ML. Improving capnography use for critically ill emergency patients: an implementation study. J Patient Saf. 2022;18(1):e26. doi:10.1097/PTS.0000000000000683CrossRefGoogle ScholarPubMed
Casey, G. Capnography: monitoring CO2. Nurs N Z. 2015;21(9):204.Google ScholarPubMed
Kerslake, I, Kelly, F. Uses of capnography in the critical care unit. BJA Educ. 2017;17(5):17883. doi:10.1093/bjaed/mkw062CrossRefGoogle Scholar
Fukuda, K, Ichinohe, T, Kaneko, Y. Is measurement of end-tidal CO2 through a nasal cannula reliable? Anesth Prog. 1997;44(1):236.Google ScholarPubMed
Scoccimarro, A, West, JR, Kanter, M, Caputo, ND. Waveform capnography: an alternative to physician Gestalt in determining optimal intubating conditions after administration of paralytic agents. Emerg Med J EMJ. 2018;35(1):624. doi:10.1136/emermed-2017-206922CrossRefGoogle ScholarPubMed
Schumacher, TE, Smucker, AJ. Measurement of CO2 dissolved in aqueous solutions using a modified infrared gas analyzer system. Plant Physiol. 1983;72(1):21214. doi:10.1104/pp.72.1.212CrossRefGoogle ScholarPubMed
Pekdemir, M, Cinar, O, Yılmaz, S, Yaka, E, Yuksel, M. Disparity between mainstream and sidestream end-tidal carbon dioxide values and arterial carbon dioxide levels. Respir Care. 2013;58(7):115256. doi:10.4187/respcare.02227CrossRefGoogle ScholarPubMed
Donald, MJ, Paterson, B. End tidal carbon dioxide monitoring in prehospital and retrieval medicine: a review. Emerg Med J EMJ. 2006;23(9):72830. doi:10.1136/emj.2006.037184CrossRefGoogle ScholarPubMed
White, SN. Qualitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy. Appl Spectrosc. 2010;64(7):81927. doi:10.1366/000370210791666354CrossRefGoogle ScholarPubMed
Price, P. Standard definitions of terms relating to mass spectrometry: a report from the Committee on Measurements and Standards of the American Society for Mass Spectrometry. J Am Soc Mass Spectrom. 1991;2(4):33648. doi:10.1016/1044-0305(91)80025-3CrossRefGoogle Scholar
Elokhin, VA, Ershov, TD, Levshankov, AI, Nikolaev, VI, Elizarov, AYu. Application of a mass spectrometer as a capnograph. Tech Phys. 2010;55(12):181416. doi:10.1134/S1063784210120194CrossRefGoogle Scholar
Jones, RW, McClelland, J. Fourier transform infrared photoacoustic spectroscopy of ageing composites. In Martin, R, ed., Ageing of Composites. Woodhead Publishing, 2008, 16085. doi:10.1533/9781845694937.1.160CrossRefGoogle Scholar
Blohm, A, Sieburg, A, Popp, J, Frosch, T. Detection of gas molecules by means of spectrometric and spectroscopic methods. In Baia, L, Pap, Z, Hernadi, K, Baia, M, eds., Advanced Nanostructures for Environmental Health. Micro and Nano Technologies. Elsevier, 2020, 25194. doi:10.1016/B978-0-12-815882-1.00006-9CrossRefGoogle Scholar
Palzer, S. Photoacoustic-based gas sensing: a review. Sensors. 2020;20(9):2745. doi:10.3390/s20092745CrossRefGoogle ScholarPubMed
Preiss, D, Drew, BA, Gosnell, J, et al. Linshom thermodynamic sensor is a reliable alternative to capnography for monitoring respiratory rate. J Clin Monit Comput. 2018;32(1):13340. doi:10.1007/s10877-017-0004-4CrossRefGoogle ScholarPubMed
Yang, KS, Habib, AS, Lu, M, et al. A prospective evaluation of the incidence of adverse events in nurse-administered moderate sedation guided by sedation scores or bispectral index. Anesth Analg. 2014;119(1):438. doi:10.1213/ANE.0b013e3182a125c3CrossRefGoogle ScholarPubMed
Avidan, MS, Zhang, L, Burnside, BA, et al. Anesthesia awareness and the bispectral index. N Engl J Med. 2008;358(11):1097108. doi:10.1056/NEJMoa0707361CrossRefGoogle Scholar
Leslie, K, Sessler, DI, Smith, WD, et al. Prediction of movement during propofol/nitrous oxide anesthesia. Performance of concentration, electroencephalographic, pupillary, and hemodynamic indicators. Anesthesiology. 1996;84(1):5263. doi:10.1097/00000542-199601000-00006CrossRefGoogle ScholarPubMed
Gelfand, ME, Gabriel, RA, Gimlich, R, Beutler, SS, Urman, RD. Practice patterns in the intraoperative use of bispectral index monitoring. J Clin Monit Comput. 2017;31(2):2819. doi:10.1007/s10877-016-9845-5CrossRefGoogle ScholarPubMed
Bower, AL, Ripepi, A, Dilger, J, Boparai, N, Brody, FJ, Ponsky, JL. Bispectral index monitoring of sedation during endoscopy. Gastrointest Endosc. 2000;52(2):1926. doi:10.1067/mge.2000.107284CrossRefGoogle ScholarPubMed
Olson, DM, Chioffi, SM, Macy, GE, Meek, LG, Cook, HA. Potential benefits of bispectral index monitoring in critical care. A case study. Crit Care Nurse. 2003;23(4):4552.CrossRefGoogle ScholarPubMed
Gill, M, Green, SM, Krauss, B. A study of the bispectral index monitor during procedural sedation and analgesia in the emergency department. Ann Emerg Med. 2003;41(2):23441. doi:10.1067/mem.2003.53CrossRefGoogle ScholarPubMed
Cheung, E, Baerlocher, MO, Asch, M, Myers, A. Venous access. Can Fam Physician. 2009;55(5):4946.Google ScholarPubMed
Milliam, DA. How to teach good venipuncture technique. Am J Nurs. 1993;93(7):3841.Google ScholarPubMed
Kost, M. Intravenous insertion techniques. In Manual of Conscious Sedation. W. B. Saunders, 1998, 162175.Google Scholar
Rogers, TL, Ostrow, CL. The use of EMLA cream to decrease venipuncture pain in children. J Pediatr Nurs. 2004;19(1):339. doi:10.1016/j.pedn.2003.09.005CrossRefGoogle ScholarPubMed
Shokoohi, H, Boniface, K, McCarthy, M, et al. Ultrasound-guided peripheral intravenous access program is associated with a marked reduction in central venous catheter use in noncritically ill emergency department patients. Ann Emerg Med. 2013;61(2):198203. doi:10.1016/j.annemergmed.2012.09.016CrossRefGoogle ScholarPubMed
O’Grady, NP, Alexander, M, Burns, LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52(9):e16293. doi:10.1093/cid/cir257CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. Background information: strategies for prevention of catheter-related infections in adult and pediatric patients. November 5, 2015. www.cdc.gov/infectioncontrol/guidelines/bsi/background/prevention-strategies.htmlGoogle Scholar
Tagalakis, V, Kahn, SR, Libman, M, Blostein, M. The epidemiology of peripheral vein infusion thrombophlebitis: a critical review. Am J Med. 2002;113(2):14651. doi:10.1016/s0002-9343(02)01163-4CrossRefGoogle ScholarPubMed
Singh, N, Kalyan, G, Kaur, S, Jayashree, M, Ghai, S. Quality improvement initiative to reduce intravenous line-related infiltration and phlebitis incidence in pediatric emergency room. Indian J Crit Care Med. 2021;25(5):55765. doi:10.5005/jp-journals-10071-23818Google ScholarPubMed
DosSantos, LM, de Jesus Nunes, K, Silva, CSGE, et al. Elaboration and validation of an algorithm for treating peripheral intravenous infiltration and extravasation in children. Rev Lat Am Enfermagem. 2021;29:e3435. doi:10.1590/1518-8345.4314.3435CrossRefGoogle Scholar
Doellman, D, Hadaway, L, Bowe-Geddes, LA, et al. Infiltration and extravasation: update on prevention and management. J Infus Nurs Off Publ Infus Nurses Soc. 2009;32(4):20311. doi:10.1097/NAN.0b013e3181aac042Google ScholarPubMed
Kagel, EM, Rayan, GM. Intravenous catheter complications in the hand and forearm. J Trauma. 2004;56(1):12327. doi:10.1097/01.TA.0000058126.72962.74CrossRefGoogle ScholarPubMed
Holte, K, Jensen, P, Kehlet, H. Physiologic effects of intravenous fluid administration in healthy volunteers. Anesth Analg. 2003;96(5):15049. doi:10.1213/01.ANE.0000055820.56129.EECrossRefGoogle ScholarPubMed
Roumelioti, ME, Glew, RH, Khitan, ZJ, et al. Fluid balance concepts in medicine: principles and practice. World J Nephrol. 2018;7(1):128. doi:10.5527/wjn.v7.i1.1CrossRefGoogle Scholar
Edwards, MR., Grocott, MPW. Perioperative fluid and electrolyte therapy. In Miller’s Anesthesia, 9th ed. Elsevier, 2019, 1480523.Google Scholar
Varrier, M, Ostermann, M. Fluid composition and clinical effects. Crit Care Clin. 2015;31(4):82337. doi:10.1016/j.ccc.2015.06.014CrossRefGoogle ScholarPubMed
Remmers, PA, Speer, AJ. Clinical strategies in the medical care of Jehovah’s Witnesses. Am J Med. 2006;119(12):101318. doi:10.1016/j.amjmed.2006.04.016CrossRefGoogle ScholarPubMed
Reiterer, C, Kabon, B, Halvorson, S, et al. Hemodynamic responses to crystalloid and colloid fluid boluses during noncardiac surgery. Anesthesiology. 2022;136:12737. doi:https://doi.org/10.1097/ALN.0000000000004040CrossRefGoogle ScholarPubMed
Yunos, NM, Bellomo, R, Story, D, Kellum, J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14(4):226. doi:10.1186/cc9052CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×