Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T03:12:04.316Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2012

Kemal Hanjalić
Affiliation:
Technische Universiteit Delft, The Netherlands
Brian Launder
Affiliation:
University of Manchester
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Modelling Turbulence in Engineering and the Environment
Second-Moment Routes to Closure
, pp. 348 - 372
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K.Suga, K. 1998 Large-eddy simulation of passive scalar fields under several strain conditionsProc. 2nd Engineering Foundation Conf. on Turbulent Heat TransferManchester, UKGoogle Scholar
Abe, K.Suga, K. 2001 Towards the development of a Reynolds-averaged turbulent scalar-flux modelInt. J. Heat Fluid Flow 22 19CrossRefGoogle Scholar
Abrahamsson, H.Johansson, B.Löfdahl, L. 1997
Acharya, M.Reynolds, W. C. 1975
Ackerman, J. W. 1970 Pseudo-boiling heat transfer to supercritical-pressure water in smooth and ribbed tubesASME J. Heat Transfer 92 490CrossRefGoogle Scholar
Addad, Y.Benhamadouche, S.Laurence, D. 2004 The negatively buoyant wall jet: LES resultsInt. J. Heat Fluid Flow 25 795CrossRefGoogle Scholar
Alam, M.Sandham, N. D. 2000 Direct numerical simulations of short laminar separation bubblesJ. Fluid Mech 403 223CrossRefGoogle Scholar
André, J. C.de Moor, G.Lacarrère, P.du Vachat, R. 1976 Turbulence approximation for inhomogeneous flows: Part II. The numerical simulation of a penetrative convection experimentJ. Atmos. Sci. 33 4822.0.CO;2>CrossRefGoogle Scholar
André, J. C.De Moor, G.Lacarrère, P.Thierry, G.du Vachat, R. 1978 Modelling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layerJ. Atmos. Sci. 35 18612.0.CO;2>CrossRefGoogle Scholar
André, J. C.de Moor, G.Lacarrère, P.Thierry, G.du Vachat, R. 1979 The clipping approximation and inhomogeneouos turbulence simulationsTurbulent Shear Flows 1Durst, F. JSpringer VerlagHeidelbergGoogle Scholar
Aris, R. 1962 Vectors, Tensors and the Basic Equations of Fluid MechanicsPrentice HallEnglewood Clifts NJ.Google Scholar
Armitage, C. A. 2001 Computational modelling of double-diffusive flows in stratified mediaDepartment of Mechanical Engineering, UMISTManchester, UKGoogle Scholar
Armitage, C. A.Launder, B. E.Leschziner, M. A. 1998 Proc. 2nd Engineering Foundation Conf. on Turbulent Heat TransferManchester, UKGoogle Scholar
Bachalo, W. D.Johnson, D. A. 1986 Transonic turbulent boundary layer separation generated on an axisymmetric flow modelAIAA J 33 2026Google Scholar
Badri Narayanan, M. A.Ramjee, V. 1969 On the criteria for reverse transition in a two dimensional boundary layer flowJ. Fluid Mech 35 225Google Scholar
Baker, R. J.Launder, B. E. 1974 The turbulent boundary layer with foreign gas injection: 1. Measurements in zero pressure gradientInt. J. Heat Mass Transfer 17 275CrossRefGoogle Scholar
Barberis, D.Molton, P. 1995
Basara, B.Aldudak, F.Schrefl, M.Jakirlić, S.Hanjalić, K.Tropea, C.Mayer, J. 2007
Basara, B.Jakirlić, S. 2003 A new hybrid turbulence modelling strategy for industrial CFDInt. J. Num. Meth. in Fluids 42 89Google Scholar
Batchelor, G. K.Townsend, A. A. 1948 Decay of turbulence in the final periodProc. R. Soc. London 194A 527CrossRefGoogle Scholar
Batten, P.Craft, T. J.Leschziner, M. A.Loyau, H. 1999 Reynolds-stress transport modeling for compressible aerodynamic flowsAIAA J. 37 785CrossRefGoogle Scholar
Baughn, J. W.Shimuzu, S. 1989 Heat transfer measurements from a surface with uniform heat transfer and an impinging jetASME J. Heat Transfer 111 1096CrossRefGoogle Scholar
Baughn, J. W.Yan, X. 1992 Local heat transfer measurements in square ducts with transverse ribs28th Natl. Heat Transfer ConfGoogle Scholar
Baughn, J. W.Hechanova, A. E.Yan, X. 1992 An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jetJ. Heat Transfer 113Google Scholar
Baughn, J. W.Yan, X. J.Mesbah, M. 1992 The effects of Reynolds number on the heat transfer distribution from a flat plate to a turbulent impinging jetASME HTD Vol. 2261Google Scholar
Behnia, M.Parniex, S.Durbin, P. A. 1998 Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate, J. Heat Mass Transfer 41 1845CrossRefGoogle Scholar
Bennett, J. C.Corrsin, S. C. 1978 Small Reynolds number nearly isotropic turbulence in a straight duct and in a contractionPhys. Fluids 21 2129CrossRefGoogle Scholar
Bergman, T. L.Incropera, F. P.Viskanta, R. 1985 A differential model for salt-stratified, double-diffusive systems heated from belowInt. J. Heat Mass Transfer 28 779CrossRefGoogle Scholar
Bernard, P. S. 1990 Turbulent vorticity transport in three dimensionsTheor. Comput. Fluid Dyn. 2 165Google Scholar
Bertoglio, J-P.Charnay, G.Mathieu, J. 1980 Effets de la rotation sur un champ turbulent cisaillé: application au cas des turbomachinesJ. Méc. 4 421Google Scholar
Borello, D.Hanjalić, K.Rispoli, F. 2005 Prediction of cascade flows with innovative second-moment closuresASME J. Fluids Eng. 127 1059CrossRefGoogle Scholar
Boudjemadi, R.Maupu, V.Laurence, D.Le Quéré, P. 1997 Budgets of turbulent stresses and fluxes in a vertical slot natural convection at Rayleigh Ra = 105 and 5.4×105Int. J. Heat Fluid Flow 18 70CrossRefGoogle Scholar
Bradshaw, P. 1967 The turbulence structure of equilibrium boundary layersJ. Fluid Mech. 29 625CrossRefGoogle Scholar
Bradshaw, P. 1971 An Introduction to Turbulence and its MeasurementsPergamon PressOxfordGoogle Scholar
Bradshaw, P 1973 Effect of streamline curvature on turbulent flowAGARDographGoogle Scholar
Bradshaw, P. 1976 IntroductionTurbulenceBradshaw, P. 12 1Springer VerlagBerlinCrossRefGoogle Scholar
Bradshaw, PFerriss, D. HAtwell, N. P 1967 Calculation of boundary layer development using the turbulent energy equationJ. Fluid Mech 28 593CrossRefGoogle Scholar
Bradshaw, P.Mansour, N. N.Piomelli, U. 1987 On local approximations of the pressure-strain term in turbulence modelsStudying turbulence using numerical simulation data bases159Stanford UniversityGoogle Scholar
Branover, H. 1978 Magnetohydrodynamic Flow in DuctsWileyNew YorkGoogle Scholar
Brasseur, J. M.Lee, M. 1987 Local structure of intercomponent energy transfer in homogeneous turbulent shear flowStudying turbulence using numerical simulation data bases165Stanford UniversityGoogle Scholar
Bremhorst, K.Gehrke, P. J. 2000 Measured Reynolds stress distributions and energy budgets of a fully-pulsed round air jetExp. Fluids 28 519CrossRefGoogle Scholar
Bremhorst, K.Craft, T. J.Launder, B. E. 2003 Two-time-scale turbulence modelling of a fully-pulsed axisymmetric air jetProc. 3rd Int. Symp. on Turbulence & Shear Flow Phenomena711
Brouillette, E. C.Lykoudis, P. S. 1967 Magneto-fluid-mechanic channel flow. I. ExperimentPhys. Fluids 10 995CrossRefGoogle Scholar
Businger, J. A.Wyngaard, J. C.Izumi, Y.Bradley, E. F. 1971 Flux-profile relationships in the atmospheric surface layerJ. Atmos. Sci. 28 1812.0.CO;2>CrossRefGoogle Scholar
Cadiou, A.Hanjalić, K.Starwiaski, K. 2004 A two-scale second-moment turbulence closure based on weighted spectrum integrationTheor. Comput. Fluid Dyn. 18 1CrossRefGoogle Scholar
Carr, A. D.Connor, M. A.Buhr, H. O. 1973 Velocity, temperature and turbulence measurements in air for pipe flow with combined free and forced convectionTrans. ASME J. Heat Transfer 95 445CrossRefGoogle Scholar
Castro, I.Bradshaw, P. 1976 The turbulence structure of a highly curved mixing layerJ. Fluid Mech. 73 265CrossRefGoogle Scholar
Cebeci, T. 1999 An Engineering Approach to the Calculation of Aerodynamic FlowsSpringerNew YorkGoogle Scholar
Cebeci, TMosinskis, G. J 1971 The calculation of incompressible turbulent boundary layers with mass transfer including highly accelerated flowsASME J. Heat Transfer 93 271CrossRefGoogle Scholar
Cebeci, T.Smith, A. M. O. 1974 Analysis of Turbulent Boundary LayersAcademic PressNew YorkGoogle Scholar
Celenligel, M. C.Mellor, G. L. 1985 Numerical solution of two-dimensional separated flows using a Reynolds-stress closure modelASME J. Fluids Eng 107 467CrossRefGoogle Scholar
Champagne, F.Harris, V.Corrsin, S. C. 1970 Experiments on nearly homogeneous shear flowsJ. Fluid Mech. 41 81CrossRefGoogle Scholar
Chaouat, B.Schiestel, R. 2005 A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flowsPhys. Fluids 17 065106CrossRefGoogle Scholar
Chaouat, B.Schiestel, R. 2007 From single-scale turbulence models to multiple scale and sub-grid-scale models by Fourier transformTheor. Comput. Fluid Dyn. 21 201CrossRefGoogle Scholar
Chavanne, X.Chillà, F.Chabaud, B.Castaign, B.Chaussy, J.Hébral, B. 1996 High Rayleigh number convection with gaseous helium at low temperatureJ. Low Temp. Phys 104 109CrossRefGoogle Scholar
Cheah, S. C.Iacovides, H.Jackson, D. C.Ji, H-H.Launder, B. E. 1996 LDA investigation of the flow development through rotating U-ductsJ. Turbomachinery 118 590CrossRefGoogle Scholar
Chen, C. J.Rodi, W. 1980 Vertical Turbulent Buoyant Jets: A Review of Experimental DataPergamon, OxfordGoogle Scholar
Chien, K-Y. 1982 Prediction of channel and boundary layer flows with a low-Reynolds-number turbulence modelAIAA J 20 33CrossRefGoogle Scholar
Chieng, C. C.Launder, B. E. 1980 On the calculation of turbulent heat transport downstream from an abrupt pipe expansionNumerical Heat Transfer 3 189CrossRefGoogle Scholar
Choi, Y. D.Iacovides, H.Launder, B. E. 1989 Numerical computation of turbulent flow in a square-sectioned 180° bendJ. Fluids Eng. 111 59CrossRefGoogle Scholar
Chou, P.-Y. 1945 On the velocity correlations and the solutions of the equations of turbulent fluctuationQ, J. Appl. Math. 3 38CrossRefGoogle Scholar
Chow, J. S.Zilliac, G. G.Bradshaw, P. 1997 Mean and turbulence measurements in the near field of a wingtip vortexAIAA J 35 1561CrossRefGoogle Scholar
Chu, V. E.Baddour, R. E. 1984 Turbulent gravity-stratified shear flowsJ Fluid Mech 138 353CrossRefGoogle Scholar
Ciofalo, M.Collins, M. W. 1989 The –ɛ predictions of heat transfer in turbulent recirculating flows using an improved wall treatmentNumerical Heat Transfer B Fundamentals 15 21CrossRefGoogle Scholar
Clark, T. T.Zemach, C. 1995 A spectral model applied to homogeneous turbulencePhys. Fluids 7 1674CrossRefGoogle Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layerJ. Fluid Mech 1 191CrossRefGoogle Scholar
Comte-Bellot, G.Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulenceJ. Fluid Mech 25 657CrossRefGoogle Scholar
Cooper, D.Jackson, D. C.Launder, B. E.Liao, G.-X. 1993 Impinging jet studies for turbulence model assessmentInt. J. Heat Mass Transfer 36 2675CrossRefGoogle Scholar
Cormack, D. E.Leal, L. G.Seinfeld, J. H. 1978 An evaluation of Reynolds stress turbulence models: the triple velocity correlationsASME J. Fluids Eng. 100CrossRefGoogle Scholar
Corrsin, S. 1952 Heat transfer in isotropic turbulenceJ. Appl. Phys. 23 113CrossRefGoogle Scholar
Cotton, M. AIsmael, J. O 1998 A strain parameter turbulence model and its application to homogeneous and thin shear flowsInt. J. Heat Fluid Flow 19 326CrossRefGoogle Scholar
Cotton, M. A.Jackson, J. D. 1987 ToulouseFrance
Cotton, M. A.Jackson, J. D. 1990 Vertical tube air flows in the turbulent mixed convection regime calculated using a low-Reynolds-number modelInt. J. Heat Mass Transfer 33 275CrossRefGoogle Scholar
Cousteix, J.Aupoix, B. 1981
Cousteix, J.Desopper, A.Houdeville, R. 1979 Structure and development of a turbulent boundary layer in an oscillatory external flowTurbulent Shear Flows 1Durst, F. J.154Springer VerlagBerlinCrossRefGoogle Scholar
Craft, T. J. 1991 Second-moment modeling of turbulent scalar transportFaculty of TechnologyUniversity of Manchester, UKGoogle Scholar
Craft, T. J. 1998 Developments in a low-Reynolds-number second-moment closure and its application to separating and reattaching flowsInt. J. Heat Fluid Flow 19 541CrossRefGoogle Scholar
Craft, T. J. 2002 Modelling of separating and impinging flowsClosure Strategies for Turbulent and Transitional FlowsLaunder, B. ESandham, N. D341Cambridge University Press, CambridgeCrossRefGoogle Scholar
Craft, T. J.Launder, B. E. 1989 A new model for the pressure/scalar-gradient correlation and its application to homogeneous and inhomogeneous free shear flowsProc. 7th Symp. on Turbulent Shear FlowsStanford University, Stanford, CAGoogle Scholar
Craft, T. J.Launder, B. E. 1991 Computation of impinging flows using second-moment closuresProc. 8th Symp. on Turbulent Shear FlowsTechnical University of Munich, GermanyGoogle Scholar
Craft, T. J.Launder, B. E. 1992 New wall-reflection model applied to the turbulent impinging jetAIAA J. 30 2970CrossRefGoogle Scholar
Craft, T. J.Launder, B. E. 1996 A Reynolds-stress closure designed for complex geometriesInt. J. Heat Fluid Flow 17 245CrossRefGoogle Scholar
Craft, T. J.Launder, B. E. 2002 Closure modelling near the two-component limitClosure Strategies for Turbulent and Transitional FlowsLaunder, B. E.Sandham, N. D.102Cambridge University Press, CambridgeCrossRefGoogle Scholar
Craft, T. J.Launder, B. E. 2002 Application of TCL modelling to stratified flowsClosure Strategies for Turbulent and Transitional FlowsLaunder, B. E.Sandham, N. D407Cambridge University Press, CambridgeCrossRefGoogle Scholar
Craft, T. J.Launder, B. E. 2002 On the spreading mechanism of the three-dimensional turbulent wall jetJ. Fluid Mech 435 305Google Scholar
Craft, T. J.Graham, L. J.Launder, B. E. 1993 Impinging jet studies for turbulence model assessment: 2. An examination of the performance of four turbulence modelsInt. J. Heat Mass Transfer 36 2685CrossRefGoogle Scholar
Craft, T. J.Ince, N. Z.Launder, B. E. 1996 Recent developments in second-moment closure for buoyancy-affected flowsDyn. Atmos. Oceans 23 99CrossRefGoogle Scholar
Craft, T. JLaunder, B. ESuga, K 1996 Development and application of a cubic eddy-viscosity model of turbulenceInt. J. Heat Fluid Flow 17 108CrossRefGoogle Scholar
Craft, T. J.Kidger, J. W.Launder, B. E. 1997 Importance of 3rd-moment modelling in horizontal, stably stratified flowProc 11th Symp. on Turbulent Shear FlowsGrenoble, FranceGoogle Scholar
Craft, T. JLaunder, B. ESuga, K 1997 Prediction of turbulent transitional phenomena with a nonlinear eddy-viscosity modelInt. J. Heat Fluid Flow 18 15CrossRefGoogle Scholar
Craft, T. J.Kidger, J. W.Launder, B. E. 2000 Second-moment modeling of developing and self-similar turbulent three-dimensional free-surface jetsInt. J. Heat Fluid Flow 21 338CrossRefGoogle Scholar
Craft, T. J.Gerasimov, A. V.Iacovides, H.Launder, B. E. 2002 Progress in the generalization of wall-function treatmentsInt. J. Heat Fluid Flow 23 148CrossRefGoogle Scholar
Craft, T. J.Gerasimov, A. V.Iacovides, H.Launder, B. E. 2004 The negatively buoyant turbulent wall jet: performance of alternative options in RANS modellingInt. J. Heat Fluid Flow 25 809CrossRefGoogle Scholar
Craft, T. J.Gant, S. E.Iacovides, H.Launder, B. E. 2004 A new wall-function strategy for complex turbulent flowsNumerical Heat Transfer, B Fundamentals 45 301CrossRefGoogle Scholar
Craft, T. J.Gant, S. E.Gerasimov, A. V.Iacovides, H.Launder, B. E. 2006 Numerical modelling of wall heat transfer in wall-adjacent turbulent flowsHandbook of Numerical Heat TransferMinkowycz, W. J.Sparrow, E. M.Murthy, J. Y.369WileyHoboken, NJGoogle Scholar
Craft, T. J.Gerasimov, A. V.Launder, B. E.Robinson, C. M. 2006 A computational study of the near-field generation and decay of wingtip vorticesInt. J. Heat Fluid Flow 27 684CrossRefGoogle Scholar
Craft, T. J.Iacovides, H.Launder, B. E.Zacharos, A. 2008 Some swirling-flow challenges for turbulent CFDFlow, Turbulence Combust. 80 419CrossRefGoogle Scholar
Crow, S. C. 1968 Visco-elastic properties of fine-grained incompressible turbulenceJ. Fluid Mech. 33 1CrossRefGoogle Scholar
Czarny, O.Iacovides, H.Launder, B. E. 2002 Precessing vortex structures within rotor-stator disc cavitiesFlow, Turbulence Combust. 69 51CrossRefGoogle Scholar
Dakos, T.Gibson, M. M. 1985 On modelling the pressure terms of the scalar-flux equationsProc 5th Turbulent Shear Flow SymposiumCornell UniversityIthaca, NYGoogle Scholar
Daly, B. J.Harlow, F. H. 1970 Transport equations in turbulencePhys. Fluids 13 2634CrossRefGoogle Scholar
Davidov, B. I. 1959 On the statistical dynamics of an incompressible turbulent fluidDokl. Akad. Nauk SSSR 127Google Scholar
Davidov, B. I. 1961 On the statistical dynamics of an incompressible turbulent fluidDokl. Akad. Nauk SSSR 136 47Google Scholar
Davidson, P. A. 2004 TurbulenceOxford University PressOxfordGoogle Scholar
Deardorff, J. W.Willis, G. E.Lilly, D. K. 1969 Laboratory investigation of non-steady penetrative convectionJ. Fluid Mech. 35 7CrossRefGoogle Scholar
Dekeyser, I. 1982 Etude d'un jet plan dissymmetrique chauffé en regime turbulent incompressibleUniversité d’Aix-Marseille II, FranceGoogle Scholar
Dekeyser, ILaunder, B. E 1985 A comparison of triple-moment temperature-velocity correlations in the asymmetric heated jet with alternative closure modelsTurbulent Shear Flows 4Bradbury, L. J. S.102Springer VerlagHeidelbergCrossRefGoogle Scholar
Demuren, A. O.Rogers, M. M.Durbin, P.Lele, S. K. 1996 63
Dol, H. 1998 Turbulence models for natural convection in side-heated enclosuresDelft University of TechnologyDelft, The NetherlandsGoogle Scholar
Dol, H. S.Hanjalić, K. 2001 Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh numberInt. J. Heat Mass Transfer 44 2323CrossRefGoogle Scholar
Dol, H. S.Hanjalić, K.Kenjereš, S. 1997 A comparative assessment of the second-moment differential and algebraic models in turbulent natural convectionInt. J. Heat Fluid Flow 18 4CrossRefGoogle Scholar
Dol, H.Hanjalić, KVersteegh, T. A. M 1999 A DNS-based thermal second-moment closure for buoyant convection at vertical wallsJ Fluid Mech. 391 211CrossRefGoogle Scholar
Donaldson, C. du P 1971 A progress report on an attempt to construct an invariant model of turbulent shear flowsProc. AGARD Conf on Turbulent Shear FlowsLondonGoogle Scholar
Donaldson, C. du PSullivan, R. D.Rosenbaum, H. 1972 A theoretical study of the generation of atmospheric clear-air turbulenceAIAA J 10 162CrossRefGoogle Scholar
Durbin, P. A. 1991 Near-wall turbulence closure modelling without damping functionsTheor. Comput. Fluid Dyn. 3 1Google Scholar
Durbin, P. A. 1993 A Reynolds stress model for near-wall turbulenceJ. Fluid Mech. 249 465CrossRefGoogle Scholar
Durbin, P. A. 1995 Separated flow computations with the2AIAA J. 33 659CrossRefGoogle Scholar
Durbin, P. A. 1996 On the stagnation point anomalyInt. J. Heat Fluid Flow 17 89CrossRefGoogle Scholar
Eckelmann, H. 1970
Egorov, YMenter, F. R.Lechner, , RCokljat, D 2010 The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: application to complex flowsFlow, Turbulence Combust. 85 139CrossRefGoogle Scholar
El Baz, A. MCraft, T. JInce, N. ZLaunder, B. E 1993 On the adequacy of the thin-shear-flow equations for computing turbulent jets in stagnant surroundingsInt. J. Heat Fluid Flow 14 164CrossRefGoogle Scholar
El Baz, A. MLaunder, B. ENemouchi, Z 1989 On the prediction of memory effects in plane turbulent wakesProc. 7th Symposium on Turbulent Shear FlowsStanford University, Stanford, CAGoogle Scholar
Elena, L. 1994 Modelisation de la turbulence inhomogène en présence de rotationUniversité d’Aix-Marseille IIGoogle Scholar
Elena, L.Schiestel, R. 1996 Turbulence modelling of rotating confined flowsInt. J. Heat Fluid Flow 17 283CrossRefGoogle Scholar
Elghobashi, S.Launder, B. E. 1983 Turbulent time scales and the dissipation rate of temperature variance in the turbulent mixing layerPhys. Fluids 26 2415CrossRefGoogle Scholar
Eringen, A. C. 1962 Non-Linear Theory of Continuous MediaMcGraw HillNew YorkGoogle Scholar
Esch, TMenter, F. R 2003 Heat transfer predictions based on two-equation turbulence models with advanced wall treatmentTurbulence, Heat and Mass Transfer 4 Hanjalić, K.Nagano, Y.Tummers, M.633Google Scholar
Favre, A. 1965 Equations des gaz turbulents compressibles: Formes généralesJ. Méc 4 361Google Scholar
Fernholz, H. H.Warnack, D 1998 The effects of a favorable pressure gradient and of Reynolds number on an incompressible axisymmetric boundary layerJ. Fluid Mech. 359 329CrossRefGoogle Scholar
Forstall, W.Shapiro, A. H. 1950 Momentum and mass transfer in coaxial gas jetsASME J. Appl. Mech 17Google Scholar
Freymuth, P.Uberoi, M. S. 1973 Temperature fluctuations in a turbulent wake behind an optically heated spherePhys. Fluids 16 161CrossRefGoogle Scholar
Fu, S. 1988 Computational modelling of turbulent swirling flows with second-moment closuresUniversity of Manchester, Manchester, UKGoogle Scholar
Fu, S.Wang, C. 1997 Second-moment closure modelling of turbulence in a non-inertial frameFluid Dyn. Res. 20 43CrossRefGoogle Scholar
Fu, S.Launder, B. E.Leschziner, M. A. 1987 Modelling strongly swirling recirculating jet flows with Reynolds stress transport closuresProc. 6th Symp. on Turbulent Shear FlowsToulouse, FranceGoogle Scholar
Fu, S.Launder, B. E.Tselepidakis, D. P. 1987
Fu, S.Huang, P. G.Launder, B. E.Leschziner, M. A. 1988 A comparison of algebraic and differential second-moment closures for axisymmetric free shear flows with and without swirlJ. Fluids Eng. 110 216CrossRefGoogle Scholar
Gan, X.Kilic, M.Owen, J. M. 1995 Flow between contra-rotating discsJ. Turbomachinery 117 298CrossRefGoogle Scholar
Gant, S. E. 2002 Development and application of a new wall function for complex turbulent flowsPhD Thesis, Mech., Aerosp. & Manufacturing Eng. Dept.UMIST, ManchesterGoogle Scholar
Gardner, R. A.Lykoudis, P. S. 1971 Magneto-fluid-mechanic pipe flow in a transverse magnetic field. 1. Isothermal flowJ. Fluid Mech. 47 737CrossRefGoogle Scholar
Gatski, T. B.Bonnet, J-P.Compressibility, Turbulence and High-Speed FlowElsevier, Oxford 2009
Gatski, T. B.Rumsey, C. L. 2002 Linear and non-linear eddy viscosity modelsClosure Strategies for Turbulent and Transitional FlowsLaunder, B. E.Sandham, N. D.9Cambridge University Press, CambridgeCrossRefGoogle Scholar
Gatski, T. B.Speziale, C. 1993 On explicit algebraic stress models for complex turbulent flowsJ. Fluid Mech. 254 59CrossRefGoogle Scholar
Geers, L. F. G. 2004 Multiple-impinging jet arrays: an experimental study on flow and heat transferDelft University of TechnologyDelft, The NetherlandsGoogle Scholar
Gence, J. N.Mathieu, J. 1979 Application of successive plane strains to grid-generated turbulenceJ. Fluid Mech 93 501CrossRefGoogle Scholar
Gerasimov, A. V. 2003 Development and application of an analytical wall-function strategy for modelling forced, mixed and natural convection phenomenaUMIST, Manchester, UKGoogle Scholar
Gibson, M. M.Launder, B. E. 1976 On the calculation of horizontal, turbulent, free shear flows under gravitational influenceASME J. Heat Transfer 98C 379Google Scholar
Gibson, M. M.Launder, B. E. 1978 Ground effects on pressure fluctuations in the atmospheric boundary layerJ. Fluid Mech. 86 491CrossRefGoogle Scholar
Gibson, M. M.Rodi, W. 1981 A Reynolds stress closure model of turbulence applied to the calculation of a highly curved mixing layerJ. Fluid Mech. 101 161CrossRefGoogle Scholar
Gibson, M. M.Younis, B. A. 1986 The calculation of swirling jets with a Reynolds-stress closurePhys. Fluids 29 38CrossRefGoogle Scholar
Gibson, M. M.Jones, W. P.Kanellopoulos, V. E. 1987 Turbulent temperature mixing layer: measurement and modellingProc. 6 Symp. on Turbulent Shear FlowsToulouseFranceGoogle Scholar
Gilbert, N.Kleiser, L. 1991 Turbulence model testing with the aid of direct numerical simulation resultsProc. 8th Int. Symp. on Turbulent Shear FlowsMunichGermany
Girimaji, S. S. 1996 Fully explicit and self-consistent algebraic Reynolds stress modelTheor. Comput. Fluid Dyn. 8 387CrossRefGoogle Scholar
Girimaji, S. S. 2006 Partially-averaged Navier–Stokes model for turbulence: a Reynolds-averaged Navier–Stokes to direct numerical simulation bridging methodJ. Appl. Mech. 73 413CrossRefGoogle Scholar
Girimaji, S. S.Jeong, E.Srinivasan, R. 2006 Partially-averaged Navier–Stokes model for turbulence: fixed point analysis and comparison with unsteady partially-averaged Navier–StokesJ. Appl. Mech. 73 422CrossRefGoogle Scholar
Gleize, V.Schiestel, R.Couaillier, V. 1996 Multiple scale modelling of turbulent non-equilibrium boundary layersPhys. Fluids 8 2716CrossRefGoogle Scholar
Gorski, J. J.Bernard, P. S. 1996 Modeling of the turbulent enstrophy equationInt. J. Eng. Sci. 34 699CrossRefGoogle Scholar
Gosse, J.Schiestel, R. 1974 The prediction of turbulent forced convection with a new model5th Int. Heat Transfer ConfTokyoJapan
Greenspan, H. P. 1962 The Theory of Rotating FluidsCambridge University Press, CambridgeGoogle Scholar
Groth, J. 1991 Description of the pressure effects in the Reynolds stress transport equationsPhys. Fluids A3 2276CrossRefGoogle Scholar
Grundestam, O.Wallin, S.Johansson, A. V. 2005 An explicit algebraic Reynolds stress model based on a non-linear pressure strain rate modelInt. J. Heat Fluid Flow 26 232CrossRefGoogle Scholar
Ha Minh, HKourta, A 1993 Semi-deterministic turbulence modelling for flows dominated by strong orgaized structuresProc. 9th Symp. on Turbulent Shear FlowsKyotoJapanGoogle Scholar
Hadžić, I. 1999 Second-moment closure modelling of transitional and unsteady turbulent flowsDelft University of Technology, DelftThe NetherlandsGoogle Scholar
Hadzić, I.Hanjalić, K. 1999 Separation-induced transition to turbulence: second-moment closure modellingFlow, Turbulence Combust. 63 153CrossRefGoogle Scholar
Hadžić, I.Hanjalić, K.Laurence, D. 2001 Modeling the response of turbulence subjected to cyclic irrotational strainPhys. Fluids 13 1739CrossRefGoogle Scholar
Hall, W. B.Jackson, , J. D. 1969
Hallbäck, M.Groth, J.Johansson, A. V. 1990 An algebraic model for nonisotropic turbulent dissipation rate in Reynolds stress closuresPhys. Fluids A 2 1859Google Scholar
Hanjalić, K. 1970 Two-dimensional asymmetric turbulent flow in ductsImperial College, University of London, UKGoogle Scholar
Hanjalić, K. 1994 Advanced turbulence closure models: a view of current status and future prospectsInt. J. Heat Fluid Flow 15 178CrossRefGoogle Scholar
Hanjalić, K 1996 Some resolved and unresolved issues in modeling non-equilibrium and unsteady turbulent flowsEngineering Turbulence Modelling and Experiments – 3Rodi, W.Bergeles, G.3ElsevierAmsterdamCrossRefGoogle Scholar
Hanjalić, K. 1999 Second-moment turbulence closures for CFD: need and prospectsInt. J. CFD 12 67Google Scholar
Hanjalić, K. 2002 One-point closure models for buoyancy-driven turbulent flowsAnnu. Rev. Fluid Mech 34 21CrossRefGoogle Scholar
Hanjalić, K. 2004 Closure models for incompressible turbulent flowsIntroduction to the Modelling of Turbulence20042002Rhode St GenèseBelgiumGoogle Scholar
Hanjalić, K.Jakirlić, S. 1993 A model of stress dissipation in second-moment closuresAppl. Sci. Res. 51 513CrossRefGoogle Scholar
Hanjalić, K.Jakirlić, S. 1998 Contribution towards the second-moment closure modelling of separating turbulent flowsComputers Fluids 27 137CrossRefGoogle Scholar
Hanjalić, K.Jakirlić, S. 2002 Second-moment turbulence closure modellingClosure Strategies for Turbulent and Transitional FlowsLaunder, B. E.Sandham, N. D.47Cambridge University Press, CambridgeCrossRefGoogle Scholar
Hanjalić, K.Kenjereš, S. 2000 http://jot.iop.org/S1468
Hanjalić, K.Kenjereš, S. 2001 T-RANS simulation of deterministic eddy structure in flows driven by thermal buoyancy and Lorentz forceFlow, Turbulence Combust. 66 427CrossRefGoogle Scholar
Hanjalić, K.Kenjereš, S. 2002 Simulations of coherent eddy structures in buoyancy-driven flows with single point turbulence closure modelsin Closure Strategies for Turbulent and Transitional FlowsLaunder, B. ESandham, N. D659Cambridge University Press, CambridgeCrossRefGoogle Scholar
Hanjalić, K.Launder, B. E. 1972 Fully developed asymmetric flow in a plane channelJ. Fluid Mech. 51 301CrossRefGoogle Scholar
Hanjalić, K.Launder, B. E. 1972 A Reynolds stress model of turbulence and its application to thin shear flowsJ. Fluid Mech 52 609CrossRefGoogle Scholar
Hanjalić, K.Launder, B. E. 1976 Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulenceJ. Fluid Mech. 74 593CrossRefGoogle Scholar
Hanjalić, K.Launder, B. E. 1980 Sensitizing the dissipation equation to irrotational strainsASME J. Fluids Eng. 102 34CrossRefGoogle Scholar
Hanjalić, K.Musemić, R. 1997 Modelling the dynamics of double-diffusive scalar fields at various stability conditionsInt. J. Heat Fluid Flow 18 360CrossRefGoogle Scholar
Hanjalić, K.Stošić, N. 1985 Hysteresis of turbulent stresses in wall flows subjected to periodic disturbancesTurbulent Shear Flows 4Durst, F.287Springer VerlagBerlinCrossRefGoogle Scholar
Hanjalić, K.Vasić, 1993 Some further exploration of turbulence models for buoyancy driven flowsTurbulent Shear Flows 8Durst, F.319Springer VerlagHeidelbergCrossRefGoogle Scholar
Hanjalić, K.Jakirlić, S.Durst, F. 1994 A computational study of joint effects of transverse shear and streamwise acceleration on three-dimensional boundary layersInt. J. Heat Fluid Flow 15 269CrossRefGoogle Scholar
Hanjalić, K.Jakirlić, S.Hadžić, I. 1995 Computation of oscillating turbulent flows at transitional Re-numbersTurbulent Shear FlowsDurst, F323Springer-VerlagBerlinGoogle Scholar
Hanjalić, K.Jakirlić, S.Hadžić, I. 1997 Expanding the limits of ‘equilibrium’ second-moment turbulence closuresFluid Dyn. Res 20 25CrossRefGoogle Scholar
Hanjalić, K.Hadžić, I.Jakirlić, S. 1999 Modeling turbulent wall flows subjected to strong pressure variationsASME J. Fluids Eng 12 57CrossRefGoogle Scholar
Hanjalić, K.Launder, B. E.Schiestel, R. 1980 Multiple-time-scale concepts in turbulent transport modellingTurbulent Shear Flows 2Bradbury, L. J. S36Springer VerlagHeidelbergGoogle Scholar
Hanjalić, K.Popovac, M.Hadžiabdić, M. 2004 A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFDInt. J. Heat Fluid Flow 25 1047CrossRefGoogle Scholar
Hanjalić, K.Laurence, D.Popovac, M.Uribe, C. 2005 (2/ − ) turbulence model and its application to forced and natural convectionEngineering Turbulence Modelling and ExperimentsRodi, W.Mulas, M.67Elsevier, AmsterdamCrossRefGoogle Scholar
Harris, V. G.Graham, J. A.Corrsin, S. 1977 Further experiments on a nearly homogeneous turbulent shear flowJ. Fluid Mech 81 657CrossRefGoogle Scholar
Hino, M.Kashiwayanagi, M.Nakayama, A.Hara, T. 1983 Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flowJ. Fluid Mech 131 364CrossRefGoogle Scholar
Hinze, J. O. 1973 Experimental investigation on secondary currrents in turbulent flow through a straight conduitAppl. Sci. Res. 28 453CrossRefGoogle Scholar
Hinze, J. O. 1975 TurbulenceMcGraw HillNew YorkGoogle Scholar
Hogg, S.Leschziner, M. 1989 Computation of highly swirling confined flow with a Reynolds stress turbulence modelAIAA J. 27 57Google Scholar
Hossain, M. S.Rodi, W. 1982 A turbulence model for buoyant flows and its application to vertically buoyant jetsTurbulent Buoyant Jets and PlumesRodi, W.122Pergamon PressOxfordGoogle Scholar
Hoyas, S.Jimenez, J. 2006 Scaling of velocity fluctuations in turbulent channels up to Reτ = 2003Phys. Fluids 18 http://torroja.dmt.upm.es/ftp/channels/data/CrossRefGoogle Scholar
Hoyas, S.Jimenez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channelsPhys. Fluids 20 1511CrossRefGoogle Scholar
Huang, P. G. 1986 The computation of elliptic turbulent flows with second-moment-closure modelsUniversity of Manchester, Manchester, UKGoogle Scholar
Hussein, J. H.Capp, S.George, W. K. 1994 Velocity measurements in a high-Reynolds-number momentum-conserving axisymmetric turbulent jetJ. Fluid Mech. 258 31CrossRefGoogle Scholar
Iacovides, H.Launder, B. E. 1985 ASM predictions of turbulent momentum and heat transfer in coils and U-bendsNumerical Methods in Laminar and Turbulent FlowTaylor, C.1023Pineridge PressSwanseaGoogle Scholar
Iacovides, H.Raisee, M. 1997 Computation of flow and heat transfer in 2D rib-roughened passagesTurbulence, Heat and Mass Transfer 2-supplementHanjalić, K.Peeters, T.Delft University Press, DelftInt. J. Num. Meth. Heat Fluid Flow 11 138 2001Google Scholar
Iacovides, H.Raisee, M. 1999 Recent progress in the computation of flow and heat transfer in internal cooling passages of turbine bladesInt. J. Heat Fluid Flow 20 320CrossRefGoogle Scholar
Iacovides, H.Toumpankis, P. 1993 A turbulence modeling of flow in axisymmetric rotor-stator systemsProc. IAHR Int. Symp. on Refined Flow Modelling and Turbulence MeasurementsParis, FranceGoogle Scholar
Iacovides, H.Launder, B. E.Loizou, P. A. 1987 Numerical computation of flow through a 90° bendInt. J. Heat Fluid Flow 8 320CrossRefGoogle Scholar
Iacovides, H.Nikas, K. S.Te Braak, M. 1996 Turbulent flow computations in rotating cavities using Low-Reynolds-number modelsASME Int. Gas Turbine CongressBirmingham, UKGoogle Scholar
Iacovides, H.Launder, B. E.Zacharos, A. 2009 The economical computation of unsteady flow structures in rotating cavitiesProc. 6th Int. Symp. on Turbulence & Shear Flow Phenomena797
Ilyushin, B. B. 2002 Higher moment diffusion in stable stratificationClosure Strategies for Turbulent and Transitional FlowsLaunder, B. E.Sandham, N. D.424Cambridge University Press, CambridgeCrossRefGoogle Scholar
Ince, N. Z.Launder, B. E. 1989 On the computation of buoyancy-driven turbulent flows in rectangular enclosuresInt. J. Heat Fluid Flow 10 110CrossRefGoogle Scholar
Ince, N. Z.Launder, B. E. 1995 Three-dimensional and heat-loss effects on turbulent flow in a nominally two-dimensional cavityInt. J. Heat Fluid Flow 16 171CrossRefGoogle Scholar
Itoh, M.Yamada, YImao, S.Gonda, M. 1990 Proc. 1st Conference on Engineering Turbulence Modelling & MeasurementsRodi, W.Ganić, E. N.659Elsevier ScienceNew YorkGoogle Scholar
Jackson, J. D.Cotton, M. A.Axcell, B. P. 1989 Studies of mixed convection in vertical tubesInt. J. Heat Fluid Flow 10 2CrossRefGoogle Scholar
Jackson, J. D.He, S.Xu, Z.Wu, T. 2002
Jakirlić, S. 1997 Reynolds-Spannungs-Modellierung komplexer turbulenter StrömungenUniversität Erlangen-Nürnberg, GermanyHerbert Utz Verlag, MunichGoogle Scholar
Jakirlić, S. 2004 A DNS-based scrutiny of RANS approaches and their potential for predicting turbulent flowsHabilitation Thesis, Technishe Universität DarmstadtGermanyGoogle Scholar
Jakirlić, S.Hanjalić, K. 1995 A second-moment closure for non-equilibrium separating high and low Re-number flowsProc. 10th Symp. on Turbulent Shear FlowsPennsylvania State University, PA23.25Google Scholar
Jakirlić, S.Hanjalić, K. 2002 A new approach to modelling near-wall turbulence energy and stress dissipationJ. Fluid Mech. 459 139CrossRefGoogle Scholar
Jakirlić, S.Volkert, J.Pascal, H.Hanjalić, K.Tropea, C. 2000 DNS, experimental and modelling study of axially compressed in-cylinder swirling flowInt. J. Heat Fluid Flow 21 627CrossRefGoogle Scholar
Jakirlić, S.Hanjalić, K.Tropea, C. 2002 Modeling rotating and swirling flows: a perpetual challengeAIAA J. 40 1984CrossRefGoogle Scholar
Jayatilleke, C. L. V. 1969 The influence of Prandtl number and surface roughness on the resistence of the laminar sub-layer to momentum and heat transferProg. Heat Transfer 1 193Google Scholar
Ji, H. C.Gardner, R. A. 1997 Numerical analysis of turbulent pipe flow in a transverse magnetic fieldInt. J. Heat Mass Transfer 40 1839CrossRefGoogle Scholar
Johansson, A. V.Hällback, M. 1994 Modelling of rapid pressure strain in Reynolds stress closuresJ. Fluid Mech. 269 143CrossRefGoogle Scholar
Johnston, J. P.Halleen, R. M.Lezius, D. K. 1972 Effects of spanwise rotation on the structure of two-dimensional, fully-developed channel flowJ. Fluid Mech. 56 533CrossRefGoogle Scholar
Jones, W. P. 1971 Laminarization in strongly accelerated boundary layersPhD Thesis, Faculty of EngineeringUniversity of LondonGoogle Scholar
Jones, W. PLaunder, B. E 1972 The prediction of laminarization with a two-equation model of turbulenceInt. J. Heat Mass Transfer 15 301CrossRefGoogle Scholar
Jones, W. P.Launder, B. E. 1972 Some properties of sink flow turbulent boundary layersJ. Fluid Mech. 56 337CrossRefGoogle Scholar
Jones, W. P.Manners, A. 1989 The calculation of the flow through a two-dimensional faired diffuserTurbulent Shear Flows 6André, J. C.18Springer VerlagHeidelbergCrossRefGoogle Scholar
Jones, W. P.Musonge, P. 1988 Closure of the Reynolds stress and scalar flux equationPhys. Fluids 31 3589CrossRefGoogle Scholar
Jovanović, J. 2004 The Statistical Dynamics of TurbulenceSpringerCrossRefGoogle Scholar
Jovanović, J.Ye, Q. Y.Durst, F. 1995 Statistical interpretation of the turbulent dissipation rate in wall-bounded flowsJ. Fluid Mech. 293 321CrossRefGoogle Scholar
Jović, S.Driver, D. M. 1994 H
Kader, B. A 1981 Temperature and concentration profiles in fully turbulent boundary layersInt. J. Heat Mass Transfer 24 1541CrossRefGoogle Scholar
Kasagi, N.Matsunaga, A. 1995 Three-dimensional particle-tracking velocimetry of turbulence statistics and energy budget in a backward-facing step flowInt. J. Heat Fluid Flow 16 477CrossRefGoogle Scholar
Kato, M.Launder, B. E. 1993 The modelling of turbulent flow around stationary and vibrating square cylindersProc. 9th Symp. on Turbulent Shear FlowsKyoto, JapanGoogle Scholar
Kawamura, H.Sasaki, J.Kobayashi, K. 1995 Budget and modelling of triple-moment velocity correlations in a turbulent channel flow based on DNSProc. 10th Symp. on Turbulent Shear FlowsPennsylvania State University, PAGoogle Scholar
Kays, W. M.Moffat, R. J. 1975 The behaviour of transpired turbulent boundary layersStudies in Convection 1Launder, B. E.223Academic PressLondonGoogle Scholar
Kays, W. M.Crawford, M. E.Weigand, G. 2004 Convective Heat and Mass TransferMcGraw HillNew YorkGoogle Scholar
Kebede, W.Launder, B. E.Younis, B. A. 1985 Large-amplitude periodic pipe flow: a second-moment closure study16.23Proc. 5th Symp. on Turbulent Shear FlowsCornell University, Ithaca, NYGoogle Scholar
Kenjereš, S. 1999 Numerical modelling of complex buoyancy-driven flowsPhD ThesisDelft University of Technology, DelftGoogle Scholar
Kenjereš, S.Hanjalić, K. 1996 Prediction of turbulent thermal convection in concentric and eccentric horizontal annuliInt. J. Heat Fluid Flow 15 430Google Scholar
Kenjereš, K.Hanjalić, K. 1999 Transient analysis of Rayleigh–Bénard convection with a RANS modelInt. J. Heat Fluid Flow 20 329CrossRefGoogle Scholar
Kenjereš, S.Hanjalić, K. 2000 Convective rolls and heat transfer in finite-length Rayleigh–Bénard convection: a two-dimensional numerical studyPhys. Rev. E 62 1CrossRefGoogle ScholarPubMed
Kenjereš, S.Hanjalić, K. 2000 On the implementation of effects of Lorentz force in turbulence closure modelsInt. J. Heat Fluid Flow 21 329CrossRefGoogle Scholar
Kenjereš, S.Hanjalić, K. 2002 Simulation of coherent eddy structures in buoyantly driven flowsClosure Strategies for Turbulent and Transitional flowsLaunder, B. E.Sandham, N. D.659Cambridge University Press, CambridgeGoogle Scholar
Kenjereš, K.Hanjalić, K. 2002 Combined effects of terrain orography and thermal stratification on pollutant dispersion in a town valley: a T-RANS simulationJ. Turbulence 3 1http://jot.iop.org/CrossRefGoogle Scholar
Kenjereš, S.Hanjalić, K. 2004 Numerical simulation of magnetic control of heat transfer in thermal convectionInt. J. Heat Fluid Flow 25 559CrossRefGoogle Scholar
Kenjereš, K.Hanjalić, K. 2006 LES, T-RANS and hybrid simulations of thermal convection at high Ra numbersInt. J. Heat Fluid Flow 27 800CrossRefGoogle Scholar
Kenjereš, S.Hanjalić, K. 2007 Numerical insight into magnetic dynamo action in a turbulent regimeNew J. Phys. 9 1CrossRefGoogle Scholar
Kenjereš, K.Hanjalić, K. 2009 Tackling complex turbulent flows with transient RANSFluid Dyn. Res. 41 1CrossRefGoogle Scholar
Kenjereš, S.Gunarjo, S. B.Hanjalić, K. 2005 Contribution to elliptic relaxation modelling of turbulent natural and mixed convectionInt. J. Heat Fluid Flow 26 569CrossRefGoogle Scholar
Kenjereš, K.Hanjalić, K.Gunarjo, S. B. 2002 Proc. ASME FEDSM’02Montreal, CanadaGoogle Scholar
Kenjereš, S.Hanjalić, K.Bal, D. 2004 A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flowsPhys. Fluids 16 1229CrossRefGoogle Scholar
Kenjereš, S.Hanjalić, K.Renaudier, S. 2006 Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experimentPhys. Plasma 13 1CrossRefGoogle Scholar
Kidger, J. W. 1999 Turbulence modelling for stably stratified flows and free-surface jetsAeronautical & Manufacturing EngineeringUMIST, Manchester, UKGoogle Scholar
Kim, J. 1989
Kim, J.Moin, P.Moser, R. D. 1987 Turbulence statistics in fully-developed channel flow at low Reynolds numberJ. Fluid Mech 177 133CrossRefGoogle Scholar
Kim, K. R.Cotton, M. A.Craft, T. J.Heynes, O. R. 2008 On the dynamics and frequency response of fully-pulsed turbulent round jets: computations using two-time-scale/strain sensitized eddy viscosity modelsInt. J. Heat Fluid Flow 29 1650CrossRefGoogle Scholar
Kitoh, O. 1991 Experimental study of turbulent swirling flow in a straight pipeJ. Fluid. Mech 225 445CrossRefGoogle Scholar
Kline, S. J.Reynolds, W. C.Schraub, F. A.Runstadler, P. W. 1967 The structure of turbulent boundary layersJ. Fluid Mech. 30 741CrossRefGoogle Scholar
Kline, S. J.Morkovin, M. V.Sovran, G.Cockrell, D. J. 1969 Proc. Computation of Turbulent Boundary Layers, AFOSR-IFP-Stanford ConferenceStanford University, Stanford, CAGoogle Scholar
Kline, S. J.Cantwell, B. J.Lilley, G. M. 1981 Proc. AFOSR-HTTM-Stanford Conf. on Complex Turbulent Flows: Comparison of computations and experimentsThermosciences Division, Stanford UniversityStanford, CAGoogle Scholar
Kline, S. J.Cantwell, B. J.Lilley, G. M. 1982 Proc. AFOSR-HTTM-Stanford Conf. on Complex Turbulent Flows: Comparison of computations and experimentsThermosciences Division, Stanford UniversityStanford, CAGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbersDokl. Akad. Nauk SSSR 30 299Google Scholar
Kolmogorov, A. N. 1942 Equations of motion of an incompressible fluidDokl. Akad. Nauk SSSR 30 299Google Scholar
Kolovandin, B. A.Vatutin, I. A. 1972 On the statistical theory of non-uniform turbulenceInt. J. Heat Mass Transfer 15 2371CrossRefGoogle Scholar
Kovasznay, L. S. G.Ali, S. F 1974 Structure of turbulence in the wake of a heated flat plateProc. 5th Int. Heat Transfer ConfTokyo99Google Scholar
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl numberPhys. Fluids 5 1374CrossRefGoogle Scholar
Kristoffersen, R.Andersson, H. 1993 Direct simulations of low-Reynolds-number turbulent flow in a rotating channelJ. Fluid Mech. 256 163CrossRefGoogle Scholar
Lai, Y. G.So, R. M. C. 1990 On near-wall turbulent flow modellingJ. Fluid Mech. 221 641CrossRefGoogle Scholar
Lam, C. K. G.Bremhorst, K. A. 1981 Modified form of the model for predicting wall turbulenceJ. Fluids Eng. 103 456CrossRefGoogle Scholar
Lamballais, O.Métais, O.Lesieur, M. 1998 Spectral dynamic model for large-eddy simulations of turbulent rotating channel flowTheor. Comput. Fluid Dyn. 12 149CrossRefGoogle Scholar
Launder, B. E. 1964 Laminarization of the turbulent boundary layer in a severe accelerationASME J. Appl. Mech 31 707CrossRefGoogle Scholar
Launder, B. E. 1964 Laminarization of the turbulent boundary layer by accelerationMassachusetts Institute of TechnologyCambridge, MAGoogle Scholar
Launder, B. E. 1973
Launder, B. E. 1975 On the effects of a gravitational field on the turbulent transport of heat and momentumJ. Fluid Mech. 67 569CrossRefGoogle Scholar
Launder, B. E. 1975 Progress in the modelling of turbulent transportPrediction Methods for Turbulent Flow, Lecture Series 76Von Karman InstituteSt Genèse, BelgiumGoogle Scholar
Launder, B. E. 1976 Heat and mass transportTopics in Applied Physics: TurbulenceBradshaw, P.Springer VerlagBerlinGoogle Scholar
Launder, B. E. 1982 A generalized algebraic stress transport hypothesisAIAA J. 20 436CrossRefGoogle Scholar
Launder, B. E. 1986
Launder, B. E. 1988 On the computation of convective heat transfer in complex turbulent flowsASME J. Heat Trans 110 1112Google Scholar
Launder, B. E. 1989 Second-moment closure: present…and future?Int. J. Heat Fluid Flow 10 282CrossRefGoogle Scholar
Launder, B. E. 1993 An introduction to single-point closure methodologyLes Houches Summer School−59 on Computational Fluid DynamicsLesieur, M.Comte, P.Zinn-Justin, J.257Elsevier ScienceOxfordGoogle Scholar
Launder, B. E. 1996 An introduction to single-point closure methodologyLes Houches, Session LIX,1993, Mécanique des Fluides Numérique/Computational Fluid MechanicsLesieur, M.Comte, P.Zinn-Justin, J.Elsevier ScienceAmsterdamGoogle Scholar
Launder, B. E. 2005 RANS modelling of turbulent flows affected by buoyancy or stratificationPrediction of Turbulent FlowsHewitt, G. F.Vassilicos, J. C.50Cambridge University Press, CambridgeCrossRefGoogle Scholar
Launder, B. E.Jones, W. P. 1969 Sink flow turbulent boundary layersJ. Fluid Mech. 38 817CrossRefGoogle Scholar
Launder, B. E.Li, S-P. 1994 On the elimination of wall-topography parameters from second-moment closurePhys. Fluids 6 999CrossRefGoogle Scholar
Launder, B. E.Morse, A. P. 1979 Numerical prediction of axisymmetric free shear flows with a Reynolds stress closureTurbulent Shear Flows 1Durst, F.279Springer VerlagHeidelbergCrossRefGoogle Scholar
Launder, B. E.Reynolds, W. C. 1983 Asymptotic near-wall stress dissipation rates in a turbulent flowPhys. Fluids 26 1157CrossRefGoogle Scholar
Launder, B. E.Samaraweera, D. S. A. 1979 Application of a second-moment turbulence closure to heat and mass transport in thin shear flows – 1. Two-dimensional transportInt. J. Heat Mass Transfer 22 1631CrossRefGoogle Scholar
Launder, B.Sandham, N. 2002 Closure Strategies for Turbulent and Transitional FlowsCambridge University Press, CambridgeCrossRefGoogle Scholar
Launder, B. E.Sharma, B. I. 1974 Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning discLett. in Heat Mass Transfer 1 131CrossRefGoogle Scholar
Launder, B. E.Shima, N. 1989 Second-moment closure for the near-wall sublayer: development and applicationAIAA J 27 1319CrossRefGoogle Scholar
Launder, B. E.Spalding, D. B. 1972 Mathematical Models of TurbulenceAcademic PressLondonGoogle Scholar
Launder, B. E.Spalding, D. B. 1974 The numerical computation of turbulent flowsComput. Meth. Appl. Mech. Eng. 3 269CrossRefGoogle Scholar
Launder, B. E.Tselepidakis, D. P. 1993 Contribution to the modelling of near-wall turbulenceTurbulent Shear Flows 8Durst, F81SpringerBerlinCrossRefGoogle Scholar
Launder, B. E.Tselepidakis, D. P. 1994 Application of a new second-moment closure to turbulent channel flow rotating in orthogonal modeInt. J. Heat Fluid Flow 15 2CrossRefGoogle Scholar
Launder, B. E.Morse, A.Rodi, W.Spalding, D. B. 1973 Prediction of free shear flows: a comparison of the performance of six turbulence modelsFree Turbulent Shear Flows321Langley Research CenterHampton, VAGoogle Scholar
Launder, B. E.Poncet, S.Serre, E. 2010 Laminar, transitional and turbulent flow in rotating disk cavitiesAnnu. Rev. Fluid Mech 42 229CrossRefGoogle Scholar
Launder, B. EPriddin, C. HSharma, B. I 1977 J. Fluids Eng 99 231CrossRef
Launder, B. E.Reece, G. J.Rodi, W. 1975 Progress in the development of a Reynolds stress turbulence closureJ. Fluid Mech. 68 537CrossRefGoogle Scholar
Launder, B. E.Tselepidakis, D. P.Younis, B. A. 1987 A second-moment study of rotating channel flowJ. Fluid Mech. 183 63CrossRefGoogle Scholar
Laurence, D. R.Uribe, J. C.Utyuzhnikov, S. V. 2004 A robust formulation of the 2 − modelFlow, Turbulence Combust. 73 169CrossRefGoogle Scholar
Le, H.Moin, P.Kim, J. 1997 Direct numerical simulation of flow over a backward-facing stepJ. Fluid Mech. 330 349CrossRefGoogle Scholar
Lee, D. H. 1984
Lee, D.Chou, H. 2001 Magnetohydrodynamic turbulent flow in a channel at low magnetic Reynolds numberJ. Fluid Mech. 439 367CrossRefGoogle Scholar
Lee, M. J.Reynolds, W. C. 1985
Lee, M. J.Kim, J.Moin, P. 1990 Structure of turbulence at high shear rateJ. Fluid Mech. 216 561CrossRefGoogle Scholar
Lenshaw, D. HWyngaard, J. C.Pennell, W. T. 1980 Mean-field and second-moment budgets in a baroclinic, convective boundary layerJ. Atmos. Sci. 37 13132.0.CO;2>CrossRefGoogle Scholar
Leschziner, M. A.Lien, F-S. 2002 Numerical aspects of applying second-moment closures to complex flowsClosure Strategies for Turbulent and Transitional FlowsLaunder, B. E.Sandham, N. D.153Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Leschziner, M. A.Rodi, W. 1981 Calculation of annular and twin parallel jets using various discretization schemes and turbulence model variationsASME J. Fluids Eng. 103 352CrossRefGoogle Scholar
Leslie, D. C. 1973 Developments in the Theory of TurbulenceClarendon PressOxfordGoogle Scholar
Levchenya, A. M.Smirnov, E. M.Goryachev, V. D. 2010 RANS-based numerical simulation and visualization of the horseshoe vortex system in the leading-edge endwall region of a symmetric bodyInt. J. Heat Fluid Flow 31 1107CrossRefGoogle Scholar
Li, S.-P. 1992 Predicting riblet performance with engineering turbulence modelsPhD ThesisFaculty of Technology, University of ManchesterGoogle Scholar
Liakopoulos, A 1984 Explicit representations of the complete velocity profile in a turbulent boundary layerAIAA J 22 844CrossRefGoogle Scholar
Libby, P. A. 1975 Prediction of intermittent turbulent flowsJ. Fluid Mech 68 273CrossRefGoogle Scholar
Lien, F-SKalitzin, G 2001 Computations of transonic flow with the 2 − turbulence modelInt. J. Heat Fluid Flow 22 53CrossRefGoogle Scholar
Lien, F. S.Kalitzin, G.Durbin, P. A. 1998 RANS modelling for compressible and transitional flowsCTR Proc. Summer ProgramStanford, CA267Google Scholar
Lin, A.Wolfshtein, M. 1979 Theoretical study of the Reynolds stress equationsTurbulent Shear Flows 1Durst, F. J.327Springer VerlagHeidelbergCrossRefGoogle Scholar
Lin, S. C.Lin, S. C. 1973 Study of strong temperature mixing in subsonic grid-generated turbulencePhys. Fluids 16 1587CrossRefGoogle Scholar
Lumley, J. L. 1967 Similarity and the turbulent energy spectrumPhys. Fluids 10 855CrossRefGoogle Scholar
Lumley, J. L. 1975 IntroductionPrediction Methods for Turbulent Flow, Lecture Series 76Karman Institute for Fluid DynamicsRhode-St-Genèse, BelgiumGoogle Scholar
Lumley, J. L. 1975 Pressure-strain correlationPhys. Fluids 18 750CrossRefGoogle Scholar
Lumley, J. L. 1978 Computational modeling of turbulent flowsAdv. Appl. Mech 18 123CrossRefGoogle Scholar
Lumley, J. L.Khajeh-Nouri, B. 1973
Lumley, J. L.Khajeh Nouri, B. 1974 Computational modeling of turbulent transportProc. 2nd IUGG-IUTAM Symp. on Atmos. Diffusion & Env. PollutionAcademic PressLondonGoogle Scholar
Lumley, J. L.Newman, G. R. 1977 The return to isotropy of homogeneous turbulenceJ. Fluid Mech 82 162CrossRefGoogle Scholar
Lykoudis, P. S.Brouillette, E. C. 1967 Magneto-fluid-mechanic channel flow. II. TheoryPhys. Fluids 10 1002CrossRefGoogle Scholar
Magnaudet, J. 1992 The modelling of inhomogeneous turbulence in the absence of mean velocity gradients4th Eur. Turbulence ConfDelft, The NetherlandsGoogle Scholar
Malecki, P. 1994 Etude de modèles de turbulence pour les couches limites tridimensionellesONERA-CERTToulouseGoogle Scholar
Manceau, R. 2005 An improved version of the elliptic blending model application to non-rotating and rotating channel flowsProc. 4th Int. Symp. on Turbulence & Shear Flow PhenomenaWilliamsburg, VA, USAHumphrey, J. A. C.259Google Scholar
Manceau, R.Hanjalić, K. 2000 A new form of the elliptic relaxation equation to account for wall effects in RANS modellingPhys. Fluids 12 2345CrossRefGoogle Scholar
Manceau, R.Hanjalić, K. 2002 The elliptic blending model: a new near-wall Reynolds-stress closurePhys. Fluids 14 744CrossRefGoogle Scholar
Manceau, R.Laurence, D. 2001 Inhomogeneity and anisotropy effects on the redistribution term in RANS modellingJ. Fluid Mech. 438 307CrossRefGoogle Scholar
Mansour, N. N.Kim, J.Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flowJ. Fluid Mech. 194 15CrossRefGoogle Scholar
Mathieu, J.Jeandel, D. 1984 Turbulence Models and their ApplicationsEyrollesParisGoogle Scholar
McGuirk, J. J.Papadimitriou, C. 1988 Stably stratified free-surface shear layers with internal hydraulic jumpsStably Stratified Flows and Dense Gas DispersionPuttock, J. S.385Oxford University PressOxford
Medić, G. D.Durbin, P. 2002 Towards improved heat transfer on turbine bladesJ. Turbomachinery 124 187CrossRefGoogle Scholar
Mellor, G. L. 1973 Analytical prediction of the properties of stratified planetary surface layersJ. Atmos. Sci. 30 10612.0.CO;2>CrossRefGoogle Scholar
Mellor, G. L.Herring, H. J. 1973 A survey of the mean turbulent field closure modelsAIAA J. 11 590CrossRefGoogle Scholar
Mellor, G.Yamada, T. 1974 A hierarchy of turbulence closure models for planetary boundary layersJ. Atmos. Sci. 31 17912.0.CO;2>CrossRefGoogle Scholar
Menter, F. R. 1994 Two-equation eddy-viscosity turbulence models for engineering applicationsAIAA J. 32 1598CrossRefGoogle Scholar
Menter, F. R. 2003 1993
Menter, F.Egorov, Y. 2010 Scale-adaptive simulation method for unsteady turbulent flows predictions, Pt 1: Theory and model descriptionFlow, Turbulence Combust 85 113CrossRefGoogle Scholar
Menter, F. R.Langtry, R.Kuntz, M. 2003 Ten years of industrial experience with the SST turbulence modelTurbulence Heat and Mass Transfer 4Hanjalić, KNagano, YTummers, M625Begell HouseNew YorkGoogle Scholar
Millionshtchikov, M. D. 1941 On the theory of homogeneous isotropic turbulenceC. R. Acad. Sci. SSSR 32 615Google Scholar
Moin, P.Kim, J. 1982 Numerical investigation of turbulent channel flowJ. Fluid Mech 118 341CrossRefGoogle Scholar
Monin, A. S. 1965 On the symmetry of turbulence in the surface layer of airIzv. Atm. Oceanic Phys. 1 45Google Scholar
Monin, A. S.Yaglom, A. M. 1975 Statistical Fluid Mechanics,MIT PressCambridge, MAGoogle Scholar
Moreau, R. 1990 MagnetohydrodynamicsKluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
Moretti, P. M.Kays, W. M. 1965 Heat transfer to a turbulent boundary layer with varying surface temperature – an experimental studyInt. J. Heat Mass Transfer 8 1187CrossRefGoogle Scholar
Morse, A. P. 1980 Axisymmetric free shear flows with and without swirlUniversity of LondonGoogle Scholar
Moser, D.Kim, J.Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re = 590Phys. Fluids 11 943CrossRefGoogle Scholar
Musker, A. J 1979 Explicit expression for the smooth wall velocity distribution in a turbulent boundary layerAIAA J 17 655CrossRefGoogle Scholar
Myong, H. KKasagi, N. 1990 Prediction of anisotropy of the near wall turbulence with an anisotropic low-Reynolds-number model of turbulenceJ. Fluids Eng. 112 521CrossRefGoogle Scholar
Nagano, Y. 2002 Modelling heat transfer in near-wall flowsClosure Strategies for Turbulent and Transitional FlowsLaunder, B. E.188Cambridge University PressCambridgeCrossRefGoogle Scholar
Nagano, Y.Tagawa, M 1991 Turbulence model for triple velocity and scalar correlationsTurbulent Shear Flows 7Durst, F47SpringerBerlinCrossRefGoogle Scholar
Nagano, YTagawa, MTsuji, T 1993 Effects of adverse pressure gradients on mean flows and turbulence statistics in a boundary layerTurbulent Shear Flows 8Durst, F7SpringerBerlinCrossRefGoogle Scholar
Nagano, YTsuji, THoura, T 1993 Int. J. Heat Fluid Flow 19 563CrossRef
Naot, D. 1994 Response of shear flow turbulence to diffusional electromagnetic fluctuations: transverse magnetAppl. Math. Modelling 18 23CrossRefGoogle Scholar
Naot, D.Rodi, W. 1982 Calculation of secondary currents in channel flowJ. Hydraulics 108 948Google Scholar
Naot, D.Rodi, W. 1982 Numerical simulation of secondary currents in channel flowTrans. ASCE J. Hydr. Div. 108 948Google Scholar
Naot, D.Shavit, A.Wolfshtein, M. 1970 Interactions between components of the turbulent correlation tensorIsr. J. Technol. 8 259Google Scholar
Naot, D.Shavit, A.Wolfshtein, M. 1973 Two-point correlation model and the redistribution of Reynolds stressPhys. Fluids 16 738CrossRefGoogle Scholar
Naot, D.Peled, A.Tanny, J. 1990 Response of shear flow turbulence to diffusional electromagnetic fluctuationsAppl. Math. Modelling 14 226CrossRefGoogle Scholar
Nee, V. W.Kovasznay, L. S. G. 1969 Simple phenomenological theory of turbulent shear flowsPhys. Fluids 12 473CrossRefGoogle Scholar
Nejad, A. S.Favaloro, S. C.Vanka, S. P.Samimy, M.Langenfeld, C. 1989 Application of laser velocimetry for characteristics of confined swirling flowsASME J. Eng. Gas Turbines Power 111 36CrossRefGoogle Scholar
Newman, B. G.Patel, R. P.Savage, S. B.Tjio, H. K. 1972 Three-dimensional wall jet originating from a circular orificeAero. Q. 23 693Google Scholar
Newman, G. R.Launder, B. E.Lumley, J. L. 1981 Modelling the behaviour of homogeneous scalar turbulenceJ. Fluid Mech. 111 217CrossRefGoogle Scholar
Ng, K. H.Spalding, D. B. 1972 Turbulence model for boundary layers near wallsPhys. Fluids 15 20CrossRefGoogle Scholar
Ng, E. Y. K.Choi, D. 2002 Near-wall function for turbulence closure modelsComput. Mech. 29 178CrossRefGoogle Scholar
Nishibori, K.Kikuyama, K.Murakami, M. 1987 Laminarization of turbulent flow in the inlet region of an axially rotating pipeJSME Int. J. 30 255CrossRefGoogle Scholar
Nisizimi, S.Yoshizawa, A. 1987 Turbulent channel and Couette flows using an anisotropic modelAIAA J. 25 414CrossRefGoogle Scholar
Noguchi, H.Ohtsubo, Y.Kasagi, N. 1998
Orlandi, P.Fatica, M. 1997 Direct simulations of turbulent flow in a pipe rotating about its axisJ. Fluid Mech. 343 43CrossRefGoogle Scholar
Page, F.Corcoran, W. H.Schlinger, W. G.Sage, B. H. 1952 Temperature and velocity distributions in uniform flow between parallel platesInd. Eng'g. Chem. 44 419CrossRefGoogle Scholar
Panchapakesan, N. R.Lumley, J. L. 1993 Turbulence measurements in axisymmetric jets of air and helium; Part 1: Air jetsJ. Fluid Mech 246 197CrossRefGoogle Scholar
Patankar, S. V.Spalding, D. B. 1967 Heat and Mass Transfer in Boundary LayersMorgan-Grampian PressLondonGoogle Scholar
Patankar, S. V.Spalding, D. B. 1970 Heat and Mass Transfer in Boundary LayersInternational Textbook CoLondonGoogle Scholar
Patel, V. C.Head, M. R. 1969 Some observations on skin friction and velocity profiles in fully-developed pipe and channel flowsJ. Fluid Mech. 38 161CrossRefGoogle Scholar
Patel, V. C.Rodi, W.Scheuerer, G. 1985 Turbulence models for near-wall and low Reynolds number flowsAIAA J. 23 1308CrossRefGoogle Scholar
Perkins, K. R.McEligot, D. M. 1975 Mean temperature profiles in heated laminarizing air flowsASME J. Heat Transfer 97 589CrossRefGoogle Scholar
Perot, B.Moin, P. 1995 Shear-free turbulent boundary layersJ. Fluid Mech. 295 199CrossRefGoogle Scholar
Pettersson Reif, B. A 2006 Towards a nonlinear eddy-viscosity model based on elliptic relaxationFlow, Turbulence Combust. 76 241CrossRefGoogle Scholar
Piquet, J. 1999 Turbulent FlowsSpringerBerlinCrossRefGoogle Scholar
Pope, S. B. 1975 A more general effective viscosity hypothesisJ. Fluid Mech. 72 331CrossRefGoogle Scholar
Pope, S. B. 1978 An explanation of the round-jet/plane-jet anomalyAIAA J 16 279CrossRefGoogle Scholar
Pope, S. B. 1983 Consistent modelling of scalars in turbulent flowsPhys. Fluids 26 404CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent FlowsCambridge University PressCambridgeCrossRefGoogle Scholar
Popovac, M. 2006 Modelling and simulation of turbulence and heat transfer in wall-bounded flowsDelft University of TechnologyThe NetherlandsGoogle Scholar
Popovac, M.Hanjalić, K. 2005 Compound wall treatment for RANS computations of complex turbulent flows and heat transferBathe, K.702Flow, Turbulence Combust. 78 177 2007Google Scholar
Praisner, T. J.Smith, C. R. 2006 The dynamics of the horseshoe vortex and the associated end-wall heat transfer – 1. Temporal behaviourJ. Turbomachinery 128 747CrossRefGoogle Scholar
Praisner, T. J.Smith, C. R. 2006 The dynamics of the horseshoe vortex and the associated end-wall heat transfer – 2. Time-mean resultsJ. Turbomachinery 128 755CrossRefGoogle Scholar
Prud'homme, M.Elghobashi, S. 1986 Turbulent heat transfer near the reattachment point of flow downstream from a sudden pipe expansionNum. Heat Trans. 10 349Google Scholar
Reeuwijk, van, M.Jonker, H. J. JHanjalić, K. 2005 Identification of the wind in Rayleigh–Bénard convectionPhys. Fluids 17 1Google Scholar
Reeuwijk, van, M.Jonker, H. J. JHanjalić, K. 2008 Wind and boundary layers in Rayleigh–Bénard convection. Pt. I. Analysis and modelingPhys. Rev. E 77Google ScholarPubMed
Reichardt, H. 1951 Vollstaendige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten LeitungenZAMM 31 208CrossRefGoogle Scholar
Reynolds, O. 1895 On the dynamical theory of incompressible viscous fluids and the determination of the criterionPhilos. Trans. R. Soc. London 186 123CrossRefGoogle Scholar
Reynolds, W. C. 1984 Physical and analytical foundations, concepts and new directions in turbulence modelling and simulationTurbulence Models and their Applications149Collection de la Direction des Études et Recherches d’Éléctricité de France, EyrollesParisGoogle Scholar
Reynolds, W. C.Hussain, A. K. M. F. 1972 The mechanics of an organised wave in turbulent shear flow. Part 3: Theoretical models and comparisons with experimentsJ. Fluid Mech. 54 263CrossRefGoogle Scholar
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graphProc. R. Soc. London A110 709CrossRefGoogle Scholar
Ristorcelli, J. R.Lumley, J. L.Abid, R. 1995 A rapid pressure covariance representation consistent with the Taylor–Proudman theorem, materially frame indifferent in the two-component limitJ. Fluid Mech. 292 111CrossRefGoogle Scholar
Rodi, W. 1972 The prediction of free turbulent boundary layers by use of a two-equation model of turbulenceUniversity of LondonGoogle Scholar
Rodi, W. 1975 A review of experimental data of uniform-density, free turbulent boundary layersStudies in ConvectionLaunder, B. E79Academic PressLondonGoogle Scholar
Rodi, W. 1976 A new algebraic stress relation for calculating Reynolds stressesZAMM 56 T219Google Scholar
Rodi, W.Scheuerer, G. 1983 Calculation of curved shear layer with 2-equation turbulence modelsPhys. Fluids 26 1422CrossRefGoogle Scholar
Rodi, W.Scheuerer, G. 1986 Scrutinizing the model under adverse pressure gradient conditionsJ. Fluids Eng. 108 174CrossRefGoogle Scholar
Rodi, W.Spalding, D. B. 1970 A two-parameter model of turbulence and its application to free jetsWärme Stoffübertragung 3 85CrossRefGoogle Scholar
Rogers, M. M.Mansour, N. N.Reynolds, W. C. 1989 An algebraic model for the turbulent flux of a passive scalarJ. Fluid Mech 203 77CrossRefGoogle Scholar
Rotta, J. C. 1951 Statistische Theorie nichthomogener TurbulenzZ. Phys 129 547CrossRefGoogle Scholar
Rotta, J. 1968 Über eine Methode zur Berechnung turbulenter ScherströmungenGöttingenA 14Google Scholar
Rubel, A. 1985 On the vortex-stretching modification of the turbulence model: radial jetsAIAA J 23 1129CrossRefGoogle Scholar
Rubinstein, R.Barton, J. M. 1990 Nonlinear Reynolds stress models and the renormalization groupPhys. Fluids A2 1472CrossRefGoogle Scholar
Saddoughi, S. G.Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds numbersJ. Fluid Mech. 268 333CrossRefGoogle Scholar
Saffman, P. G. 1970 A model for inhomogeneous turbulent flowProc. R. Soc. London A317 417CrossRefGoogle Scholar
Samuel, A. E.Joubert, P. N. 1974 Boundary layer developing in an increasingly adverse pressure gradientJ. Fluid Mech. 66 481CrossRefGoogle Scholar
Savill, A. M. 2002 By-pass transition using conventional closuresClosure Strategies for Turbulent and Transitional FlowsLaunder, B. E.Sandham, N. D464Cambridge University Press, CambridgeCrossRefGoogle Scholar
Savill, A. M 2002 New strategies in modelling by-pass transitionClosure Strategies for Turbulent and Transitional FlowsLaunder, B. ESandham, N. D493Cambridge University Press, CambridgeCrossRefGoogle Scholar
Scheuerer, G. 1983
Schiestel, R. 1974 Sur un nouveau modèle de turbulence appliqué aux transferts de quantité de mouvement et de chaleurUniversité de Nancy-1, FranceGoogle Scholar
Schiestel, R. 1987 Multiple-time-scale modeling of turbulent flows in one-point closuresPhys. Fluids 30 722CrossRefGoogle Scholar
Schiestel, R. 2008 Modeling and Simulation of Turbulent FlowsISTE-John WileyLondonCrossRefGoogle Scholar
Schiestel, R.Dejoan, A. 2005 Towards a new partially integrated transport model for coarse grid and unsteady flow simulationsTheor. Comput. Fluid Dyn. 18 443CrossRefGoogle Scholar
Schmidt, H.Schumann, U. 1989 Coherent structure of the convective boundary layer derived from large-eddy simulationsJ. Fluid Mech 200 511CrossRefGoogle Scholar
Schumann, U. 1976 Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic fieldJ. Fluid Mech. 74 31CrossRefGoogle Scholar
Schumann, U. 1977 Realizability of Reynolds-stress turbulence modelsPhys. Fluids 20 721CrossRefGoogle Scholar
Schwarz, W. R.Bradshaw, P. 1994 Term-by-term tests of stress-transport turbulence models in a 3-dimensional boundary layerPhys. Fluids 6 986CrossRefGoogle Scholar
Shih, T-H.Lumley, J. L 1985
Shih, T-H.Lumley, J. L.Chen, J-Y. 1985
Shih, T.-H.Lumley, J. LChen, J-Y. 1990 Second-order modelling of a passive scalar in a turbulent shear flowAIAA J 28 610CrossRefGoogle Scholar
Shih, T. H.Zhu, JLumley, J. L. 1995 A new Reynolds stress algebraic equationComput. Meth. Appl. Mech. Eng. 125 287CrossRefGoogle Scholar
Shih, TPovinelli, LLiu, N 2002 Application of generalised wall functions for complex turbulent flowsEngineering Turbulence Modelling and Experiments 5Rodi, WFueyo, N.177Elsevier, AmsterdamCrossRefGoogle Scholar
Shima, N. 1993 Prediction of turbulent boundary layers with second-moment closure: Part 1. Effects of periodic pressure gradient, wall transpiration and free-stream turbulenceJ. Fluids Eng. 115 56CrossRefGoogle Scholar
Shimomura, Y. 1991 Large eddy simulation of magnetohydrodynamic turbulent channel flows under a uniform magnetic fieldPhys. Fluids 3 3098CrossRefGoogle Scholar
Shir, C. C. 1973 A preliminary numerical study of atmospheric turbulent flows in the idealized turbulent boundary layerJ. Atmos. Sci. 30 13272.0.CO;2>CrossRefGoogle Scholar
Simpson, R. L.Wallace, D. B. 1975 Laminarescent turbulent boundary layers: experiments on sink flowsProject Squid Tech. Rep. SMU-1-PUThermal Science & Propulsion Center, Purdue UnivGoogle Scholar
Simpson, R. L.Kays, W. M.Moffat, R. J. 1967
Simpson, R. L.Moffat, R.Kays, W. M. 1969 The turbulent boundary layer on a porous plate: experimental skin friction with variable injection and suctionInt. J. Heat Mass Transfer 12 771CrossRefGoogle Scholar
Spalart, P. R. 1986 Numerical study of sink-flow boundary layersJ. Fluid Mech. 172 307CrossRefGoogle Scholar
Spalart, P. R.Allmaras, S. R. 1992 5 1994
Spalart, P. R.Strelets, M. K. 1997 Direct and Reynolds-averaged numerical simulations of a transitional shear bubbleProc. 11th Int. Symp. on Turbulent Shear FlowsUniv. Joseph Fourier, GrenobleFrance30.13Google Scholar
Spalart, P. R.Strelets, M. K. 2000 Mechanism of transition and heat transfer in a separation bubbleJ. Fluid Mech 403 329CrossRefGoogle Scholar
Spalding, D. B 1961 A single formula for the law of the wallASME J. Appl. Mech 28 444CrossRefGoogle Scholar
Spalding, D. B. 1967
Spalding, D. B. 1971 Concentration fluctuations in a round turbulent free jetChem. Eng. Sci. 26 95CrossRefGoogle Scholar
Speziale, C. 1987 On non-linear and models of turbulenceJ. Fluid Mech. 178 459CrossRefGoogle Scholar
Speziale, C. G 1987 On the decomposition of turbulent flow fields for the analysis of coherent structuresActa Mech. 70 243CrossRefGoogle Scholar
Speziale, C. G. 1991 Analytical methods for the development of Reynolds stress closures in turbulenceAnnu. Rev. Fluid Mech. 23 107CrossRefGoogle Scholar
Speziale, C.Gatski, T. B. 1997 Analysis and modeling of anisotropies in the dissipation rate of turbulenceJ. Fluid Mech. 344 155CrossRefGoogle Scholar
Speziale, C. G.Sarkar, S.Gatski, T. B. 1991 Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approachJ. Fluid Mech. 227 245CrossRefGoogle Scholar
Stawiarski, K.Hanjalić, K. 2002 A two-scale second-moment one-point turbulence closureEngineering Turbulence Modelling and Measurements 5Rodi, WFueyo, N.97Elsevier ScienceAmsterdamCrossRefGoogle Scholar
Stawiarski, K.Hanjalić, K. 2005 On physical constraints for multi-scale turbulence closure modelsProg. Comput. Fluid Dyn. 5 120CrossRefGoogle Scholar
Steenberger, W. 1995 Turbulent pipe flow with swirlThesis, TU EindhovenThe NetherlandsGoogle Scholar
Stevens, S. J.Fry, P. 1973 Measurements of the boundary-layer growth in annular diffusersJ. Aircraft 10 73Google Scholar
Suga, K. 1995 Development and application of a non-linear eddy viscosity model sensitized to stress and strain invariantsPh.D ThesisUMIST, ManchesterGoogle Scholar
Suga, K. 2001 Application of a TCL second-moment closure to turbulent duct flowsProc. UEF Conf. on Turbulent Heat Transfer – 3Anchorage, ALGoogle Scholar
Suga, K. 2004 Modeling the rapid part of the pressure-diffusion process in the Reynolds-stress transport equationASME J. Fluids Eng. 126 634CrossRefGoogle Scholar
Suga, K. 2004 Improvement of second-moment closure for turbulent obstacle flow and heat transferInt. J. Heat Fluid Flow 25 776CrossRefGoogle Scholar
Suga, K.Abe, K. 2000 Non-linear eddy viscosity modelling for turbulence and heat transfer near wall and shear-free boundariesInt. J. Heat Fluid Flow 21 37CrossRefGoogle Scholar
Suga, KNagaoka, MHorinouchi, N.Abe, K.Kondo, Y. 2001 Application of a three-equation cubic eddy viscosity model to 3-D turbulent flows by the unstructured grid methodInt. J. Heat Fluid Flow 22 259CrossRefGoogle Scholar
Suga, K.Craft, T. J.Iacovides, H. 2006 An analytical wall function for turbulent flow and heat transfer over rough wallsInt. J. Heat Fluid Flow 27 852CrossRefGoogle Scholar
Tailland, A.Mathieu, J. 1967 Jet pariétalJ. Mécanique 6 103Google Scholar
Tanahashi, M.Kang, S.-JMiyamoto, SShiokawa, SMiyauchi, T 2004 Scaling law of fine scale eddies in turbulent channel flows up to Re = 800Int. J. Heat Fluid Flow 25 331CrossRefGoogle Scholar
Tatschl, R.Basara, B.Schneider, J.Hanjalić, K.Popovac, M.Brohmer, A.Mehring, J. 2006 Advanced turbulent heat transfer modeling for IC-engine applications using AVL FIREInternational Multidimensional Engine ModellingUser's Group Meeting, Detroit, MI, 2 April 2006Google Scholar
Tatsumi, K.Iwai, H.Neo, E. C.Inaoka, K.Suzuki, K. 1999 Prediction of time-mean characteristics and periodical fluctuation of velocity and thermal fields of a backward-facing step1167Proc. 1st Int. Symp. on Turbulence & Shear Flows-1Banerjee, S.Eaton, J. K.Begell HouseNew YorkGoogle Scholar
Taulbee, D. 1992 An improved algebraic Reynolds stress model and corresponding nonlinear stress modelPhys. Fluids A4 2555CrossRefGoogle Scholar
Taulbee, D.Tran, L. 1988 Stagnation streamline turbulenceAIAA J. 26 1011CrossRefGoogle Scholar
Tavoularis, Corrsin, S. C 1981 Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient: Part 1J. Fluid Mech. 104 311CrossRefGoogle Scholar
Tavoularis, S.Corrsin, S. C. 1985 Effects of shear on the turbulent diffusivity tensorInt. J. Heat Mass Transfer 28 265CrossRefGoogle Scholar
Taylor, A. M. K.Whitelaw, J. H.Yianneskis, M. J. 1982 Curved ducts with strong secondary motion – velocity measurements of developing laminar and turbulent flowJ. Fluids Eng 104 350CrossRefGoogle Scholar
Taylor, G. I. 1935 Statistical theory of turbulence, Parts I-IIIProc. R. Soc. London 151A 421CrossRefGoogle Scholar
Tennekes, H.Lumley, J. L. 1972 A First Course in TurbulenceMIT PressCambridge, MAGoogle Scholar
Thielen, L.Hanjalić, KJonker, H 2003 Symmetry breaking of flow and heat transfer in multiple impinging jetsInt. J. Heat Fluid Flow 24 444CrossRefGoogle Scholar
Thielen, L.Hanjalić, K.Jonker, H.Manceau, R. 2005 Predictions of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closureInt. J. Heat Mass Transfer 48 1583CrossRefGoogle Scholar
Thomas, T. G.Takhar, H. S 1988 Frame invariance of turbulence constitutive relationsAstrophys. Space Sci. 141 159CrossRefGoogle Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear FlowCambridge University Press, CambridgeGoogle Scholar
Tucker, H. J.Reynolds, A. J. 1968 The distortion of turbulence by irrotational plane strainJ. Fluid Mech. 32 657CrossRefGoogle Scholar
Uberoi, M. S. 1957 Equipartition of energy and local isotropy in turbulent flowsJ. Appl. Phys. 28 1165CrossRefGoogle Scholar
Uittenbogaard, R. 1988 Measurement of turbulence fluxes in a steady, stratified mixing layer3rd Int. Symp. on Refined Flow Modelling & Turbulence Measurements725Tokyo, JapanGoogle Scholar
van Driest, E. R 1956 On turbulent flow near a wallJ. Aero. Sci. 23 1007CrossRefGoogle Scholar
Versteegh, T. A. M.Nieuwstadt, F. T. M. 1998 Turbulent budgets of natural convection in an infinite, differentially heated vertical channelInt. J. Heat Fluid Flow 19 135CrossRefGoogle Scholar
Vogel, J. C.Eaton, J. K. 1985 Combined heat transfer and fluid dynamic measurements downstream of a backward-facing stepASME J. Heat Transfer 107 922CrossRefGoogle Scholar
Wallin, SJohansson, A. V 2000 An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flowsJ. Fluid Mech 403 89CrossRefGoogle Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flowAnnu. Rev. Fluid Mech. 32 203CrossRefGoogle Scholar
Warhaft, Z.Lumley, J. L. 1978 An experimental study of the decay of temperature fluctuations in grid-generated turbulenceJ. Fluid Mech. 88 659CrossRefGoogle Scholar
Webster, C. A. G. 1964 An experimental study of turbulence in a density-stratified shear flowJ. Fluid Mech. 19 221CrossRefGoogle Scholar
Wei, T.Willmarth, W. W. 1989 Reynolds number effects on the structure of a turbulent channel flowJ. Fluid Mech 204 57CrossRefGoogle Scholar
Wieghardt, K. 1943
Wilcox, D. C. 1988 Reassessment of the scale determining equation for advanced turbulence modelsAIAA J. 26 1299CrossRefGoogle Scholar
Wilcox, D. C. 1988 Multiscale model of turbulent flowsAIAA J 26 1311CrossRefGoogle Scholar
Wilcox, D. C. 1993 Comparison of two-equation turbulence models for boundary layers with pressure gradientAIAA J. 31 1414CrossRefGoogle Scholar
Wilcox, D. C. 2000 Turbulence modeling for CFDDCW IndustriesLa Cañada, CAGoogle Scholar
Wilcox, D. C.Rubesin, M. W. 1980
Wizman, V. 1996 Modeling near-wall effects in second-moment closures by elliptic relaxationInt. J. Heat Fluid Flow 17 255CrossRefGoogle Scholar
Wolfram, 1988 MathematicaAddison-WesleyGoogle Scholar
Wolfshtein, M. 1969 The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradientInt. J. Heat Mass Transfer 12 301CrossRefGoogle Scholar
Wörner, M. 1994 Direkte Simulation turbulenter Rayleigh–Bénard Konvektion in flüssigem NatriumDissertation, University of KarlsruheKfK 5228, Kernforschungszentrum Karlsruhe, GermanyGoogle Scholar
Wörner, M.Grötzbach, G. 1997 Pressure transport in DNS of turbulent natural convection in horizontal fluid layersTurbulence, Heat and Mass Transfer 2Hanjalić, K.Peeters, T. W. J.351Delft University PressDelftGoogle Scholar
Wygnanski, I.Champagne, F.Marasli, B. 1986 On the large-scale structures in two-dimensional, small-deficit turbulent wakesJ. Fluid Mech 168CrossRefGoogle Scholar
Wyngaard, J. C.Coté, O. R.Izumi, Y. 1971 Local free convection, similarity, and the budgets of shear stress and heat fluxJ. Atmos. Sci. 28 11712.0.CO;2>CrossRefGoogle Scholar
Yakhot, V.Orszag, S. A. 1986 Renormalization group analysis of turbulence. 1. Basic theoryJ. Sci. Comput. 1 3CrossRefGoogle Scholar
Yakhot, V.Orszag, S. A.Thangam, S.Gatski, T. B.Speziale, C. G. 1992 Development of turbulence models for shear flows by a double expansion techniquePhys. Fluids 4 1510CrossRefGoogle Scholar
Yan, Y-J.Baughn, J. WMesbah, M 1992 1
Yap, C. R. 1987 Turbulent heat and momentum transfer in recirculating and impinging flowsUniversity of Manchester, UKGoogle Scholar
Younis, B. A. 1984 On modelling the effects of streamline curvature on turbulent shear flowsUniversity of London, UKGoogle Scholar
Zacharos, A. 2010 The use of unsteady RANS in the computation of 3-dimensional flow in rotating cavitiesUniversity of ManchesterGoogle Scholar
Zeierman, S.Wolfshtein, M. 1986 Turbulent time-scale for turbulent flow calculationsAIAA J 24 1606Google Scholar
Zeman, O.Lumley, J. L. 1976 Modeling buoyancy driven mixed layersJ. Atmos. Sci. 33 19742.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Kemal Hanjalić, Technische Universiteit Delft, The Netherlands, Brian Launder, University of Manchester
  • Book: Modelling Turbulence in Engineering and the Environment
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139013314.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Kemal Hanjalić, Technische Universiteit Delft, The Netherlands, Brian Launder, University of Manchester
  • Book: Modelling Turbulence in Engineering and the Environment
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139013314.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Kemal Hanjalić, Technische Universiteit Delft, The Netherlands, Brian Launder, University of Manchester
  • Book: Modelling Turbulence in Engineering and the Environment
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139013314.011
Available formats
×