Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T09:08:47.786Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 February 2023

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Mechanics of Ice Failure
An Engineering Analysis
, pp. 211 - 226
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M., Valtonen, V. and Kujala, P. 2019. Validation of the line-like nature of ice-induced loads using an inverse method. Proc. 25th Int. Conf. on Port and Ocean Eng. Arctic Cond. (POAC), Delft.Google Scholar
Akagawa, S., Nakazawa, N. and Sakai, M. 2000. Ice failure mode predominantly producing peak-ice-load observed in continuous ice load records. Proc. 10th Int. Offshore and Polar Eng. Conf., Seattle, Washington (ISOPE), vol. 2, p. 613.Google Scholar
Alaneme, K. K. and Okotete, E. A. 2019. Recrystallization mechanisms and microstructure development in emerging metallic materials: a review. J. of Sci. Adv. Mater. Devices. 4: 1933.Google Scholar
Anderson, T. L. 2005. Fracture Mechanics: Fundamentals and Applications. Taylor & Francis.CrossRefGoogle Scholar
Andrade, E. N. da C. 1910. On the viscous flow in metals, and allied phenomena. Proc. Roy. Soc. Lond., A. 84:112.Google Scholar
Andrews, R. M. 1985. Measurement of the fracture toughness of glacier ice. J. Glaciol. 31(108):171–176.CrossRefGoogle Scholar
Ashby, M. F. and Duval, P. 1985. The creep of polycrystalline ice. Cold Reg. Sci. Technol. 11(3):285300.Google Scholar
Ashby, M. F., Palmer, A. C., Thouless, M., Goodman, D. J., Howard, M. W., Hallam, S. D., Murrell, S. A. F., Jones, N., Sanderson, T. J. O., Ponter, A. R. S., 1986. Non-simultaneous failure and ice loads on arctic structures. Proc. OTC 1986. Houston. Paper No. OTC 5127, pp. 399404.Google Scholar
Atkins, A. G. and Caddell, R. M. 1974. The laws of similitude and crack propagation. Int. J. Mech. Sci. 16:541548.Google Scholar
Atkins, A. G. and Mai, Y. W. 1985. Elastic and Plastic Fracture. Ellis Horwood.Google Scholar
Barenblatt, G. I. 1962. The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. VII:55–129.Google Scholar
Barnes, P., Tabor, D. and Walker, J. C. F. 1971. The friction and creep of polycrystalline ice. Proc. Roy. Soc. Lond. A. 324:127155.Google Scholar
Barrette, P. D. 2001. Triaxial testing of ice: a survey of previous investigations. Proc. Conf. Port Ocean Eng. Arct. Cond. (POAC), Ottawa, vol. 3, pp. 13751384.Google Scholar
Barrette, P. D. 2014. Ice-Structure Interaction and High-Pressure Zones: Analysis of Experimental Data and Constitutive Modeling of Ice. Draft Report to Memorial University, St. John’s, Canada.Google Scholar
Barrette, P. D. and Jordaan, I. J. 2001a. Creep of ice and microstructural changes under confining pressure. IUTAM Symp. Creep Struct., S. Murakami and N. Ohno (Eds.), pp. 479488. Kluwer Academic Publishers.CrossRefGoogle Scholar
Barrette, P. D. and Jordaan, I. J. 2001b. Compressive Behaviour of Confined Polycrystalline Ice. PERD/CHC Report 477. Report to National Research Council Canada. December.Google Scholar
Barrette, P. D. and Jordaan, I. J., 2002. Can dynamic recrystallization and bulk pressure melting explain characteristics of ice crushing? Discussion. Ice in the Environment, Proc. 16th Int. Symp. Ice, IAHR, Dunedin, New Zealand vol. 3, pp. 335354.Google Scholar
Barrette, P. D. and Jordaan, I. J. 2003. Pressure-temperature effects on the compressive behavior of laboratory-grown and iceberg ice. Cold Reg. Sci. Technol. March, 36(1–3):25–36.Google Scholar
Barrette, P. D., Pond, J. and Jordaan, I. J. 2002. Ice damage and layer formation in small scale indentation experiments. Ice in the Environment, Proc. 16th Int. Symp. Ice, IAHR, Dunedin, New Zealand, vol. 3, pp. 246253.Google Scholar
Barrette, P. D., Pond, J., Li, C. and Jordaan, I. J. 2003. Laboratory-Scale Indentation of Ice. Technical Report for The National Research Council, Program on Energy Research and Development (PERD), PERD/CHC Report 481.Google Scholar
Bazant, Z. P. and Planas, J. 1998. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press.Google Scholar
Biot, M. A. 1954. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J. Appl. Phys. 15(11): 13851391.CrossRefGoogle Scholar
Biot, M. A. 1958. Linear thermodynamics and the mechanics of solids. Proc. 3rd. U. S. Nat. Cong. Appl. Mech. ASME, Brown University, Providence, R.I. pp. 118.Google Scholar
Blenkarn, K. A. 1970. Measurement and analysis of ice forces on Cook Inlet structures. Proc. OTC, Paper 1261.Google Scholar
Blount, H., Glen, I. F., Cornfort, G. and Tarn, G. 1981. Results of Full Scale Measurements Aboard CCGS Louis St. Laurent during a 1980 Fall Arctic Probe. Report for Canadian Coast Guard by Arctec Canada Ltd., vols. I and II.Google Scholar
Bolotin, V. V. 1969. Statistical Methods in Structural Mechanics. Holden-Day. Translated from the Russian by Samuel Aroni.Google Scholar
Bridgman, P. W. 1912. Water, in the liquid and five solid forms, under pressure. Am. Acad. Arts Sci., Proc. 47:441558.CrossRefGoogle Scholar
Bridgman, P. W. 1941. The Nature of Thermodynamics. Harvard University Press.Google Scholar
Brill, R. and Camp, P. R. 1961. Properties of Ice. Technical Report, U. S. Army Cold Regions Research and Engineering Laboratory.Google Scholar
Broek, D. 1986. Elementary Engineering Fracture Mechanics. Martinus Nijhoff Publishers.Google Scholar
Brown, P. W., Jordaan, I. J., Nessim, M. A. and Haddara, M. M. R. 1996. Optimization of bow plating for icebreakers. J. Ship Res. 40(1):70–78.Google Scholar
Browne, T. 2012. Analysis of compressive ice failure during ice-structure interaction. MEng thesis. Memorial University of Newfoundland. St. John’s, Canada.Google Scholar
Browne, T., Taylor, R. S., Jordaan, I. and Gürtner, A. 2013. Small-scale ice indentation tests with variable structural compliance. Cold Reg. Sci. Technol. 88(2013):2–9.CrossRefGoogle Scholar
Budiansky, B. and O’Connell, R. J. 1976. Elastic moduli of a cracked solid. Int. J. Solids Struct. 12:8197.Google Scholar
Budiansky, B., Hutchinson, J. W. and Slutsky, S. 1982. Void growth and collapse in viscous solids. Mechanics of Solids, H. G. Hopkins and M. J. Sewell (Eds.), Rodney Hill 60th anniversary volume, Pergamon Press, 1345.Google Scholar
Butkov, E. 1968. Mathematical Physics. Addison-Wesley.Google Scholar
Carter, J. E., Frederking, R. M. W., Jordaan, I. J. (Chair), Milne, W. J., Nessim, M. A. and Brown, P. W. 1992. Review and Verification of Proposals for the Revision of the Arctic Shipping Pollution Prevention Regulations. Memorial University of Newfoundland, Ocean Engineering Research Centre, report submitted to Canadian Coast Guard, Arctic Ship Safety.Google Scholar
Carter, J., Daley, C., Fuglem, M., Jordaan, I., Keinonen, A., Revill, C., Butler, T., Muggeridge, K. and Zou, B. 1996. Maximum Bow Force for Arctic Shipping Pollution Prevention Regulations. Phase II. Transport Canada Publication No. TP 12652, Transport Canada File No. AMNS 8103-100-8-5, Unclassified: January 1996.Google Scholar
C-CORE. 2017. Validation of Pressure-Area Scale Effect and Extreme Design Forces Using Full Scale Measured Ship Ram Data. C-CORE Report R-14-091-1101, Revision 2 FINAL.Google Scholar
Chen, A. C. T. and Lee, J. 1986. Large scale ice strength tests at slow strain rates. Proc. 5th Int. Offshore Mech. Arctic Eng. Symp. (OMAE), Tokyo, Japan, 374378.Google Scholar
Christensen, R. M. 1971. Theory of Viscoelasticity:An Introduction. Academic Press.Google Scholar
Cocks, A. C. F. 1989. Inelastic deformation of porous materials. J. Mech. Phys. Solids. 37: 693715.Google Scholar
Cole, D. M. 1986. Effect of grain size on the internal fracturing of polycrystalline ice. CRREL Report 865.Google Scholar
Cottrell, A. H. 1964. The Mechanical Properties of Matter. Wiley.Google Scholar
Cottrell, A. 1975. An Introduction to Metallurgy. Second Edition, Edward Arnold.Google Scholar
Croasdale, K. R. and Marcellus, R. W. 1981. Ice forces on large marine structures. IAHR Ice Symp., Quebec City.Google Scholar
Croasdale, K. R. 1984. The limiting driving force approach to ice loads. Proceedings OTC. Houston. OTC Paper 4716.Google Scholar
Croasdale, K., Frederking, R., Jordaan, I. and Noble, P. 2016. Engineering in Canada’s Northern Oceans: Research and Strategies for Development. Canadian Academy of Engineering. ISBN: 978-1-928194-02-6.Google Scholar
Daley, C., St. John, J. W., and Seibold, F. 1984. Analysis of extreme ice loads measured on USCGC polar sea. Trans. SNAME, New York, November, 1984.Google Scholar
Daley, C., St. John, J. W., Brown, R. and Glen, I. 1986. Consolidation of Local Ice Impact Pressures Measured Aboard USCGC Polar Sea (1982–1984). Report prepared for Transport Canada, report No. TP 8533E.Google Scholar
Dempsey, J. P. 1996. Scale effects on the fracture of ice. Minerals, Met. Mat. Soc., Arsenault, R. J., Cole, D., Gross, T., Kostroz, G., Liaw, P. K., Parameswaran, S., and Sizek, H. Eds., The Johannes Weertman Symposium, 351361.Google Scholar
Dempsey, J. P., DeFranco, S. J., Adamson, R. M. and Mulmule, S. V. 1999. Scale effects on the in-situ tensile strength and fracture of ice. I: Large-grained freshwater ice at Spray Lakes reservoir, Alberta. II: First-year sea ice at resolute, NWT. Int J. Fract., I, vol. 95, 1999, pp. 32545;II 34766.Google Scholar
Dempsey, J. P., Palmer, A. C. and Sodhi, D. S. 2001. High pressure zone formation during compressive ice failure. Eng. Fract. Mech. 68: 19611974.Google Scholar
Dieter, G. E. 1986. Mechanical Metallurgy. McGraw-Hill.Google Scholar
Petroleum, Dome. 1982. Full Scale Measurements of the Ice Impact Loads and Response of the Canmar Kigoriak – August and October, 1981. Prepared by Dome Petroleum Limited.Google Scholar
Duthinh, D. 1992. Pressure of crushed ice as Mohr-Coulomb material against flat, axisymmetric indentor. J. Cold Regions Eng., ASCE. 6, 4:139151.Google Scholar
Duva, J. M. and Hutchinson, J. W. 1984. Constitutive potentials for dilutely voided nonlinear materials. Mech. Mater. 3, 4154.Google Scholar
Duval, P., Ashby, M. F. and Anderman, I. 1983. Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Cem. 87:40664074.Google Scholar
Duval, P., Kalifa, P. and Meyssonnier, J. 1991. Creep constitutive equations for polycrystalline ice and effect of microcracking. Ice–Structure Interaction. Proc. IUTAM-IAHR Symp. Ice– Structure Interact., St. John’s, Newfoundland, Canada, August 1989, Springer-Verlag, 1991, 5566.Google Scholar
Duval, P. and Castelnau, O. 1995. Dynamic recrystallization of ice in polar ice sheets. J. de Physique III, Colloque C3, vol. 5, C3-197–C3-205.Google Scholar
Ehlers, S., Cheng, F., Jordaan, I., Kuehnlein, W., Kujala, P., Luo, Y., Oh, Y. T., Riska, K., Sirkar, J., Terai, K. and Valkonen, J. 2017. Towards mission-based structural design for arctic regions. Ship Technol. Res., (Schiffstechnik), vol. 64(3): 115128.Google Scholar
Eshelby, J. D. 1971. Fracture mechanics. Sci. Prog., Oxf. 59:161179.Google Scholar
Etheridge, M. A. and Wilkie, J. C. 1979. Grain size reduction, grain boundary sliding, and the flow strength of mylonites. Techtonophysics, 58:159178.Google Scholar
Fenz, D., Younan, A., Pierce, G., Barrett, J., Ralph, F. and Jordaan, I. 2018. Field measurement of the reduction in local pressure from ice management. Cold Reg. Sci. Technol., 156:7587.Google Scholar
Fett, T. 2008. Stress Intensity Factors – T-Stresses – Weight Functions. Universitätsverlag Karlsruhe.Google Scholar
Findley, W. N., Lai, J. S., and Onaran, K. 1976. Creep and Relaxation of Nonlinear Viscoelastic Materials. North-Holland. Reprinted by Dover in 1989.Google Scholar
Flügge, W. 1967. Viscoelasticity. Blaisdell Publishing Company.Google Scholar
Frederking, R. and Gold, L. W. 1975. Experimental study of edge loading of ice plates. Can. Geotech. J., 12(4):456–463.Google Scholar
Frederking, R. M. W., Jordaan, I. J. and McCallum, J. S. 1990. Field tests of ice indentation at medium scale: Hobson’s Choice Ice Island, 1989, Proc. 10th. Int. Symp. Ice, IAHR, Espoo, Finland, vol. 2, 1990, 931944.Google Scholar
Frederking, R. 1999. The local pressure-area relation in ship impact with ice. Proc. 15th Int. Conf. Port Ocean Eng. Arctic Cond., POAC’99, Helsinki, vol. 2, 687696.Google Scholar
Frederking, R. M. W. 2004. Ice pressure variations during indentation. Proc. 17th IAHR Int. Symp. Ice. 2004. v2. p. 307.Google Scholar
Frederking, R. 2005. Local ice pressures on the Oden 1991 polar voyage. Proc. 18th Int. Conf. Port Ocean Eng. Arctic Cond., POAC05, vol. 1, 353363, Potsdam, NY, USA.Google Scholar
Frederking, R. and Kubat, I. 2007. A Comparison of Local Ice Pressure and Line Load Distributions from Ships Studied in the SAFEICE Project. Proc. 10th International Symposium on Practical Design of Ships and Other Floating Structures. Houston, Texas, United States of America.Google Scholar
Frederking, R., Sudom, D., Bruce, J., Fuglem, M., Jordaan, I. and Hewitt, K. 2010. Analysis of Multi-year Ice Loads Molikpaq Data (1985–86 winter deployment). Technical Report CHC-CTR-068 January.Google Scholar
Frederking, R., Hewitt, K., Jordaan, I., Sudom, D., Bruce, J., Fuglem, M. and Taylor, R. 2011. Overview of the Molikpaq multi-year ice load analysis. Proc. 21st Int. Conf. Port Ocean Eng. Arctic Cond., POAC11.Google Scholar
Fuglem, M., Jordaan, I. J. and Bruce, J. 2011. Estimate of the peak impact load on the Molikpaq by a multi-year floe on May 12, 1986 based on floe deceleration. Proc. 21st Int. Conf. Port Ocean Eng. Arctic Cond., POAC11.Google Scholar
Fuglem, M., Parr, G. and Jordaan, I. J. 2013. Plotting positions for fitting distributions and extremal analysis. Can. J. Civ. Eng. 40: 130139.CrossRefGoogle Scholar
Fuglem, M., Richard, M. and King, T. 2014. An implementation of ISO 19906 formulae for global sea ice loads within a probabilistic framework. OTC Arctic Technol. Conf., Houston, Texas: Offshore Technology Conference, 2014. https://doi.org/10.4043/24548-MS.Google Scholar
Fuglem, M, Stuckey, P. and Tillson, P. 2016. Evaluation of global ice strength for design iceberg impact loads. OTC Arctic Technol. Conf., St. John’s, OTC-27383-MS.Google Scholar
Fuglem, M., Stuckey, P., Huang, Y., Barrett, J., Thijssen, J., King, T. and Ralph, F.. 2020. Iceberg disconnect criteria for floating production systems. Safety Extreme Environ. 2, no. 1 (April 2020): 1536. https://doi.org/10.1007/s42797-019-00007-4.Google Scholar
Fung, Y. C. 1965. Foundations of Solid Mechanics. Prentice-Hall, New Jersey.Google Scholar
Gagnon, R. E. and Sinha, N. K. 1991. Energy dissipation through melting in large scale indentation experiments on multiyear ice. Proc. 10th OMAE, ASME, vol. IV, pp 157161.Google Scholar
Gagnon, R. E. 1994. Generation of melt during crushing experiments on freshwater ice. Cold Reg. Sci. Technol. 22, 385398.Google Scholar
Gagnon, R. 2002. Can dynamic recrystallization and bulk pressure melting explain characteristics of ice crushing? Proc. 16th Int. Symp. Ice, IAHR, Dunedin, New Zealand, 2002.Google Scholar
Garlick, S. R. and Gromet, L. P. 2004. Diffusion creep and partial melting in high temperature mylonitic gneisses, Hope Valley shear zone, New England Appalachians, USA. J. Metamorphic Geol. 22:4562.Google Scholar
Glen, I. F. and Blount, H. 1984. Measurements of ice impact pressures and loads onboard CCGS Louis S. St. Laurent. Proc. 3rd Offshore Mech. Arctic Eng. (OMAE) Symp., vol. III . ASME, New Orleans, LA, 1984. 24652.Google Scholar
Glen, J. W. 1955. The creep of polycrystalline ice. Proc. Roy. Soc. Lond., Ser. A, 228, 519538.Google Scholar
Gold, L. W. 1963. Crack formation in ice plates by thermal shock. Can. J. Phys. 41:171228.Google Scholar
Goodman, D. J. and Tabor, D. 1978. Fracture toughness of ice: a preliminary account of some new experiments. J. Glaciol. 21(85):651–660.Google Scholar
Graham, G. A. 1968. The correspondence principle of linear viscoelasticity theory for mixed boundary value problems involving time-dependent boundary regions. Quart. Appl. Math., 26:167174.Google Scholar
Griffith, A. A. 1921. The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. Lond. A: Mathematical, Physical and Engineering Sciences, 221(582–593):163–198.Google Scholar
Gross, B. 1968. Mathematical Structure of the Theories of Viscoelasticity. Hermann, Paris.Google Scholar
Guo, Fengwei. 2012. A spectral model for simulating continuous crushing ice load. Proc. 21st IAHR Int. Symp. Ice. Dalian, China, June, 1035–1045.Google Scholar
Haddad, Y. M. 1995. Viscoelasticity of Engineering Materials. Chapman Hall.Google Scholar
Hamza, H. and Muggeridge, D. B. 1979. Plane strain fracture toughness (K1c) of freshwater ice. Proc. 5th Int. Conf. Port Ocean Eng. Arctic Cond., POAC79:697–707.Google Scholar
Hardy, M. D., Jefferies, M. G., Rogers, B. T. and Wright, B. D. 1996. Molikpaq Ice Loading Experience. Report submitted to National Energy Board, Canada PERD/CHC Report 14–62.Google Scholar
Harper, B. D. 1986. A uniaxial nonlinear viscoelastic constitutive relation for ice. J. Energy Resour. Technol. June, 108(2): 156160Google Scholar
Hewitt, K. 2010. Estimates of Ice Loads on the Molikpaq at Amauligak I-65 Based on Geotechnical Analyses and Responses. Report January 2010. Available from www.engr.mun.ca/~2007JIPonMolikpaq/.Google Scholar
Hobbs, P. V. 1974. Ice Physics. Oxford University Press.Google Scholar
Horii, H. and Nemat-Nasser, S. 1983. Overall moduli of solids with microcracks: load-induced anisotropy. J. Mech. Phys. Solids, 31(2):155–171.Google Scholar
IACS. 2006. Structural Requirements for Polar Class Ships – Technical Background. IACS UR I2, AHG/PSR, August 2006.Google Scholar
IACS. 2011. Requirements Concerning Polar Class, International Association of Classification Societies. IACS Req. 2011.Google Scholar
Jordaan, Ian and Associates. 2007. Analysis of JOIA Data: Probabilistic Averaging For Global Load Estimation. Final Report Submitted to Agip KCO, Conoco Phillips and Shell.Google Scholar
Jordaan, Ian and Associates. 2010. Investigation of Molikpaq 1986 Ice Loading Events and Evaluation of Load Measuring Devices. Report to Canadian Hydraulics Centre, National Research Council of Canada, January. Available in www.engr.mun.ca/~2007JIPonMolikpaq/.Google Scholar
IDA. 2007. Jordaan, I. J., Li, C., Mackey, T., Stuckey, P. and Sudom, D. Ice Data Analysis and Mechanics for Design Load Estimation. (IDA project). Final Report. Prepared for NSERC, C-CORE, Chevron Canada Resources, National Research Council of Canada, Petro-Canada, Husky Energy.Google Scholar
Inglis, C. E. 1913. Stresses in plates due to the presence of cracks and sharp corners. Trans. Inst. Nav. Archit., 55:219241.Google Scholar
ISO 19906. 2019. Petroleum and Natural Gas Industries–Arctic Offshore Structures.Google Scholar
Jacka, T. H. and Maccagnan, M. 1984. Ice crystallographic and strain rate changes with strain in compression and extension. Cold Reg. Sci. Technol., 8(3):269–286.Google Scholar
Johari, G. P., Pasheto, W. and Jones, S. J., 1994. Intergranular liquid in solids and premelting of ice. J. Chem. Phys. 100(6):4548–4553.Google Scholar
Jonas, J. J. and Müller, F., , 1969. Deformation of ice under high internal shear stresses. Can. J. Earth Sci., vol. 6; 963967Google Scholar
Jones, S. J. 1978. Triaxial testing of polycrystalline of ice. Proc. 3rd Int. Conf. Permafrost, Edmonton, vol. 1:671674.Google Scholar
Jones, S. J. 1982. The confined compressive strength of polycrystalline ice. J. Glaciol. 28: 171177.Google Scholar
Jordaan, I. J., Nessim, M. A., Ghoneim, G. A. and Murray, A. M. 1987. A rational approach to the development of probabilistic design criteria for arctic shipping. Proc. 6th Int. Offshore Mech. Arctic Eng. Symp. (OMAE), Houston, vol. IV:401–406.Google Scholar
Jordaan, I. J. and McKenna, R. F. 1988. Constitutive relations for the creep of ice. Proc. 9th Int. Symp. Ice, IAHR, Sapporo, Japan, vol. 3: 4758.Google Scholar
Jordaan, I. J. and Timco, G. W. 1988. The dynamics of the ice crushing process. J. Glaciol. 34(118):318–26.Google Scholar
Jordaan, I. J. and McKenna, R. F. 1991. Processes of deformation and fracture of ice in compression. Ice–Structure Interaction. Proc. IUTAM-IAHR Symp. Ice-Structure Interaction, St. John’s, Newfoundland, Canada, August 1989, Springer-Verlag, 1991:283309.Google Scholar
Jordaan, I. J. and McKenna, R. F. 1988. Modelling of progressive damage in ice. Proc. 9th Int. Symp. Ice, IAHR, Sapporo, Japan, vol. 2:585–624. Also in 4th. State-of-the-Art Report (G. Timco, Ed.) Working Group on Ice Forces, CRREL Special Report 895, 1989, 125165.Google Scholar
Jordaan, I. J. and Xiao, J. 1992. Interplay between damage and fracture in ice-structure interaction. Proc. 11th IAHR Int. Ice Symp., Banff, Alberta, vol. 3:14481467.Google Scholar
Jordaan, I. J., Stone, B. M., McKenna, R. F. and Fuglem, M. K. 1992. Effect of microcracking on the deformation of ice. Published in Proc. 43rd. Can. Geotech. Conf„ Université Laval, Québec, vol. 1, 1990, pp. 387393; Can. Geotech. J., 29:143150.Google Scholar
Jordaan, I. J., Maes, M. A., Brown, P. W. and Hermans, I. P. 1993a. Probabilistic analysis of local ice pressures. Proc. 11th IAHR Int. Ice Symp, Banff, Alberta, vol. II, 1992, 713; Also in J. Offshore Mech. Arctic Eng.,115(1):83–89.Google Scholar
Jordaan, I. J., Xiao, J. and Zou, B. 1993b. Fracture and damage of ice: towards practical implementation. First Joint ASCE-EMD, ASME-AMD, SES Meeting, Virginia, June. ASME, AMD-vol. 163, 1993, 251260.Google Scholar
Jordaan, I. J. and Singh, S. K. 1994. Compressive ice failure: critical zones of high pressure. Proc. 12th Int. IAHR Ice Symp., Trondheim Norway, vol. 1:505514.Google Scholar
Jordaan, I. J., Fuglem, M. and Matskevitch, D. G. 1996. Pressure-area relationships and the calculation of global ice forces. Proc. 13th IAHR Int. Symp. Ice, Beijing, China, vol. 1, 166175.Google Scholar
Jordaan, I. J., Matskevitch, D. M. and Meglis, I. 1999. Disintegration of ice under fast compressive loading. Proc. Symp. “Inelasticity and Damage in Solids subject to Microstructural Change”, Memorial University of Newfoundland, 1997: 211231. Extended version: Int. J. Fract. 97(1–4):279–300.Google Scholar
Jordaan, I. J. 2001. Mechanics of ice-structure interaction. Eng. Fract. Mech., 2001; 68:1923– 1960.Google Scholar
Jordaan, I. J. and Pond, J. 2001. Scale effects and randomness in the estimation of compressive ice loads. Proc. IUTAM Symp. Scaling Laws in Ice Mech. Dyn., Fairbanks, Alaska, 2000. Ed. J. P. Dempsey and H. H. Shen, Kluwer, 2001, 4354.Google Scholar
Jordaan, I. J. 2005. Decisions under Uncertainty: Probabilistic Analysis for Engineering Decisions. Cambridge University Press, 2005, 672.Google Scholar
Jordaan, I., Li, C., Sudom, D., Stuckey, P. and Ralph, F. 2005a. Principles for local and global ice design using pressure- area relationships. Proc. 18th Int. Conf. Port Ocean Eng. Arctic Cond. (POAC’05), Potsdam, N. Y., vol. 1:375385.Google Scholar
Jordaan, I., Li, C., Barrette, P., Duval, P. and Meyssonnier, J. 2005b. Mechanisms of ice softening under high pressure and shear. Proc. 18th Int. Conf. Port Ocean Eng. Arctic Cond. (POAC’05), Potsdam, N. Y., vol. 1:249259.Google Scholar
Jordaan, I., Frederking, R. and Li, C. 2006. Mechanics of ice compressive failure, probabilistic averaging and design load estimation. Proc. 18th Int. Symp. Ice, IAHR, Sapporo, Japan, vol. 1:223230.Google Scholar
Jordaan, I. J., Li, C., Mackey, T., Stuckey, P. and Sudom, D. 2007a. Ice Data Analysis and Mechanics for Design Load Estimation. (IDA project), Final Report. Prepared for NSERC, C-CORE, Chevron Canada Resources, National Research Council of Canada, Petro-Canada, Husky Energy.Google Scholar
Jordaan, I., Taylor, R. and Reid, S. 2007b. Fracture, Probabilistic averaging and the scale effect in ice-structure interaction. Proc. 19th Int. Conf. Port Ocean Eng. Arctic Cond., POAC’07. Dalian, China, vol. 1:296304.Google Scholar
Jordaan, I. J., Taylor, R. S. and Wells, J. 2009. Ice crushing, damaged layers, and pressure-area relationships. Proc. 20th Int. Conf. Port Ocean Eng. Arctic Cond., POAC’09. Paper 09–128.Google Scholar
Jordaan, I. J., Bruce, J., Masterson, D. and Frederking, R. M. W. 2010. Local ice pressures for multiyear ice accounting for exposure. Cold Reg. Sci. Technol., 61: 97106.Google Scholar
Jordaan, I. 2010. Viscoelasticity and localization in compressive ice failure, indenter tests, analysis of crushed layer, and vibrations. Background Information Paper for Workshop on Ice-induced Vibrations, Oslo, Norway, November 19 & 20.Google Scholar
Jordaan, I. J. and Bruce, J. 2010. Notes on local ice pressures and velocity effect. Internal Report, C-CORE.Google Scholar
Jordaan, I., Bruce, J., Hewitt, K. and Frederking, R. 2011. Re-evaluation of ice loads and pressures measured in 1986 on the Molikpaq structure. Proc. 21st Int. Conf. Port Ocean Eng. Arctic Cond. (POAC’11). July 10–14, Montréal, Canada. Paper 11130.Google Scholar
Jordaan, I., Stuckey, P., Bruce, J., Croasdale, K. and Verlaan, P. 2011. Probabilistic modeling of the ice environment in the NE Caspian Sea and associated structural loads. Proc. 21st Int. Conf. Port Ocean Eng. Arctic Cond. (POAC’11). July 10–14, Montréal, Canada. Paper POAC11-133.Google Scholar
Jordaan, I. and Gosine, P. 2012. The Titanic disaster and ice mechanics: completing the picture. Proc. IceTech 2012, Banff, Alberta, September, Paper ICETECH12-149-R0.EGoogle Scholar
Jordaan, I., Taylor, R. and Derradji-Aouat, A. 2012. Scaling of flexural and compressive ice failure. Proc. 31st Int. Conf. Ocean Offshore Arct. Eng., OMAE 2012, July, Rio de Janeiro, Paper OMAE2012-84033.Google Scholar
Jordaan, I. and Barrette, P. 2014. Mechanics of dynamic ice failure against vertical structures. Proc. 33rd Int. Conf. Ocean Offshore Arct. Eng., OMAE 2014, June 813, San Francisco. ASME. Paper OMAE2014-24406.Google Scholar
Jordaan, I., Stuckey, P., Liferov, P. and Ralph, F. 2014. Global and local iceberg loads for an arctic floater. Proc. Arct. Technol. Conf., Houston, U. S. A.: OTC 24628, 2014. https://doi.org/10.4043/24628-MS.Google Scholar
Jordaan, I. 2015. Some issues in ice mechanics. Proc. 34th Int. Conf. Ocean Offshore Arct. Eng., OMAE 2015. Paper No. OMAE2015-42042.Google Scholar
Jordaan, I., O’Rourke, B., Turner, J., Moore, P. and Ralph, F. 2016. Estimation of ice loads using mechanics of ice failure in compression. Proc. Arct. Technol. Conf., St John’s, Newfoundland, paper OTC 2738.Google Scholar
Jordaan, I., Hewitt, K. and Frederking, R. 2018. Re-evaluation of ice loads on the Molikpaq structure measured during the 1985–86 season. Can. J. Civ. Eng. 45: 153166.Google Scholar
Kachanov, L. M. 1958. On rupture time under condition of creep. Izvestia Akademi Nauk SSSR, Old. Tekhn. Nauk, No. 8, pp. 2631 (in Russian).Google Scholar
Kachanov, M. 1993. Elastic solids with many cracks and related problems. Adv. Appl. Mech., vol. 30, Academic Press.Google Scholar
Kachanov, M., Tsukrov, I. and Shafiro, B. 1994. Effective moduli of solids with cavities of various shapes. Appl. Mech. Rev. 47, Part 2, S151–S174.Google Scholar
Kalifa, P., Ouillon, G. and Duval, P. 1992. Microcracking and the failure of polycrystalline ice under triaxial compression. J. Glaciol., 38(128), 6576.Google Scholar
Kärnä, T. and Turunen, R., 1990. A straightforward technique for analyzing structural response to dynamic ice action. Proc. 9th Int. Conf. Offshore Mech. Arct. Eng., OMAE, Houston, Texas, February 1823, 1990. ASME vol. 4, 135142.Google Scholar
Kärnä, T. and Yan, Qu. 2006. Analysis of the Size Effect in Ice Crushing – edition 2. Internal report, Technical Research Centre for Finland, February 2006.Google Scholar
Kärnä, T. 2007. Research problems related to time-varying ice actions. Proc. 19th Int. Conf. Port Ocean Eng. Arct. Cond., POAC’07., Dalian, China.Google Scholar
Karr, D. G. and Choi, K. 1989. A three-dimensional constitutive damage model for polycrystalline ice. Mech. Mater. 8,1:5566.Google Scholar
Kasap, S. O. 2006. Principles of Electronic Materials and Devices. McGraw-Hill.Google Scholar
Kavanagh, M., O’Rourke, B., Jordaan, I. and Taylor, R. 2015. Observations on the timedependent fracture of ice. In Ian Jordaan Honoring Symposium on Ice Engineering. Proc. 34th Int. Conf. Ocean Offshore Arct. Eng., OMAE 2015. Paper No. OMAE2015-42023. St. John’s, Newfoundland, Canada. ASME.Google Scholar
Kavanagh, M. B. 2018. Time-Dependent Aspects of Fracture in Ice. PhD thesis, Memorial University of Newfoundland.Google Scholar
Kavanagh, M. and Jordaan, I. 2022. Time-Dependent Fracture of Ice. Eng. Fract. Mech., Vol. 276, Part A, Paper 108850.Google Scholar
Kendall, K. 1978. Complexities of compression failure. Proc. Roy. Soc. Lond. A361: 245263.Google Scholar
Kennedy, K. P., Jordaan, I. J., Maes, M. A. and Prodanovic, A. 1994. Dynamic activity in mediumscale ice indentation tests. Cold Reg. Sci. Technol. 22:25367.Google Scholar
Kheisin, D. E. and Cherepanov, N. W. 1970. Change of ice structure in the zone of impact of a solid body against the ice cover surface. Problemy Artiki I Anarktiki. Issues 33–35 (A. F. Treshnikov), Israel Program for Scientific Translations (1973) 239245.Google Scholar
Kheisin, D. E. 1973. Use of probability methods in estimating the manoeuvering qualities of ships in ice. Ice Navigation Qualities of Ships. Ed. Kheisin, D. and Popov, Yu.. CRREL Translation pp. 4058.Google Scholar
Kheisin, D. E. and Likhomanov, V. A. 1973. An experimental determination of the specific energy of mechanical crushing in ice by impact. Problemy Artiki I Anarktiki 41, 5561.Google Scholar
Kim, E. and Amdahl, J. 2016. Discussion of assumptions behind rule-based ice loads due to crushing. Ocean Eng. 119 (2016) 249261.Google Scholar
Krausz, A. S. and Eyring, H. 1975. Deformation Kinetics. Wiley.Google Scholar
Kry, P. R. 1978. A statistical prediction of effective ice crushing stresses on wide structures. Proc. 5th Int. IAHR Conf., Lulea, Sweden, Part 1:3347.Google Scholar
Kry, P. R. 1980. Implications of structure width for design ice forces. Physics and Mechanics of Ice. Proc. IUTAM Symposium. Copenhagen, August 6–10, 1979, Technical University of Denmark. pp. 179193.Google Scholar
Kujala, P. J. 1991. Safety of ice-strengthened ships in the Baltic Sea. London. Trans. Roy. Inst. Nav. Archit. 133 (A), pp. 8394.Google Scholar
Kujala, P. J. 1996. Modelling of nonsimultaneous ice crushing as a Poisson random process. Int. J. Offshore Polar Eng. vol. 6, No.2, pp. 138143.Google Scholar
Kuon, L. G. and Jonas, J. J. 1973. Effect of strain rate and temperature on the microstructure of polycrystalline ice. Symp. Phys. Chem. Ice, Ottawa, Canada, 1418 August 1972, published by the Royal Society of Canada, 1973. pp. 370376.Google Scholar
Kurdyumov, V. A. and Kheisin, D. E. 1976. Hydrodynamic model of the impact of a solid on ice. Translated from Prikladnaya Mekhanika, 1976;12(10):103–109.Google Scholar
Lakes, R. 2009. Viscoelastic Materials. Cambridge.Google Scholar
Lakes, R. S. and Vanderby, R. 1999. Interrelation of creep and relaxation: a modeling approach for ligaments. J. Biomech. Eng. 121, 612615, Dec.Google Scholar
Landau, L. D. and Lifshitz, E. M. 1970. Theory of Elasticity. vol. 7. in Course of Theoretical Physics; 2nd English Ed., Pergamon.Google Scholar
Lawn, B. 1993. Fracture of Brittle Solids. Second Ed. Cambridge.CrossRefGoogle Scholar
LeClair, E. S., Schapery, R. A. and Dempsey, J. P. 1999. A broad-spectrum constitutive modeling technique applied to saline ice. Int. J. Fract. 97:209226.Google Scholar
Leckie, F. A. 1978. The constitutive equation of continuum creep damage mechanics. Philos. Trans. R. Soc. Lond.A 288, 2747.Google Scholar
Li, C. (Chuanke) 2002. Finite Element Analysis of Ice-structure Interaction with a Viscoelastic Model Coupled with Damage Mechanics. MEng thesis, Memorial University of Newfoundland, 127.Google Scholar
Li, C., Barrette, P. and Jordaan, I. 2004. High-pressure zones at different scales during icestructure indentation. Proc. 23rd Int. Conf. Offshore Mech. Arctic Eng., OMAE, Vancouver, British Columbia.Google Scholar
Li, C., Jordaan, I. and Barrette, P. 2005. Strain localization and fracture of cylindrical ice specimens under confining pressure. Proc. 18th Int. Conf. Port Ocean Eng. Arctic Cond. (POAC’05). Potsdam, N. Y., Proceedings, vol. 1:213224.Google Scholar
Li, C. (Chuanke) 2007. Probability and Fracture Mechanics Applied to Ice Load Estimation and Associated Mechanics. PhD thesis, Memorial University of Newfoundland, 190.Google Scholar
Li, C., Jordaan, I. J. and Taylor, R. S. 2010, Estimation of local ice pressure using up-crossing rate. J. Offshore Mech. Arctic Eng., vol. 132, (2010)031501–1to6Google Scholar
Liu, H. W. and Miller, K. J. 1979. Fracture toughness of fresh-water ice. J. Glaciol., 22(86): 135143.Google Scholar
Liu, B. (Bin) 1994. Numerical Modelling of Medium Scale Indentation Tests. M.Eng thesis, Memorial University of Newfoundland, 106.Google Scholar
Määttänen, M. 1983. Dynamic ice–structure interaction during continuous crushing. CRREL Report 83–5. U. S. Army Cold Regions Research and Engineering Laboratory.Google Scholar
Määttänen, M. 2001. Numerical simulation of ice-induced vibrations in offshore structures. Proc. 14th Nordic Seminar Comput. Mech., Lund, Sweden. 2001. 1328.Google Scholar
Mackey, T., Wells, J., Jordaan, I. and Derradji-Aouat, A. 2007. Experiments on the fracture of polycrystalline ice. Proc. 19th Int. Conf. Port Ocean Eng. Arctic Cond. (POAC’07). Dalian, China, 339349.Google Scholar
Maes, M. A. 1992. Probabilistic behaviour of a Poisson field of flaws in ice subjected to indentation. Proc. 11th Int. Symp. Ice, IAHR, Banff, Alberta, vol. 2 871882.Google Scholar
Manuel, M., Ralph, F. and Jordaan, I. 2016. Using the Event Maximum Method to Further Analyze Full Scale Local Pressure Data. Proc. Arctic Tech. Conf., St. John’s, Newfoundland and Labrador, Canada, Paper No. OTC – 27368.Google Scholar
Masterson, D. and Spencer, P., 1992. Reduction and Analysis of 1990 and 1989 Hobson’s Choice Ice Island Indentation Tests Data. Report prepared by Sandwell Inc.Google Scholar
Masterson, D. M., Nevel, D. E., Johnson, R. C., Kenny, J. J. and Spencer, P. A. 1992. The medium scale iceberg impact test program. Proc. 11th Int. Symp. Ice, IAHR, Banff, Alberta. Banff, Alberta.Google Scholar
Masterson, D. M. and Frederking, R. M. W. 1993. Local contact pressures in ship-ice and structure-ice interactions. Cold Reg. Sci. Technol. 21:169185.Google Scholar
Masterson, D. M., Frederking, R. M. W., Jordaan, I. J. and Spencer, P. A. 1993. Description of multiyear ice indentation tests at Hobson’s Choice ice island – 1990. Proc. 12th Int. Conf. Offshore Mech. Arctic Eng., OMAE 1993. Glasgow. vol. 4:14555.Google Scholar
Masterson, D. M., Spencer, P. A., Nevel, D. E. and Nordgren, R. P. 1999. Velocity effects from multiyear ice tests. Proc. 18th Int. Conf. Offshore Mech. Arctic Eng., OMAE99, St. John’s, Canada, Paper OMAE99-1127.Google Scholar
Masterson, D. M., Frederking, R. M. W., Wright, B., Karna, T. and Maddock, W. P. 2007. A revised ice pressure–area curve. Proc. 19th Int. Conf. Port Ocean Eng. Arctic Cond. POAC’07, Dalian, China. June 2730.Google Scholar
Masterson, Dan. 2018. The Story of Offshore Arctic Engineering. Cambridge Scholars Publishing.Google Scholar
Matskevitch, D. G. and Jordaan, I. J. 1996. Spatial and temporal variations of local ice pressures. Proc. 15th. Int. Conf. Offshore Mech. Arctic Eng. (OMAE), June 1620, Florence, Italy.Google Scholar
McCarty, J. H. and Foecke, T. 2008. What Really Sank the Titanic. Citadel Press.Google Scholar
McKenna, R. F., Jordaan, I. J. and Xiao, J. 1990. Damage and energy flow in the crushed layer during rapid ice loading. Proc. IAHR Symp. Ice, Espoo, Finland, vol. 3, 1990, pp. 231245.Google Scholar
Meaney, R., Jordaan, I. J. and Xiao, J. (1996). Analysis of medium scale ice-indentation tests. Cold Reg. Sci. Technol. 24, 279287.Google Scholar
Meglis, I., Melanson, P. and Jordaan, I. J. 1999. Microstructural change in ice: II. Creep behavior under triaxial stress conditions, J. Glaciol. 45(151):438–448 Colour Plates 423437.Google Scholar
Melanson, P. M. 1998. Damage and Microstructural Change in Laboratory Grown Ice under High Pressure Zone Conditions. M.Eng. thesis, Memorial University of Newfoundland.Google Scholar
Melanson, P., Meglis, I., Jordaan, I. J. and Stone, B. S. 1999. Microstructural change in ice: I. Constant deformation-rate tests under triaxial stress conditions, J. Glaciol. 45(151):417–422 Colour Plates 423437.CrossRefGoogle Scholar
Mellor, M. and Cole, D. M. 1982. Deformation and failure of ice under constant stress or constant strain rate. Cold Reg. Sci. Technol. 5:201–219Google Scholar
Mellor, M. and Testa R. 1969. Effect of temperature on the creep of ice. J. Glaciol. 8: 131145.Google Scholar
Metge, M. 1994. Hans Island revisited. Proc. IAHR Symp. Ice, vol. 3, 10031017, Trondheim, Norway.Google Scholar
Meyssonnier, J. and Duval, P. 1989. Creep behaviour of damaged ice under uniaxial compression: a preliminary study. Proc. 10th Int. Conf. Port Ocean Eng. Arctic Cond. POAC’89, Lulea, Sweden. pp. 225234.Google Scholar
Michel, B. 1978. Ice Mechanics. Laval, Québec.Google Scholar
Miller, K. J. 1980. The application of fracture mechanics to ice problems. Physics and Mechanics of Ice. Proc. IUTAM Symposium. Copenhagen, 1979.Google Scholar
Muggeridge, K., and Jordaan, I. J. 1999. Microstructural change in ice: III. Observations from an iceberg impact zone, J. Glaciol., 45(151):449–455 Colour Plates 423437.Google Scholar
Mulmule, S. V. and Dempsey, J. P. 1998. A viscoelastic fictitious crack model for the fracture of sea ice. Mech. Time-dependent Mater.1:33156.Google Scholar
Nadreau, J. P. and Michel B. 1986a. Secondary creep in confined ice samples. Proc. 8th IAHR Symp. Ice., Iowa City, vol. 1, 307318.Google Scholar
Nadreau, J. P. and Michel B. 1986b. Yield envelope for confined ice. Ice Technology, Proc. 1st Int. Conf., 2536.Google Scholar
Needleman, A. 1988. Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Eng. vol. 67, pp. 6985.Google Scholar
Needleman, A. 1991. On the competition between failure and instability in progressively softening solids. Trans. ASME. vol. 58:294298.Google Scholar
Nixon, W. and Schulson, E. 1987. A micromechanical view of the fracture toughness of ice. J. Phys., Colloques, 1987, 48 (C1), C1-313–C1-319.Google Scholar
Nixon, W. A. 1988. The effect of notch depth on the fracture toughness of freshwater ice.Cold Reg. Sci. Technol. 15, 7578.Google Scholar
Nordell, B. 1990. Measurement of P-T coexistence curve for ice-water mixture. Cold Reg. Sci. Technol. 19:8388.Google Scholar
Nye, J. F. 1991. Rotting of temperate ice. J. Cryst. Growth, 113:465476.Google Scholar
Ochi, M. K. 1990. Applied Probability and Stochastic Processes. Wiley; 1990.Google Scholar
Offenbacher, E. L., , Roselman, I. C. and Tabor, D. 1973. Friction, deformation and recrystallization of single crystals of ice Ih under stress. Proc. Symp. Phys. Chem. Ice, Ottawa, Canada, 1418 August 1972, published by the Royal Society of Canada, 1973.Google Scholar
O’Rourke, B. J, Jordaan, I. J., Taylor, R. S. and Gürtner, A., , 2015. Spherical indentation tests on confined ice specimens at small scales. Proc. 34th Int. Conf. Ocean, Offshore Arctic Eng., OMAE 2015. Paper No. OMAE2015-42117.Google Scholar
O’Rourke, B. J., Jordaan, I. J., Taylor, R. S. and Gürtner, A., , 2016a. Experimental investigation of oscillation of loads in ice high-pressure zones, Part 1: Single indentor system. Cold Reg. Sci. Technol. 124 (2016) 2539.Google Scholar
O’Rourke, B. J., Jordaan, I. J., Taylor, R. S. and Gürtner, A., , 2016b. Experimental investigation of oscillation of loads in ice high-pressure zones, Part 2: Double indentor system – coupling and synchronization of high-pressure zones. Cold Reg. Sci. Technol. 124 (2016) 1124.Google Scholar
Palmer, A. C., Goodman, D. J., Ashby, M. F., Evans, A. G., Hutchinson, J. W. and Ponter, A. R. S. 1983. Fracture and its role in determining ice forces on offshore structures. Ann. Glaciol. 4:21621.Google Scholar
Palmer, A. C. 2008. Dimensional Analysis and Intelligent Experimentation. World Scientific, Singapore.Google Scholar
Palmer, A. and Dempsey, J. 2009. Model tests in ice. Proc. 20th Int. Conf. Port Ocean Eng. Arctic Cond., POAC09. Paper POAC09-40.Google Scholar
Palmer, A. C. and Croasdale, K. R. 2013. Arctic Offshore Engineering. World Scientific Publishing.Google Scholar
Palmer, A. and Bjerkås M., 2013. Synchronization and the transition from intermittent to lockedin ice-induced vibration. Proc. 22nd Int. Conf. Port and Ocean Eng. Arctic Cond. (POAC), Espoo, Finland.Google Scholar
Paterson, W. S. B., 1994. The Physics of Glaciers. Pergamon, Toronto.Google Scholar
Peyton, H. R. 1968. Sea Ice Forces. In “Ice Pressures against Structures”, National Research Council of Canada, Ottawa, Canada, Technical Memorandum 92, pp. 117123.Google Scholar
Pikovsky A., Rosenblum M. and Kurths J. 2001. Synchronization: a Universal Concept in Nonlinear Sciences. Cambridge University Press.Google Scholar
Ponter, A. R. S., Palmer, A. C., Goodman, D. J., Ashby, M. F., Evans, A. G. and Hutchinson, J. W. 1983. The force exerted by a moving ice sheet on an offshore structure. Part 1. The creep mode. Cold Reg. Sci. Technol., 8:109118.Google Scholar
Popov, Y., Fadeyev, O., Kheisin, D. and Yakovlev, A. 1967. Strength of Ships Sailing in Ice. Sudostroenie Publishing House, Leningrad, 223 (in Russian).Google Scholar
Pounder, E. R. 1965. The Physics of Ice. Pergamon.Google Scholar
Rabotnov, Yu. N. 1969. Creep Problems of Structural Members. North-Holland, Amsterdam.Google Scholar
Ralph, F., McKenna, R., Crocker, G. and Croasdale, K. 2004. Pressure/area measurements from the Grappling Island iceberg impact experiment. Proc. 17th IAHR Int. Symp. Ice, St. Petersburg, Russia. 2125 June, 171178.Google Scholar
Ralph, F., Jordaan, I. J. Clark, P. and and Stuckey, P. 2006. Estimating probabilistic iceberg design loads on ships navigating in ice covered waters. Proc. ICETECH. Paper No. ICETECH06-05-006, Banff.Google Scholar
Ralph, F. and Jordaan, I. J. 2013. Probabilistic methodology for design of arctic ships. Proc. 32nd Int. Conf. Ocean Offshore Arctic Eng. (OMAE). Nantes, France. June 2013.Google Scholar
Ralph, F. E. 2016. Design of Ships and Offshore Structures: A Probabilistic Approach for Multi-Year Ice and Iceberg Impact Loads for Decision-making with Uncertainty. PhD thesis, Memorial University of Newfoundland.Google Scholar
Ralph, F., Jordaan, I. and Manuel, M. 2016. Application of upcrossing rate methodology to local design of icebreaking vessels. Proc. Arctic Tech. Conf., St. John’s, NL. Paper no. OTC-27366-MS.Google Scholar
Rice, J. R. 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35:379386.Google Scholar
Riska, K. 1987. On the Mechanics of the Ramming Interaction between a Ship and a Massive Ice Floe. Technical Research Centre of Finland, Espoo. Publications 43.Google Scholar
Riska, K. 1991 Observations of the line-like nature of ship–ice contact. Proc. 11th Int. Conf. Port Ocean Eng. Arctic Cond., POAC’91, St. John’s, Canada, 2428 September, vol. 2, 785811.Google Scholar
Rist, M. A., Murrell, S. A. F. and Sammonds, P. R. 1988. Experimental results on the failure of polycrystalline ice under triaxial stress conditions. Proc. 9th IAHR Int. Symp. Ice, IAHR 88, Sapporo, Japan. Vol.1:118127.Google Scholar
Rist, M. A., Jones, S. J. and Slade, T. D. 1994. Microcracking and shear fracture in ice. Ann. Glaciol. 19:131–137 1.Google Scholar
Ritch, R., St. John, J., Browne, R. and Sheinberg, R. 1999. Ice load impact measurements on the CCGS Louis S. St. Laurent during the 1994 Arctic Ocean crossing. Proc. 18th Int. Conf. Offshore Mech. Arctic Eng. (OMAE), July 1116, 1999, St. John’s Newfoundland, paper OMAE99/P&A-1141.Google Scholar
Ritch, R., Frederking, R., Johnston, M., Browne, R. and Ralph, F. 2008. Local ice pressure measured on a strain gauge panel during the CCGS Terry Fox bergy bit impact study. Cold Reg. Sci. Technol. 52, pp. 2949.Google Scholar
RMRS. 2014. Rules for the Classification and Construction of Sea-going Ships. vol. 1. Russian Maritime Register of Shipping, Saint-Petersburg.Google Scholar
Rogers, B. T., Hardy, M. D., Neth, V. W. and Metge, M. 1986. Performance monitoring of the Molikaq while deployed at Tarsuit P-45. Proc. Can. Conf. Mar. Geotech. Eng. 363383.Google Scholar
Rogers, B, Hardy, M. D., Jefferies, M. G, Wright, B. D. 1998. DynaMAC: Molikpaq Ice Loading. Report by Klohn-Crippen, PERD/CHC Report 14–62.Google Scholar
Sanderson, T. J. O. 1988. Ice Mechanics: Risks to Offshore Structures. Graham and Trotman.Google Scholar
Sandwell. 1991. Extensometer Calibration for Ice Load Measurement. Report 112451, for Gulf Canada Resources Ltd., May 1991.Google Scholar
Savage, S. B., Sayed, M. and Frederking, R. M. W. 1992. Two-dimensional extrusion of crushed ice. Part 2: Analysis. Cold Reg. Sci. Technol. 21:3747.Google Scholar
Sayed, M. and Frederking, R. M. W., 1992. Two-dimensional extrusion of crushed Ice. Part 1: Experimental. Cold Reg. Sci. Technol. 21:2536.Google Scholar
Schapery, R. A. 1964. Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena. J. Appl. Phys. 35(5):1451–1465.Google Scholar
Schapery, R. A. 1966. A theory of nonlinear thermoviscoelasticity based on irreversible thermodynamics. Proc. 5th U. S. Nat. Congr. Appl. Mech., ASME, 511530.Google Scholar
Schapery, R. A. 1968. On a thermodynamic constitutive theory and its application to various nonlinear materials. Proc. IUTAM Symp., East Kilbride, June, Ed. Bruno Boley. Springer. 259285.Google Scholar
Schapery, R. A. 1969. Further Development of a Thermodynamic Constitutive Theory: Stress Formulation. Purdue University Rept. AA&ES 692.Google Scholar
Schapery, R. A. 1975a. A theory of crack initiation and growth in viscoelastic media: I. theoretical development. Int. J. Fract. 11 (1):141–159.Google Scholar
Schapery, R. A. 1975b. A theory of crack initiation and growth in viscoelastic media II. Approximate methods of analysis. Int. J. Fract. 11(3):369–387.Google Scholar
Schapery, R. A. 1975c. A theory of crack initiation and growth in viscoelastic media III. Analysis of continous growth. Int. J. Fract. 11(4):549–562.Google Scholar
Schapery, R. A. 1981. On viscoelastic deformation and failure behavior of composite materials with distributed flaws. Adv. Aerosp. Struct. Mat., S. S. Wang and W. J. Renton (Eds.), ASME, AD-01, 520.Google Scholar
Schapery, R. A. 1984a. Time-dependent fracture: continuum aspects of crack growth. Ency. Mat. Sci. Eng. Bever, M. B. (Ed.), Pergamon Press, Oxford, 1986 pp. 50435053.Google Scholar
Schapery, R. A. 1984b. Correspondence principles and a generalized J integral for large deformation and fracture of viscoelastic media. Int. J. Fract., 25:195223.Google Scholar
Schapery, R. A. 1991a. Models for the deformation behavior of viscoelastic media with distributed damage and their applicability to ice. Ice–Structure Interaction, Proc. IUTAM/IAHR Symp. St. John’s, Newfoundland, Canada, August 1989, Springer-Verlag, 1991:181230.Google Scholar
Schapery, R. A. 1991b. Simplifications in the behavior of viscoelastic composites with growing damage. Inelastic Deformation of Composite Materials, Proc. IUTAM Symp., Troy, New York, 1990, Ed. G.J Dvorak 193214. Springer, New York.Google Scholar
Schapery, R. A. 1993. Viscoelastic deformation behavior of ice based on micromechanical models. Ice Mechanics, ASME, AMD. New York, vol. 163:1534.Google Scholar
Schapery, R. A. 1996. Characterization of nonlinear, time-dependent polymers and polymeric composites for durability analysis. Proc. Int. Conf. Prog. Durability Anal. Composite Syst., Brussels, July 1995. Balkema, Rotterdam.Google Scholar
Schapery, R. A. 1997a. Linear elastic and viscoelastic deformation behavior of ice. J. Cold Regions Eng., ASCE, 11(4):271–289.Google Scholar
Schapery, R. A. 1997b. Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-dependent Mat. 1:209–240Google Scholar
Schulson, E. M. 1999. The structure and mechanical behavior of ice. JOM, 51(2), pp. 2127.Google Scholar
Schulson, E. M. and Duval, P. 2009. Creep and Fracture of Ice. Cambridge University PressGoogle Scholar
Sibson, R. H. 1977. Fault rocks and fault mechanisms. J. Geol. Soc. Lond., 133:191213Google Scholar
Simonson E. R., Jones A. H. and Green S. J. 1975. High pressure mechanical properties of three frozen materials. Fourth Int. Conf. High Pressure, Kyoto, International Association for the Advancement of High Pressure Science and Technology, Physico-Chemical Society of Japan, Kyoto, 115121.Google Scholar
Singh, S. K. 1993. Mechanical Behaviour of Viscoelastic Material with Microstructure. Ph.D. Thesis, Memorial University of Newfoundland, St. John’s, Canada.Google Scholar
Singh, S. K., Jordaan, I. J., Xiao, J. and Spencer, P. A. 1995. The flow properties of crushed ice, Proc. 12th Int. Conf. Offshore Mech. Arctic Eng. (OMAE), Glasgow, U. K. Journal of Offshore Mechanics and Arctic Engineering, vol. 117, 1995, 276–282.Google Scholar
Singh, S. K. and Jordaan, I. J. 1996. Triaxial tests on crushed ice, Cold Reg. Sci. Technol., vol. 24, 153165.Google Scholar
Singh, S. K. and Jordaan, I. J. 1999. Constitutive behaviour of crushed ice. Proc. Symp. Inelasticity and Damage in Solids subject to Microstructural Change, Memorial University of Newfoundland, 1997: 367379. Extended version in Int. J. Fract. 1999;97(1–4):171–187.Google Scholar
Sinha, N. K. 1977. Technique for studying the structure of sea ice. J. Glaciol. 18, 315323.Google Scholar
Sinha, N. K. 1978. Short-term rheology of polycrystalline ice. J. Glaciol., 21(85):457–473.Google Scholar
Sinha, N. K. 1979. Grain boundary sliding in polycrystalline materials. Phil. Mag. 40(6): 825842.Google Scholar
Sinha, N. K. 1984. Uniaxial compressive strength of first-year and multi-year sea ice. Can. J.Civ. Eng. 11. 8291.Google Scholar
Sinha, N. K. 1988. Crack-enhanced creep in polycrystalline material: strain-rate sensitive strength and deformation of ice. J. Mater. Sci., 23:12, 441528.Google Scholar
Sinha, N. K. 1991. Kinetics of microcracking and dilatation in polycrystalline ice. Ice-Structure Interaction. Proc. IUTAM/IAHR Symp., St John’s, Canada, 1989. Springer-Verlag, Berlin, 6987.Google Scholar
Sinha, N. K., and Cai, B. 1992. Analysis of Ice from Medium-Scale Indentation Tests. NRC Laboratory Memorandum IME-CRE-LM-002.Google Scholar
Sjölind, S-G. 1987. A constitutive model for ice as a damaging viscoelastic material. Cold Reg. Sci. Technol. 14,3:247262.Google Scholar
Sneddon, I. N. 1964. Technical Report AFOSR 641989, North Carolina State University.Google Scholar
Spencer, P. A., Masterson, D. M., Lucas, J. and Jordaan, I. J. 1992 The flow properties of crushed ice 1: experimental observation and apparatus. Proc. 11th IAHR Int. Ice Symp., Banff, Alberta, vol. I, 258268.Google Scholar
St. John, J. W., Daley, C., Blount, H. and Glen, I. 1984. Ice Loads and Ship Response to Ice USCG Polar class Deployment. Technical report prepared for the Transport Canada.Google Scholar
St. John, J. and Minnick, P., 1993. Swedish Icebreaker Oden Ice Impact Load Measurements during International Arctic Ocean Expedition 1991; Instrumentation and Measurement Summary, STC Tech. Rep. 2682 to U.S Coast Guard Headquarters, May.Google Scholar
Stone, B. M., Jordaan, I. J., Jones, S. J. and McKenna, R. F. 1989. Damage of isotropic polycrystalline ice under moderate confining pressures, Proc. 10th. Int. Conf. Port Ocean Eng. Arctic Cond. (POAC), Lulea, Sweden, June, vol. 1, 408419.Google Scholar
Stone, B. M., Jordaan, I. J., Xiao, J. and Jones, S. J. 1997. Experiments on the damage process in ice under compressive states of stress, 1996, J. Glaciol. 43(143):11–25.Google Scholar
Strecker, K., Ribeiro, S. and Hoffmann, M.-J. 2005. Fracture toughness measurements of LPSSiC: a comparison of the indentation technique and the SEVNB method. Mater. Res., 8(2):121–124.Google Scholar
Stuckey, P., Ralph, F. and Jordaan, I. 2008. Iceberg design load methodology. Proc. 8th Int. Conf. Perform. Ships Structures Ice (ICETECH 2008). Banff, Canada, 2008.Google Scholar
Stuckey, P and Fuglem, M., 2014. Challenges in determining design iceberg impact loads for offshore structures. Proc. ICETECH 2014, Banff, AB, Canada.Google Scholar
Takeuchi, T., Masaki, T., Akagawa, S., et al., 1997. Medium-scale indentation tests (MSFIT) - ice failure characteristics in ice–structure interactions. Proc. 7th Int. Offshore Polar Eng Conf, Honolulu, Hawaii, ISOPE, vol. 2. 376.Google Scholar
Takeuchi, T., Akagawa, S., Kawamura, M., et al., 2000. Examination of factors affecting total ice load using medium field indentation test data. Proc. 10th Int. Offshore Polar Eng. Conf., Seattle, Washington, ISOPE, vol. 2, 607.Google Scholar
Taylor, R. S. 2010. Analysis of Scale Effect in Compressive Ice Failure and Implications for Design. PhD Thesis. Memorial University.Google Scholar
Taylor, R. S., Jordaan, I. J., Li, C. and Sudom, D. 2010. Local design pressures for structures in ice. Analysis of full-scale data. J. Offshore Mech. Arctic Eng., ASME, August;132(3), 031502-1-7.Google Scholar
Taylor, R. S. and Jordaan, I. J. 2011a. The Effects of non-simultaneous failure, pressure correlation, and probabilistic averaging on global ice load estimates. Proc. 21st Int. Offshore Polar Eng. Conf., Maui, Hawaii, USA, June 1924.Google Scholar
Taylor, R. S. and Jordaan, I. J. 2011b. Pressure-area relationships in compressive ice failure: application to Molikpaq. Proc. 21st Int. Conf. Port Ocean Eng. Arctic Cond. (POAC), July 1014, Montréal, Canada. Paper no. POAC11-158.Google Scholar
Taylor, R. S. and Jordaan, I. J. 2015. Probabilistic fracture mechanics analysis of spalling during edge indentation in ice. Eng. Fract. Mech. 134:242266.Google Scholar
Timco, G. W. and Frederking, R. M. W. 1986. The effects of anisotropy and microcracks on the fracture toughness of freshwater ice. Proc. 5th Int. Offshore Mech. Arctiv Eng. (OMAE). Tokyo, 1986.Google Scholar
Tunik, A. L. 1991. Impact ice pressure: more questions than answers. Ice–Structure Interaction. Proc. IUTAM/IAHR Symposium, St John’s, Canada, 1989. Springer-Verlag, Berlin, 693714.Google Scholar
Turner, J. 2018. Constitutive Behaviour of Ice Under Compressive States of Stress and its Application to Ice-Structure Interactions. PhD thesis, Memorial University of Newfoundland.Google Scholar
Urabe, N., Iwasaki, T. and Yoshitake, A. (1980). Fracture toughness of sea ice. Cold Reg. Sci. Technol. 3:2937.Google Scholar
Urai, J. L., Means, W. D. and Lister, G. S. 1986. Dynamic recrystallization of minerals. Mineral and Rock Deformation: Laboratory Studies: The Paterson Volume. American Geophysical Union, 161199.Google Scholar
Vanmarcke, E. 1983. Random Fields: Analysis and Synthesis. MIT Press, Cambridge Mass.Google Scholar
Wang, Y. S. 1979. Crystallographic studies and strength tests of field ice in the Alaskan Beaufort Sea. Proc. 5th Int. Conf. Port Ocean Eng. Arctic Cond. (POAC’79), 651655.Google Scholar
Wang, Y. S. and Poplin, J. P. 1986. Laboratory compressive tests of sea ice at slow strain rates from a field test program. Proc. 5th Int. Offshore Mech. Arctic Eng. (OMAE 86), Tokyo, vol. 4, 379384.Google Scholar
Weeks, W. F. 2010. On Sea Ice. University of Alaska Press.Google Scholar
Weertman, J. 1969. Effects of cracks on creep rate. Q. Trans. ASM, 62(2): 502511.Google Scholar
Weibull, W. 1939. A Statistical Theory Of The Strength Of Materials. Ingeniörsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Förlag, Stockholm.Google Scholar
Weibull, W. 1951. A statistical distribution function of wide applicability. J. Appl. Mech., 18.Google Scholar
Weiss, J. and Schulson, E. M. 1995. The failure of fresh-water granular ice under multiaxial compressive loading. Acta Metal. Mat. 43, 23032315.Google Scholar
Wells, J., Jordaan, I., Derradji-Aouat, A. and Taylor, R. 2011. Small-scale laboratory experiments on the indentation failure of polycrystalline ice in compression: main results and pressure distribution. Cold Reg. Sci. Technol. 65 314325.Google Scholar
Widianto, W., Khalifa, J., Younan, A., Karlsson, T., Stuckey, P. and Gjorven, A. 2013. Design of Hebron gravity based structure for iceberg impact. Proc. 23rd Int. Offshore Polar Eng. Conf., vol. 1. Anchorage, Alaska, USA, 2013.Google Scholar
Wilkinson, D. S. and Ashby, M. F. 1975. Pressure sintering by power-law creep. Acta Metal. 23, 12771285.Google Scholar
Williams, M. L. 1957. On the stress distribution at the base of a stationary crack. J. Appl. Mech., 24:109114.Google Scholar
Woytowich, R. 2003. Riveted hull joint design in RMS Titanic and other pre–World War I ships. Mar. Tech. 40 (2):82–92Google Scholar
Xiao, J. (Jing). 1991. Finite Element Modelling of Damage Processes in Ice-Structure Interaction. M.Eng Thesis, Memorial University of Newfoundland, 98.Google Scholar
Xiao, J., Jordaan, I. J., McKenna, R. F. and Frederking, R. M. W. 1991. Finite element modelling of spherical indentation tests on ice. Proc. 11th. Int. Conf. Port Ocean Eng. Arctic Cond., vol. 1, St. John’s, September 2428, 471485.Google Scholar
Xiao, J., Jordaan, I. J. and Singh, S. K. 1992. Pressure melting and friction in ice–structure interaction. Proc. 11th IAHR Int. Ice Symp., Banff, Alberta, vol. 3, 12551268.Google Scholar
Xiao, J. and Jordaan, I. J. 1996. Application of damage mechanics to ice failure in compression. Cold Reg. Sci. Technol. 24:305322.Google Scholar
Xiao, J. (Jing) 1997. Damage and Fracture of Brittle Viscoelastic Solids with Application to Ice Load Models. Doctoral thesis, Memorial University of Newfoundland, 187.Google Scholar
Zou, B., Xiao, J. and Jordaan, I. J. 1996. Ice fracture and spalling in ice-structure interaction. Cold Reg. Sci. Technol. 24 (2): 213220.Google Scholar
Zou, B (Bin). 1996. Ships in Ice: the Interaction Process and Principles of Design. Doctoral thesis, Memorial University of Newfoundland, 181.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×