Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T17:13:46.474Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  22 June 2018

A. A. Ivanov
Affiliation:
Imperial College London
Get access
Type
Chapter
Information
The Mathieu Groups
, pp. 166 - 169
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M., Aschbacher, Sporadic Groups, Cambridge University Press, Cambridge, 1994. (Cited on page 6.)Google Scholar
M., Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 2000. (Cited on page 93.)Google Scholar
M., Aschbacher and Y., Segev, Extending morphisms of groups and graphs, Ann. Math. 135 (1992), 297–323. (Cited on page 11.)Google Scholar
A. E., Brouwer, The uniqueness of the near hexagon on 759 points, in Finite Geometries, ed. N. L. Johnson, M. J., Kallaher and C. T., Long, Marcel Dekker, New York, 1982, pp. 47–60. (Cited on page 6.)Google Scholar
A. E., Brouwer, A. M., Cohen and A., Neumeier, Distance Regular Graphs, Springer, Berlin, 1989, p. 386. (Cited on page 102.)Google Scholar
W., Burnside, Theory of Groups of Finite Order, second edition, Cambridge University Press, Cambridge, 1911. (Cited on page 108.)Google Scholar
C., Choi, On subgroups of M24. I: Stabilizers of subsets, Trans. Amer. Math. Soc. 167 (1972), 1–27. (Cited on page 77.)Google Scholar
C., Choi, On subgroups of M24. II: The maximal subgroups of M24. Trans. Amer. Math. Soc. 167 (1972), 29–47. (Cited on page 77.)Google Scholar
J. H., Conway, Three lectures on exceptional groups, in Finite Simple Groups, ed. M. B., Powell and G., Higman, Academic Press, New York, 1971, pp. 215–247. (Cited on page 23.)Google Scholar
J. H., Conway, The Golay Codes and the Mathieu Groups, in Sphere Packings, Lattices and Groups, ed. J., Conway and N. J. A., Sloane, Springer, New York, 1988, pp. 299–330. (Cited on page xi.)Google Scholar
A., Delgado, D., Goldschmidt and B., Stellmacher, Groups and Graphs: New Results and Methods, Birkhäuser, Basel, 1985. (Cited on page 11.)Google Scholar
P., Dembowski, Finite Geometries, Springer, Berlin, 1968. (Cited on page 83, 156.)Google Scholar
L. E., Dickson, Linear Groups: With an Exposition of the Galois Field Theory, Dover Publications, New York, 1958. (Cited on page 90.)Google Scholar
J. D., Dixon and B., Mortimer, Permutation Groups, Springer, Berlin, 1996. (Cited on page 6.)Google Scholar
D. Z., Djoković and G. L., Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory (B) 29 (1980), 195–230. (Cited on page 141.)Google Scholar
T., Eguchi, H., Ooguri and Y., Tachikawa, Notes on the K3 surface and the Mathieu group M24. Exper. Math. 20 (2011), 91–96. (Cited on page 105, 139.)Google Scholar
G., Frobenius, Über die Charaktere der mehrfach transitiven Gruppen, Sitzungsber. Königl. Preuß. Akad. Berlin (1904), 558–571. (Cited on page 105.)Google Scholar
T., Gannon, Much ado about Mathieu, Adv. Math. 301 (2016), 322–358. (Cited on page 139.)Google Scholar
M. J. E., Golay, Notes on digital coding, Proc. IRE 37 (1949), 657. (Cited on page 6.)Google Scholar
D. M., Goldschmidt, Automorphisms of trivalent graphs, Ann. Math. 111 (1980), 377–406. (Cited on page 10, 147.)Google Scholar
D., Gorenstein, Finite Simple Groups. An Introduction to Their Classification, Springer, Berlin, 1982. (Cited on page 133.)Google Scholar
R. L., Griess, The friendly giant, Invent. Math. 69 (1982), 1–102. (Cited on page 133.)Google Scholar
M., Hall, Note on the Mathieu group M12, Arch. Math. 13 (1962), 334–340. (Cited on page 88.)Google Scholar
D., Held, The simple groups related to M24, J. Algebra 13 (1969), 253–296. (Cited on page 120, 121.)Google Scholar
C., Hoffman and S., Shpectorov, New geometric presentations for Aut G2(3) and G2(3), Bull. Belg. Math. Soc. 12 (2005), 813–826. (Cited on page 155.)Google Scholar
A. A., Ivanov, Geometry of Sporadic Groups I, Cambridge University Press, Cambridge, 1999. (Cited on page xi, 6, 96.)Google Scholar
A. A., Ivanov, Y-groups via transitive extensions, J. Algebra 218 (1999), 412–435. (Cited on page xi.)Google Scholar
A. A., Ivanov, J4, Oxford University Press, Oxford, 2004. (Cited on page xi, 117.)Google Scholar
A. A., Ivanov, The Monster Group and Majorana Involutions, Cambridge University Press, Cambridge, 2009. (Cited on page xi, 117.)Google Scholar
A. A., Ivanov and U., Meierfrankenfeld, A computer-free construction of J4, J. Algebra 219 (1999), 113–172. (Cited on page 105.)Google Scholar
A. A., Ivanov and S. V., Shpectorov, A geometry for the O'Nan–Sims group connected to the Petersen graph, Russian Math. Surveys 41 (1986), 211–212. (Cited on page 133.)Google Scholar
A. A., Ivanov and S. V., Shpectorov, The P-geometry for M23 has no nontrivial 2-coverings, Europ. J. Combin. 10 (1990), 347–362. (Cited on page 79.)Google Scholar
A. A., Ivanov and S. V., Shpectorov, Applications of group amalgams to algebraic graph theory, in Investigation in Algebraic Theory of Combinatorial Objects, ed. I. A., Faradzev, A. A., Ivanov, M. H., Klin and A. J., Woldar, Kluwer, Dordrecht, 1994, pp. 417–442. (Cited on page 11.)Google Scholar
A. A., Ivanov and S. V., Shpectorov, Geometry of Sporadic Groups II, Cambridge University Press, Cambridge, 2002 (Cited on page xi.)Google Scholar
A. A., Ivanov and S. V., Shpectorov, Amalgams determined by locally projective actions, Nagoya Math. J. 176 (2004), 19–98. (Cited on page 142.)Google Scholar
W. M., Kantor, Automorphism groups of Hadamard matrices, J. Comb. Theory 6 (1969), 279–281. (Cited on page 89.)Google Scholar
S., Kondo, Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces, Duke. Math. J. 92 (1998), 593–603. (Cited on page 137.)Google Scholar
J. H., van Lint, Introduction to Coding Theory, third edition, Springer, Berlin, 1999. (Cited on page 95.)Google Scholar
É., Mathieu, Mémoire sur l'étude des fonctions de plusieurs quantités sur la manière de les former et sur les substitutions qui les laissent invariable. J. Math. Pure Appl., sér. II, 6 (1861), 241–328. (Cited on page 86.)Google Scholar
É., Mathieu, Sur la fonction cinq fois transitive de 24 quantités, J. Math. Pure Appl. 18 (1873), 25–46. (Cited on page 6.)Google Scholar
S., Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988), 183–221. (Cited on page 137.)Google Scholar
V. V., Nikulin, Konechnye gruppy avtomorfizmov kelerovykh poverkhostei tipa K3 [Finite groups of automorphisms of Kählerian surfaces of type K3], Trudy Mosk. Mat. Ob. [Trans. Moscow Math. Soc.] 38 (1980), 71–137. (Cited on page 137.)Google Scholar
M. E., O'Nan, Some evidence for the existence of a new simple group, Proc. London Math. Soc. 32 (1976), 421–479. (Cited on page 133.)Google Scholar
C., Parker and P., Rowley, On the non-commuting case for (S3, L3(2))-amalgams, J. Algebra 181 (1996), 267–285. (Cited on page 143.)Google Scholar
A., Pasini, Some remarks on covers and apartments, in Finite Geometries, ed. C. A., Baker and L. M., Batten, Marcel Dekker, New York, 1985, 233–250. (Cited on page 9.)Google Scholar
A., Pasini, Diagram Geometries, Oxford University Press, Oxford, 2006. (Cited on page 76.)Google Scholar
S., Rees and L. H., Soicher, An algorithmic approach to fundamental group and covers of combinatorial cell complexes, J. Symb. Comp. 29 (2000), 59–77. (Cited on page 13.)Google Scholar
M. A., Ronan, Covering and automorphisms of chamber systems, Europ. J. Comb. 1 (1980), 259–269. (Cited on page 13.)Google Scholar
M. A., Ronan, Locally truncated buildings and M24, Math. Z. 180 (1982), 469–501. (Cited on page 7, 73.)Google Scholar
M. A., Ronan and S. D., Smith, 2-Local geometries for some sporadic groups, in Proceedings of Symposia in Pure Mathematics 37 (Finite Groups), American Mathematical Society, 1980, pp. 283–289. (Cited on page 71.)Google Scholar
M. A., Ronan and G., Stroth, Minimal parabolic geometries for the sporadic groups, Europ. J. Combin. 5 (1984), 59–91. (Cited on page 74.)Google Scholar
J.-P., Serre, Arbres, amalgams, SL2, Astérisque 46, Société Mathématique de France, Paris, 1977. (Cited on page 116.)Google Scholar
J. P., Serre, Trees, Springer, New York, 1980. (Cited on page 11.)Google Scholar
E. E., Shult, lecture notes on coverings of graphs, Kansas State University, 1997. (Cited on page xi.)Google Scholar
J. G., Thompson, Finite dimensional representations of free products with an amalgamated subgroup, J. Algebra 69 (1981), 146–149. (Cited on page 14.)Google Scholar
J., Tits, Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. A38 (1986), 367–387. (Cited on page 9.)Google Scholar
V. I., Trofimov, Vertex stabilizers of locally projective groups of automorphisms of graphs: A summary, in Groups, Combinatorics and Geometry, ed. A. A., Ivanov, M. W., Liebeck and J., Saxl, World Scientific, River Edge, NJ, 2003, pp. 313–326 (Cited on page 142.)Google Scholar
W. T., Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43 (1947), 459–474. (Cited on page 141.)Google Scholar
R., Weiss, Elations of graphs, Acta Math. Acad. Scient. Hungary 34 (1979), 101–103. (Cited on page 146.)Google Scholar
E., Witt, Über Steinersche Systeme, Abh. Math. Seminar Hamburg 12 (1938), 265–275. (Cited on page 6.)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • A. A. Ivanov, Imperial College London
  • Book: The Mathieu Groups
  • Online publication: 22 June 2018
  • Chapter DOI: https://doi.org/10.1017/9781108555289.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • A. A. Ivanov, Imperial College London
  • Book: The Mathieu Groups
  • Online publication: 22 June 2018
  • Chapter DOI: https://doi.org/10.1017/9781108555289.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • A. A. Ivanov, Imperial College London
  • Book: The Mathieu Groups
  • Online publication: 22 June 2018
  • Chapter DOI: https://doi.org/10.1017/9781108555289.012
Available formats
×