Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T19:42:45.441Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2012

Sergei Kuksin
Affiliation:
Ecole Polytechnique, Palaiseau
Armen Shirikyan
Affiliation:
Université de Cergy-Pontoise
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Ada75] R. A., Adams, Sobolev Spaces, Academic Press, New York, 1975. Cited on p. 35.
[AKSS07] A., Agrachev, S., Kuksin, A., Sarychev, and A., Shirikyan, On finite dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations, Ann. Inst. H. Poincaré Probab. Statist. 43 (2007), no. 4, 399–415. Cited on pp. 149, 172, 266.Google Scholar
[Ale43] A. D., Alexandroff, Additive set-functions in abstract spaces, Rec. Math. [Mat. Sbornik] N.S. 13(55) (1943), 169–238. Cited on p. 274.Google Scholar
[App04] D., Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2004. Cited on p. 59.
[Arn98] L., Arnold, Random Dynamical Systems, Springer- Verlag, Berlin, 1998. Cited on pp. 35, 193, 210.
[AS05] A. A., Agrachev and A. V., Sarychev, Navier–Stokes equations: controllability by means of low modes forcing, J. Math. Fluid Mech. 7 (2005), no. 1, 108–152. Cited on pp. 149, 265.Google Scholar
[AS06] A. A., Agrachev and A. V., Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Comm. Math. Phys. 265 (2006), no. 3, 673–697. Cited on pp. 149, 265, 266.Google Scholar
[Bat69] G. K., Batchelor, Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids Suppl. 11 (1969), 233–239. Cited on p. 243.Google Scholar
[Bat82] G. K., BatchelorThe theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, 1982. Cited on pp. xi, 168, 209, 243.
[Bax89] P., Baxendale, Lyapunov exponents and relative entropy for a stochastic flow of diffeomorphisms, Probab. theory Related Fields 81 (1989), no. 4, 521–554. Cited on p. 187.Google Scholar
[BBM00] J., Bourgain, H., Brezis, and P., Mironescu, Lifting in Sobolev spaces, J. Anal. Math. 80 (2000), 37–86. Cited on p. 292.Google Scholar
[BD95] F., Bethuel and F., Demengel, Extensions for Sobolev mappings between manifolds, Calc. Var. Partial Diff. Equ. 3 (1995), no. 4, 475–491. Cited on p. 292.Google Scholar
[BD07] V., Barbu and G. Da, Prato, Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations, Appl. Math. Optim. 56 (2007), no. 2, 145–168. Cited on p. 170.Google Scholar
[Ber00] D., Bernard, Influence of friction on the direct cascade of the 2d forced turbulence, Europhys. Lett. 50 (2000), 333–339. Cited on p. 244.Google Scholar
[BF09] Z., Brzeźniak and B., Ferrario, 2D Navier–Stokes equation in Besov spaces of negative order, Nonlinear Anal. 70 (2009), no. 11, 3902–3916. Cited on p. 100.Google Scholar
[Bil99] P., Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York, 1999. Cited on pp. 59, 61, 300.
[BIN79] O. V., Besov, V. P., Il′in, and S. M., Nikol′skii, Integral Representations of Functions and Imbedding Theorems. Vol. I, II, V. H. Winston & Sons, Washington, DC, 1979. Cited on p. 4.
[Bis81] J.-M., Bismut, Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions, Z. Wahrsch. Verw. Gebiete 56 (1981), no. 4, 469–505. Cited on p. 146.Google Scholar
[BK07] J., Bec and K., Khanin, Burgers turbulence, Phys. Rep. 447 (2007), no. 1–2, 1–66. Cited on pp. x, xiii, 110.Google Scholar
[BKL00] J., Bricmont, A., Kupiainen, and R., Lefevere, Probabilistic estimates for the two-dimensional stochastic Navier–Stokes equations, J. Statist. Phys. 100 (2000), no. 3–4, 743–756. Cited on pp. 92, 100.Google Scholar
[BKL01] J., Bricmont, A., Kupiainen, and R., Lefevere, Ergodicity of the 2D Navier–Stokes equations with random forcing, Comm. Math. Phys. 224 (2001), no. 1, 65–81. Cited on pp. 146, 170.Google Scholar
[BKL02] J., Bricmont, A., Kupiainen, and R., Lefevere, Exponential mixing of the 2D stochastic Navier–Stokes dynamics, Comm. Math. Phys. 230 (2002), no. 1, 87–132. Cited on pp. 147, 171.Google Scholar
[BMS11] W., Bolt, A. A., Majewski, and T., Szarek, An invariance principle for the law of the iterated logarithm for some Markov chains, Preprint (2011). Cited on p. 210.
[Bog98] V. I., Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. Cited on p. 272.
[Bog07] V. I., BogachevMeasure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. Cited on p. 35.
[Bol82] E., Bolthausen, The Berry–Esseén theorem for strongly mixing Harris recurrent Markov chains, Z. Wahrsch. Verw. Gebiete 60 (1982), no. 3, 283–289. Cited on p. 181.Google Scholar
[Bor12] A., Boritchev, Sharp estimates for turbulence in white-forced generalised Burgers equation, Preprint (2012), arXiv:1201.5567. Cited on pp. x, xiii, 110.
[Bow75] R., Bowen, Equilibrium States and the Ergodic theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin, 1975. Cited on p. 171.
[BPR06] P., Berti, L., Pratelli, and P., Rigo, Almost sure weak convergence of random probability measures, Stochastics 78 (2006), no. 2, 91–97. Cited on p. 274.Google Scholar
[Bri02] J., Bricmont, Ergodicity and mixing for stochastic partial differential equations, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) (Beijing), Higher Education Press, 2002, pp. 567–585. Cited on p. 172.
[Bro71] B. M., Brown, Martingale central limit theorems, Ann. Math. Statist. 42 (1971), 59–66. Cited on p. 289.Google Scholar
[BT73] A., Bensoussan and R., Temam, Équations stochastiques du type Navier Stokes, J. Funct. Anal. 13 (1973), 195–222. Cited on pp. 99, 257.Google Scholar
[BV92] A. V., Babin and M. I., Vishik, Attractors of Evolution Equations, North-Holland Publishing, Amsterdam, 1992. Cited on pp. 99, 232.
[BV11] F., Bouchet and A., Venaille, Statistical mechanics of two-dimensional and geophysical flows, Phys. Rep. (2011), to appear. Cited on p. 244.
[CC92] M., Capiński and N., Cutland, A simple proof of existence of weak and statistical solutions of Navier–Stokes equations, Proc. Roy. Soc. London Ser.A 436 (1992), no. 1896, 1–11. Cited on p. 257.Google Scholar
[CDF97] H., Crauel, A., Debussche, and F., Flandoli, Random attractors, J. Dynam. Diff. Equ. 9 (1997), no. 2, 307–341. Cited on p. 210.Google Scholar
[CF88] P., Constantin and C., Foiaş, Navier–Stokes Equations, University of Chicago Press, Chicago, IL, 1988. Cited on pp. 99, 145.
[CF94] H., Crauel and F., Flandoli, Attractors for random dynamical systems, Probab. theory Related Fields 100 (1994), no. 3, 365–393. Cited on p. 210.Google Scholar
[CFNT89] P., Constantin, C., Foias, B., Nicolaenko, and R., Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, New York, 1989. Cited on p. 99.
[CG94] M., Capiński and D., Gątarek, Stochastic equations in Hilbert space with application to Navier–Stokes equations in any dimension, J. Funct. Anal. 126 (1994), no. 1, 26–35. Cited on p. 267.Google Scholar
[Che98] J.-Y., Chemin, Perfect Incompressible Fluids, Oxford L ecture Series in Mathematics and its Applications, Vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. Cited on p. 224.
[CK08a] I., Chueshov and S., Kuksin, Random kick-forced 3D Navier–Stokes equations in a thin domain, Arch. Rational Mech. Anal. 188 (2008), 117–153. Cited on pp. 210, 247, 249, 250.Google Scholar
[CK08b] I., Chueshov and S., Kuksin, Stochastic 3D Navier-Stokes equations in a thin domain and its α-approximation, Phys.D 237 (2008), no. 10–12, 1352–1367. Cited on p. 251.Google Scholar
[Cra91] H., Crauel, Markov measures for random dynamical systems, Stoch. Stoch. Rep. 37 (1991), no. 3, 153–173. Cited on p. 210.Google Scholar
[Cra01] H., Crauel, Random point attractors versus random set attractors, J. London Math. Soc. (2) 63 (2001), no. 2, 413–427. Cited on p. 187.Google Scholar
[Cra02] H., Crauel, Random Probability Measures on Polish Spaces, Taylor & Francis, London, 2002. Cited on p. 271.
[CV77] C., Castaing and M., Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977. Cited on p. 271.
[CV02] V. V., Chepyzhov and M. I., Vishik, Attractors for Equations of Mathematical Physics, AMS Colloquium Publications, Vol. 49, AMS, Providence, RI, 2002. Cited on p. 210.
[DD02] G. Da, Prato and A., Debussche, Two-dimensional Navier–Stokes equations driven by a space-time white noise, J. Funct. Anal. 196 (2002), no. 1, 180–210. Cited on p. 100.Google Scholar
[DD03] G. Da, Prato and A., DebusscheErgodicity for the 3D stochastic Navier–Stokes equations, J. Math. Pures Appl. 82 (2003), 877–947. Cited on p. 254.Google Scholar
[DDL +07] J., Dedecker, P., Doukhan, G., Lang, J. R., León, S., Louhichi, and C., Prieur, Weak Dependence: With Examples and Applications, Springer, New York, 2007. Cited on p. 210.
[DDT05] G. Da, Prato, A., Debussche, and L., Tubaro, Coupling for some partial differential equations driven by white noise, Stoch. Process. Appl. 115 (2005), no. 8, 1384–1407. Cited on p. 170.Google Scholar
[Deb97] A., Debussche, On the finite dimensionality of random attractors, Stoch. Anal. Appl. 15 (1997), no. 4, 473–491. Cited on pp. 198, 210.Google Scholar
[Deb98] A., DebusscheHausdorff dimension of a random invariant set, J. Math. Pures Appl. (9) 77 (1998), no. 10, 967–988. Cited on pp. 198, 210.Google Scholar
[Den04] D., Denisov, Personal communication (2004). Cited on p. 210.
[DG95] C. R., Doering and J. D., Gibbon, Applied Analysis of the Navier–Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995. Cited on p. 51.
[DM78] C., Dellacherie and P.-A., Meyer, Probabilities and Potential, North-Holland, Amsterdam, 1978. Cited on p. 227.
[DM10] J., Dedecker and F., Merlevède, On the almost s ure invariance principle for stationary sequences of Hilbert-valued random variables. In: I., Berkes, R. C., Bradley, H., Dehling, M., Peligrad and R., Tichy (eds), Dependence in Probability, Analysis and Number Theory, Kendrick Press, Heber City, UT, 2010, pp. 157–175. Cited on p. 210.
[DO05] A., Debussche and C., Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation, J. Evol. Equ. 5 (2005), no. 3, 317–356. Cited on p. 172.Google Scholar
[DO06] A., Debussche and C., Odasso, Markov solutions for the 3D stochastic Navier–Stokes equations with state dependent noise, J. Evol. Equ. 6 (2006), no. 2, 305–324. Cited on pp. 254, 259, 260.Google Scholar
[Dob68] R. L., Dobrušin, Description of a random field by means of conditional probabilities and conditions for its regularity, Teor. Verojatnost. i Primenen 13 (1968), 201–229. Cited on p. 35.Google Scholar
[Dob74] R. L., Dobrušin, Conditions for the absence of phase transitions in one-dimensional classical systems, Math. USSR-Sb. 22 (1974), no. 1, 28–48. Cited on pp. 18, 35.Google Scholar
[Doe38] W., Doeblin, Exposé de la théorie d es chaînes simples constantes de Markov à un nombre fini d'états, Rev. Math. Union Interbalkan 2 (1938), 77–105. Cited on pp. 35, 101.Google Scholar
[Doe40] W., Doeblin, Éléments d'une théorie générale d es chaînes simples constantes de Markoff, Ann. Sci. École Norm. Sup. (3) 57 (1940), 61–111. Cited on pp. 35, 101.CrossRefGoogle Scholar
[Doo48] J. L., Doob, Asymptotic properties of Markoff transition probabilities, Trans. A mer. Math. Soc. 63 (1948), 393–421. Cited on pp. 146, 170.Google Scholar
[DRRW06] G. Da, Prato, M., Röckner, B. L., Rozovskii, and F.-Y., Wang, Strong solutions of stochastic generalized porous media equations: existence, uniqueness, and ergodicity, Comm. Partial Diff. Equ. 31 (2006), no. 1–3, 277–291. Cited on p. 170.Google Scholar
[Dud02] R. M., Dudley, Real Analysis and Probability, Cambridge University Press, Cambridge, 2002. Cited on pp. 6, 7, 13, 14, 15, 22, 30, 32, 35, 59, 84, 162, 223, 270, 273, 274, 287.
[DZ92] G. Da, Prato and J., Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. Cited on pp. 70, 75, 278, 287.
[DZ96] G. Da, Prato and J., Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. Cited on pp. 110, 146, 286.
[EH01] J.-P., Eckmann and M., Hairer, Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise, Comm. Math. Phys. 219 (2001), no. 3, 523–565. Cited on p. 170.Google Scholar
[Elw92] K. D., Elworthy, Stochastic flows on Riemannian manifolds. In: M., Pinsky and V., Wihstutz (eds), Diffusion Processes and Related Problems in Analysis, Vol. II (Charlotte, NC, 1990), Birkhäuser, Boston, MA, 1992, pp. 37–72. Cited on p. 146.
[EMS01] W., E, J. C., Mattingly, and Ya., Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation, Comm. Math. Phys. 224 (2001), no. 1, 83–106. Cited on pp. 100, 171, 172.Google Scholar
[ES00] W., E and Ya. G., Sinai, New results in mathematical and statistical hydrodynamics, Russian Math. Surveys 55 (2000), no. 4(334),635–666. Cited on p. 172.Google Scholar
[Fel71] W., Feller, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, New York, 1971. Cited on pp. 104, 110, 288.
[Fer97] B., Ferrario, Ergodic results for stochastic Navier-Stokes equation, Stoch. Stoch. Rep. 60 (1997), no. 3–4,271–288. Cited on p. 170.Google Scholar
[Fer99] B., Ferrario, Stochastic Navier–Stokes equations: analysis of the noise to have a unique invariant measure, Ann. Mat. Pura Appl. (4) 177 (1999),331–347. Cited on pp. 146, 170.CrossRefGoogle Scholar
[Fer03] B., Ferrario, Uniqueness result for the 2D Navier–Stokes equation with additive noise, Stoch. Stoch. Rep. 75 (2003), no. 6,435–442. Cited on p. 100.Google Scholar
[FG95] F., Flandoli and D., Gątarek, Martingale and stationary solutions for stochastic Navier–Stokes equations, Probab. theory Related Fields 102 (1995), no. 3, 367–391. Cited on pp. 257, 267.Google Scholar
[Fla94] F., Flandoli, Dissipativity and invariant measures for stochastic Navier–Stokes equations, NoDEA Nonlinear Diff. Equ. Appl. 1 (1994), no. 4, 403–423. Cited on p. 100.Google Scholar
[Fla97] F., Flandoli, Irreducibility of the 3-D stochastic Navier–Stokes equation, J. Funct. Anal. 149 (1997), no. 1, 160–177. Cited on p. 268.Google Scholar
[FM95] F., Flandoli and B., Maslowski, Ergodicity of the 2D Navier–Stokes equation under random perturbations, Comm. Math. Phys. 172 (1995), no. 1, 119–141. Cited on pp. 145, 146, 169, 170.Google Scholar
[FMRT01] C., Foias, O., Manley, R., Rosa, and R., Temam, Navier–Stokes Equations and Turbulence, Encyclopedia of M athematics and its Applications, Vol. 83, Cambridge University Press, Cambridge, 2001. Cited on p. ix.
[FP67] C., Foiaş and G., Prodi, Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova 39 (1967), 1–34. Cited on p. 99.Google Scholar
[FR08] F., Flandoli and M., Romito, Markov selections for the 3D stochastic Navier–Stokes equations, Probab. theory Related Fields 172 (2008), 407–458. Cited on pp. 257, 261, 262, 263.Google Scholar
[Fri95] U., Frisch, Turbulence. the Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. Cited on pp. xi, 209.
[FT89] C., Foias and R., Temam, Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal. 87 (1989), no. 2, 359–369. Cited on p. 51.Google Scholar
[Gal02] G., Gallavotti, Foundations of Fluid Dynamics, Springer-Verlag, Berlin, 2002. Cited on p. xi.
[GK03] I., Gyöngy and N., Krylov, On the splitting-up method and stochastic partial differential equations, Ann. Probab. 31 (2003), no. 2, 564–591. Cited on p. 100.Google Scholar
[GM05] B., Goldys and B. M, aslowski, Exponential ergodicity for stochastic Burgers and 2D Navier–Stokes equations, J. Funct. Anal. 226 (2005), no. 1, 230–255. Cited on pp. 146, 170.Google Scholar
[Gor69] M. I., Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), 739–741. Cited on pp. 210, 290.Google Scholar
[GS80] Ĭ. Ī., Gīhman and A. V., Skorohod, The Theory of Stochastic Processes, Vol. I, Springer-Verlag, Berlin, 1980. Cited on p. 274.
[Hai02a] M., Hairer, Exponential mixing for a stochastic partial differential equation driven by degenerate noise, Nonlinearity 15 (2002), no. 2, 271–279. Cited on p. 170.Google Scholar
[Hai02b] M., Hairer, Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probab. Theory Related Fields 124 (2002), no. 3, 345–380. Cited on pp. 154, 171.Google Scholar
[Hai05] M., Hairer, Coupling stochastic PDEs, XIVth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ, 2005, pp. 281–289. Cited on p. 172.
[Har55] T. E., Harris, On chains of infinite order, Pacific J. Math. 5 (1955), 707–724. Cited on p.35.Google Scholar
[Har64] P., Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, 1964. Cited on p. 226.
[Has80] R. Z., Has′minskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980. Cited on p. 210.
[Hen81] D., Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981. Cited on p. 70.
[Hey73] C. C., Heyde, An iterated logarithm result for martingales and its application in estimation Theory for autoregressive processes, J. Appl. Probab. 10 (1973), 146–157. Cited on p. 288.Google Scholar
[HH80] P., Hall and C. C., Heyde, Martingale Limit Theory and Its Application, Academic Press, New York, 1980. Cited on p. 181.
[HKL90] R., Hardt, D., Kinderlehrer, and F. H., Lin, The variety of configurations of static liquid crystals. In: Variational Methods (Paris, 1988), Progr. Nonlinear Differential Equations Appl., Vol. 4, Birkhäuser Boston, Boston, MA, 1990, pp. 115–131. Cited on p. 292.
[HM06] M., Hairer and J. C., Mattingly, Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing, Ann. Math. (2) 164 (2006), no. 3, 993–1032. Cited on pp. 149, 172.Google Scholar
[HM08] M., Hairer and J. C., Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations, Ann. Probab. 36 (2008), no. 6, 2050–2091. Cited on pp. 149, 172, 210.Google Scholar
[HM11] M., Hairer and J. C., Mattingly, A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electron. J. Probab. 16 (2011), no. 23, 658–738. Cited on pp. 149, 172.Google Scholar
[JS87] J., Jacod and A. N., Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987. Cited on p. 210.
[Jud63] V. I., Judovič, Non-stationary flows of an ideal incompressible fluid, Z. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 1032–1066. Cited on p. 224.Google Scholar
[KA82] L. V., Kantorovich and G. P., Akilov, Functional Analysis, Pergamon Press, Oxford, 1982. Cited on pp. 16, 22.
[KB37] N., Kryloff and N., Bogoliouboff, La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. Math. (2) 38 (1937), no. 1, 65–113. Cited on pp. 87, 100.Google Scholar
[KF75] A. N., Kolmogorov and S. V., Fomin, Introductory Real Analysis, Dover Publications, New York, 1975. Cited on p. 273.
[KH95] A., Katok and B., Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995. Cited on p. 100.
[Kif86] Y., Kifer, Ergodic Theory of Random Transformations, Birkhäuser, Boston, MA, 1986. Cited on p. 35.
[KP05] S., Kuksin and O., Penrose, A family of balance relations for the two-dimensional Navier–Stokes equations with random forcing, J. Statist. Phys. 118 (2005), no. 3–4, 437–449. Cited on p. 244.Google Scholar
[KP08] S., Kuksin and A., Piatnitski, Khasminskii–Whitham averaging for randomly perturbed KdV equation, J. Math. Pures Appl. (9) 89 (2008), no. 4, 400–428. Cited on p. 239.Google Scholar
[KPS02] S., Kuksin, A., Piatnitski, and A., Shirikyan, A coupling approach to randomly forced nonlinear PDEs, II, Comm. Math. Phys. 230 (2002), no. 1, 81–85. Cited on p. 171.Google Scholar
[Kra67] R. H., Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids 10 (1967), 1417–1423. Cited on p. 243.Google Scholar
[Kry73] N. V., Krylov, The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 691–708. Cited on pp. 254, 256, 260.Google Scholar
[Kry74] N. V., Krylov, Some estimates for the density of the distribution of a stochastic integral, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 228–248. Cited on p. 284.Google Scholar
[Kry80] N. V., Krylov, Controlled Diffusion Processes, Applications of Mathematics, Vol. 14, Springer-Verlag, New York, 1980. Cited on p. 284.
[Kry86] N. V., Krylov, Estimates of the maximum of the solution of a parabolic equation and estimates of the distribution of a semimartingale, Mat. Sb. (N.S.) 130(172) (1986), no. 2, 207–221, 284. Cited on p. 284.Google Scholar
[Kry87] N. V., Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel Publishing, Dordrecht, 1987. Cited on p. 284.
[Kry96] N. V., Krylov, Lectures on Elliptic and Parabolic Equations in Hölder Spaces, American Mathematical Society, Providence, RI, 1996. Cited on p. 253.
[Kry02] N. V., Krylov, Introduction to the Theory of Random Processes, Graduate Studies in Mathematics, Vol. 43, American Mathematical Society, Providence, RI, 2002. Cited on pp. 75, 79, 221, 278, 287.
[KS91] I., Karatzas and S. E., Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1991. Cited on pp. 22, 25, 35, 253, 254, 282, 287, 303.
[KS00] S., Kuksin and A., Shirikyan, Stochastic dissipative PDEs and Gibbs measures, Comm. Math. Phys. 213 (2000), no. 2, 291–330. Cited on pp. 157, 158, 170, 171.Google Scholar
[KS01a] S., Kuksin and A., Shirikyan, A coupling approach to randomly forced nonlinear PDE's.I, Comm. Math. Phys. 221 (2001), no. 2, 351–366. Cited on p. 171.Google Scholar
[KS01b] S., Kuksin and A., Shirikyan, Ergodicity for the randomly forced 2D Navier–Stokes equations, Math. Phys. Anal. Geom. 4 (2001), no. 2, 147–195. Cited on pp. 67, 100, 170.Google Scholar
[KS02a] S., Kuksin and A., Shirikyan, Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl. (9) 81 (2002), no. 6, 567–602. Cited on pp. 100, 147, 171.Google Scholar
[KS02b] S., Kuksin and A., Shirikyan, On dissipative systems perturbed by bounded random kick-forces, Ergodic Theory Dynam. Systems 22 (2002), no. 5, 1487–1495. Cited on p. 170.Google Scholar
[KS03] S., Kuksin and A., Shirikyan, Some limiting properties of randomly forced two-dimensional Navier–Stokes equations, Proc. Roy. Soc. Edinburgh Sect.A 133 (2003), no. 4, 875–891. Cited on pp. 92, 100, 210.Google Scholar
[KS04a] S., Kuksin and A., Shirikyan, On random attractors for systems of mixing type, Funktsional. Anal. i Prilozhen. 38 (2004), no. 1, 34–46, 95. Cited on p. 210.Google Scholar
[KS04b] S., Kuksin and A., Shirikyan, Randomly forced CGL equation: stationary measures and the inviscid limit, J. Phys.A 37 (2004), no. 12, 3805–3822. Cited on pp. 240, 244.Google Scholar
[Kuk02a] S., Kuksin, Ergodic theorems for 2D statistical hydrodynamics, Rev. Math. Phys. 14 (2002), no. 6, 585–600. Cited on pp. 172, 181, 210.Google Scholar
[Kuk02b] S., Kuksin, On exponential convergence to a stationary measure for nonlinear PDEs perturbed by random kick-forces, and the turbulence limit, Partial Differential Equations, American Mathematical Society Translation Series 2, Vol. 206, American Mathematical Society, Providence, RI, 2002, pp. 161–176. Cited on p. 171.
[Kuk04] S., Kuksin, The Eulerian limit for 2D statistical hydrodynamics, J. Statist. Phys. 115 (2004), no. 1–2, 469–492. Cited on p. 244.Google Scholar
[Kuk06a] S., Kuksin, Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions, European Mathematical Society (EMS), Zürich, 2006. Cited on p. xvi.
[Kuk06b] S., Kuksin, Remarks on the balance relations for the two-dimensional Navier–Stokes equation with random forcing, J. Statist. Phys. 122 (2006), no. 1, 101–114. Cited on pp. 216, 244.Google Scholar
[Kuk07] S., Kuksin, Eulerian limit for 2D Navier–Stokes equation and damped/driven KdV equation as its model, Tr. Mat. Inst. Steklova 259 (2007), Anal. i Osob. Ch. 2, 134–142. Cited on p. 244.Google Scholar
[Kuk08] S., Kuksin, On distribution of energy and vorticity for solutions of 2D Navier–Stokes equation with small viscosity, Comm. Math. Phys. 284 (2008), no. 2, 407–424. Cited on p. 244.Google Scholar
[Kuk10a] S., Kuksin, Damped-driven KdV and effective equations for long-time behaviour of its solutions, Geom. Funct. Anal. 20 (2010), no. 6, 1431–1463. Cited on p. 239.Google Scholar
[Kuk10b] S., Kuksin, Dissipative perturbations of KdV, In: Proceedings of the 16th International Congress on Mathematical Physics (Prague 2009), World Scientific, 2010, pp. 323–327. Cited on p. 244.
[Kuk12] S., Kuksin, Weakly nonlinear stochastic CGL equations, Ann. Inst. H. Poincaré Probab. Statist. (2012), to appear. Cited on pp. 239, 240.
[Kup10] A., Kupiainen, Ergodicity of two-dimensional turbulence, Preprint (2010), arXiv:1005.0587. Cited on p. 149.
[Lad59] O. A., Ladyženskaja, Solution ”in the large” of the nonstationary boundary value problem for the Navier–Stokes system with two space variables, Comm. Pure Appl. Math. 12 (1959), 427–433. Cited on p. 99.Google Scholar
[Lad63] O. A., Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1963. Cited on p. 99.
[Le 87] Y. Le, Jan, Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 1, 111–120. Cited on p. 210.Google Scholar
[Led86] F., Ledrappier, Positivity of the exponent for stationary sequences of matrices. In: L., Arnold and V., Wihstutz (eds), Lyapunov Exponents Proceedings (Bremen, 1984), Springer, Berlin, 1986, pp. 56–73. Cited on p. 210.
[Ler34] J., Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193–248. Cited on p. 99.Google Scholar
[Lio69] J.-L., Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. Cited on pp. 4, 35, 39, 99, 221.
[LM72] J.-L., Lions and E., Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, New York, 1972. Cited on pp. 35, 39, 221.
[LP59] J.-L., Lions and G., Prodi, Un théorème d'existence et unicité dans les équations de Navier–Stokes en dimension 2, C. R. Acad. Sci. Paris 248 (1959), 3519–3521. Cited on p. 99.Google Scholar
[LR06] J. A., Langa and J. C., Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl. (9) 85 (2006), no. 2, 269–294. Cited on pp. 198, 210.Google Scholar
[LS06] A., Lasota and T., Szarek, Lower bound technique in the Theory of a stochastic diff erential equation, J. Diff. Equ. 231 (2006), no. 2, 513–533. Cited on p. 171.Google Scholar
[LY94] A., Lasota and J. A., Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), no. 1, 41–77. Cited on p. 171.Google Scholar
[Mat99] J. C., Mattingly, Ergodicity of 2D Navier–Stokes equations with random forcing and large viscosity, Comm. Math. Phys. 206 (1999), no. 2, 273–288. Cited on pp. 100, 170.Google Scholar
[Mat02a] J. C., Mattingly, The dissipative scale of the stochastic Navier–Stokes equation: regularization and analyticity, J. Statist. Phys. 108 (2002), no. 5–6, 1157–1179. Cited on p. 100.Google Scholar
[Mat02b] J. C., Mattingly, Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics, Comm. Math. Phys. 230 (2002), no. 3, 421–462. Cited on pp. 20, 100, 147, 171.Google Scholar
[Mat03] J. C., Mattingly, On recent progress for the stochastic Navier–Stokes equations, Journées ”Équations aux Dérivées Partielles”, Univ. Nantes, Nantes, 2003, pp. Exp. No. XI, 52. Cited on p. 172.
[Maz85] V. G., Maz'ja, Sobolev Spaces, Springer-Verlag, Berlin, 1985. Cited on p. 35.
[McK69] H. P., McKean, Stochastic Integrals, Academic Press, New York, 1969. Cited on pp. 71, 79.
[Mey66] P.-A., Meyer, Probability and Potentials, Blaisdell Publishing Co. & Ginn and Co., Waltham, MA, 1966. Cited on p. 287.
[MP06] J. C., Mattingly and É., Pardoux, Malliavin calculus for the stochastic 2D Navier–Stokes equation, Comm. Pure Appl. Math. 59 (2006), no. 12, 1742–1790. Cited on pp. 149, 172.Google Scholar
[MT93] S. P., Meyn and R. L., Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993. Cited on p. 210.
[MY02] N., Masmoudi and L.-S., Young, Ergodic Theory of infinite dimensional systems with applications to dissipative parabolic PDEs, Comm. Math. Phys. 227 (2002), no. 3, 461–481. Cited on p. 171.Google Scholar
[Ner08] V., Nersesyan, Polynomial mixing for the complex Ginzburg–Landau equation perturbed by a random force at random times, J. Evol. Equ. 8 (2008), no. 1, 1–29. Cited on pp. 153, 172.Google Scholar
[Nov05] D., Novikov, Hahn decomposition and Radon–Nikodym theorem with a parameter, arXiv:math/0501215 (2005). Cited on p. 20.
[Oda07] C., Odasso, Exponential mixing for the 3D stochastic Navier–Stokes equations, Comm. Math. Phys. 270 (2007), no. 1, 109–139. Cited on pp. 254, 260.Google Scholar
[Oda08] C., Odasso, Exponential mixing for stochastic PDEs: the non-additive case, Probab. Theory Related Fields 140 (2008), no. 1–2, 41–82. Cited on pp. 20, 147, 154, 172.Google Scholar
[Øks03] B., Øksendal, Stochastic Differential Equations, Springer-Verlag, Berlin, 2003. Cited on pp. 75, 282, 285, 286, 301.
[Ons49] L., Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6 (1949), no. 2, 279–287. Cited on p. 242.Google Scholar
[Pit74] J. W., Pitman, Uniform rates of convergence for Markov chain transition probabilities, Z. Wahrsch. Verw. Gebiete 29 (1974), 193–227. Cited on p. 35.Google Scholar
[PSS89] N. I., Portenko, A. V., Skorokhod, and V. M., Shurenkov, Markov Processes, Current Problems in Mathematics. Fundamental Directions, Vol. 46 (Russian), Akad. Nauk SSSR Vsesoyuz. I nst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 5–245. Cited on pp. 104, 110.
[Rev84] D., Revuz, Markov Chains, North-Holland, Amsterdam, 1984. Cited on p. 35.
[Rio00] E., Rio, Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants, Springer-Verlag, Berlin, 2000. Cited on pp. 58, 210.
[Rom08] M., Romito, Analysis of equilibrium states of Markov solutions to the 3D Navier–Stokes equations driven by additive noise, J. Statist. Phys. 131 (2008), no. 3, 415–444. Cited on pp. 257, 262.Google Scholar
[Roz90] B. L., Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Non-Linear Filtering, Kluwer, Dordrecht, 1990. Cited on p. 278.
[RS93] G., Raugel and G. R., Sell, Navier–Stokes equations on thin 3D domains, I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), no. 3, 503–568. Cited on p. 246.Google Scholar
[Rue68] D., Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys. 9 (1968), 267–278. Cited on p. 171.Google Scholar
[Rut96] M. A., Rutgers, X-I, Wu, and W. I., Goldburg. The onset of 2-D grid generated turbulence in flowing soap films, Phys. Fluids 8 (1996), no. 9. Cited on p. xv.Google Scholar
[RY99] D., Revuz and M., Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1999. Cited on pp. 25, 31, 287.
[Sei97] J., Seidler, Ergodic behaviour of stochastic parabolic equations, Czechoslovak Math. J. 47(122) (1997), no. 2, 277–316. Cited on p. 146.Google Scholar
[Shi02] A., Shirikyan, Analyticity of solutions of randomly perturbed two-dimensional Navier–Stokes equations, Russian Math. Surveys 57 (2002), no. 4, 785–799. Cited on pp. 82, 92, 100.Google Scholar
[Shi04] A., Shirikyan, Exponential mixing for 2D Navier–Stokes equations perturbed by an unbounded noise, J. Math. Fluid Mech. 6 (2004), no. 2, 169–193. Cited on pp. 100, 172.Google Scholar
[Shi05a] A., Shirikyan, Ergodicity for a class of Markov processes and applications to randomly forced PDE's, I, Russian J. Math. Phys. 12 (2005), no. 1, 81–96. Cited on p. 172.Google Scholar
[Shi05b] A., Shirikyan, Some mathematical problems of statistical hydrodynamics. In: XIVth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ, 2005, pp. 304–311. Cited on p. 172.
[Shi06a] A., Shirikyan, Approximate controllability of three-dimensional Navier–Stokes equations, Comm. Math. Phys. 266 (2006), no. 1, 123–151. Cited on p. 267.Google Scholar
[Shi06b] A., Shirikyan, Ergodicity for a class of Markov processes and applications to randomly forced PDE's, II, Discrete Contin. Dyn. Syst. Ser.B 6 (2006), no. 4, 911–926 (electronic). Cited on p. 172.Google Scholar
[Shi06c] A., Shirikyan, Law of large numbers and central limit theorem for randomly forced PDE's, Probab. Theory Related Fields 134 (2006), no. 2, 215–247. Cited on pp. 181, 210.Google Scholar
[Shi07a] A., Shirikyan, Contrôlabilité exacte en projections pour les équations de Navier–Stokes tridimensionnelles, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 4, 521–537. Cited on p. 267.Google Scholar
[Shi07b] A., Shirikyan, Qualitative properties of stationary measures for three-dimensional Navier–Stokes equations, J. Funct. Anal. 249 (2007), 284–306. Cited on pp. 261, 267.Google Scholar
[Shi08] A., Shirikyan, Exponential mixing for randomly forced partial differential equations: method of coupling, Instability in Models Connected with Fluid Flows, II, Int. Math. Ser. (N.Y.), vol. 7, Springer, New York, 2008, pp. 155–188. Cited on pp. 147, 155, 172.
[Shi11a] A., Shirikyan, Control and mixing for 2D Navier–Stokes equations with space-time localised noise, Preprint (2011), arXiv:1110.0596. Cited on p. 172.
[Shi11b] A., Shirikyan, Local times for solutions of the complex Ginzburg–Landau equation and the inviscid limit, J. Math. Anal. Appl. 384 (2011), 130–137. Cited on pp. 240, 244.Google Scholar
[Sin91] Ya. G., Sinai, Two results concerning asymptotic behavior of solutions of the Burgers equation with force, J. Statist. Phys. 64 (1991), no. 1–2, 1–12. Cited on p. 170.Google Scholar
[Soh01] H., Sohr, The Navier–Stokes Equations, Birkhäuser, Basel, 2001. Cited on pp. 99, 261.
[Ste70] E. M., Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. Cited on pp. 4, 117, 217.
[Ste94] L., Stettner, Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), no. 2, 103–114. Cited on p. 146.Google Scholar
[Str93] D., Stroock, Probability. An Analytic View point, Cambridge University Press, Cambridge, 1993. Cited on pp. 28, 138.
[SV79] D., Stroock and S. R. S., Varadhan, Multidimensional Diffusion Processes, Springer, Berlin, 1979. Cited on pp. 254, 255, 256, 257.
[Sza97] T., Szarek, Markov operators acting on Polish spaces, Ann. Polon. Math. 67 (1997), no. 3, 247–257. Cited on p. 171.Google Scholar
[Tay97] M. E., Taylor, Partial Differential Equations, Vols. I–III, Springer-Verlag, New York, 19961997. Cited on pp. 4, 35, 38, 51, 225.
[Tem68] R., Temam, Une méthode d'approximation de la solution deséquations de Navier–Stokes, Bull. Soc. Math. France 96 (1968), 115–152. Cited on p. 99.Google Scholar
[Tem79] R., Temam, Navier–Stokes Equations, North-Holland, Amsterdam, 1979. Cited on pp. 38, 43, 47, 99.
[Tem88] R., Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. Cited on p. 99.
[TZ96] R., Temam and M., Ziane, Navier–Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Diff. Equ. 1 (1996), no. 4, 499–546. Cited on p. 246.Google Scholar
[VF88] M. I., Vishik and A. V., Fursikov, Mathematical Problems in Statistical Hydromechanics, Kluwer, Dordrecht, 1988. Cited on pp. x, 77, 99, 100, 131, 257, 267.
[Vio75] M., Viot, Équations aux dérivées partielles stochastiques: formulation faible. In: Séminaire sur les Équations aux Dérivées Partielles (1974–1975), III, Exp. No. 1, Collège de France, Paris, 1975, p. 16. Cited on p. 99.
[Vio76] M., Viot, Solutions faibles d'équations aux dérivées partielles stochastiques non linéaires, Thèses de Doctorat (1976), Paris–VI. Cited on p. 99.
[VKF79] M. I., Vishik, A. I., Komech, and A. V., Fursikov, Some mathematical problems of statistical hydromechanics, Uspekhi Mat. Nauk 34 (1979), no. 5(209), 135–210. Cited on p. 99.Google Scholar
[Yos95] K., Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995. Cited on pp. 4, 35.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Sergei Kuksin, Armen Shirikyan, Université de Cergy-Pontoise
  • Book: Mathematics of Two-Dimensional Turbulence
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139137119.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Sergei Kuksin, Armen Shirikyan, Université de Cergy-Pontoise
  • Book: Mathematics of Two-Dimensional Turbulence
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139137119.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Sergei Kuksin, Armen Shirikyan, Université de Cergy-Pontoise
  • Book: Mathematics of Two-Dimensional Turbulence
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139137119.011
Available formats
×