Book contents
- Frontmatter
- Contents
- Preface
- List of Participants
- I INTRODUCTION
- II THE INNER PARSEC
- III THE CIRCUMNUCLEAR REGION
- IV GAS DYNAMICS AND STAR FORMATION IN BARRED AND NORMAL GALAXIES
- V NUCLEAR GAS AND LARGE-SCALE PROPERTIES OF AGN AND STARBURST HOSTS
- VI HOST GALAXY-AGN-NUCLEAR STARBURST CONNECTION
- VII GALAXY INTERACTIONS AND INDUCED ACTIVITY
- Induced Starbursts in Mergers (Invited paper)
- Dynamics of Gas in Major Mergers (Invited paper)
- Kinematic Instabilities, Interactions, and Fueling of Seyfert Nuclei
- Stellar Velocity Dispersion in NGC 6240 and Arp 220
- Possible Atomic-to-Molecular Gas Transition in the Center of Merging Galaxies
- SOs with Counter-Rotating Gas: NGC 3941 and NGC 7332
- Evidence for a Tidal Interaction in the Seyfert Galaxy Markarian 315
- Interaction between the Galaxies IC 2163 and NGC 2207 358
- The NGC 5775/4 Interacting System
- High Resolution CO and HI Observations of an Interacting Galaxy NGC 3627.
- Mass-Transfer Induced Starbursts in Interacting Galaxies
- First HST Images of a Compact Group: Seyfert's Sextet (Poster paper)
- The X-Ray Structure of Merging Galaxies (Poster paper)
- The Galaxy Activity-Interaction Connection in Low Luminosity Radio Galaxies (Poster paper)
- Multi-Wavelength Observations of “Interactive” Galaxies (Poster paper)
- Seyfert Nuclei in Interacting/Merging Galaxies (Poster paper)
- Where Is the Induced Star Formation in Interacting Galaxies? (Poster paper)
- Interacting Galaxy Pairs and Seyfert Activity (Poster paper)
- Searching for Mass Transfer in E+S Pairs (Poster paper)
- K542, a Hierarchical Pair with Mass Transfer? (Poster paper)
- Kar 29: Tidal Effects from a Second or Third Party (Poster paper)
- The Fundamental Plane and Early-Type Galaxies in Binaries (Poster paper)
- Dumbbell Galaxies and Multiple Nuclei in Rich Clusters: Radio Data (Poster paper)
- Tidal Deformation of Galaxies in Binary Systems (Poster paper)
- Formation of Dwarf Galaxies During Close Tidal Encounters (Poster paper)
- Gas Fueling to the Central 10 pc in Merging Galaxies (Poster paper)
- Gas in Shell Galaxies: Non-Spherical Potentials (Poster paper)
- Merging and Multiply–Nucleated Brightest Cluster Galaxies (Poster paper)
- Self–Gravitating Simulations of M51 Multiple Encounter History (Poster paper)
- Formation of Ring Structures through N–Body Simulations (Poster paper)
- Self–Consistent Evolution of Ring Galaxies (Poster paper)
- Interacting Galaxy Pair Arp 86 (Poster paper)
- VIII GAS DYNAMICS IN ELLIPTICALS
- IX AGN AND STARBURST HOSTS AT LARGE REDSHIFTS
- X CONFERENCE SUMMARY
- Subject Index
- Object Index
- Author Index
Gas in Shell Galaxies: Non-Spherical Potentials (Poster paper)
Published online by Cambridge University Press: 05 May 2010
- Frontmatter
- Contents
- Preface
- List of Participants
- I INTRODUCTION
- II THE INNER PARSEC
- III THE CIRCUMNUCLEAR REGION
- IV GAS DYNAMICS AND STAR FORMATION IN BARRED AND NORMAL GALAXIES
- V NUCLEAR GAS AND LARGE-SCALE PROPERTIES OF AGN AND STARBURST HOSTS
- VI HOST GALAXY-AGN-NUCLEAR STARBURST CONNECTION
- VII GALAXY INTERACTIONS AND INDUCED ACTIVITY
- Induced Starbursts in Mergers (Invited paper)
- Dynamics of Gas in Major Mergers (Invited paper)
- Kinematic Instabilities, Interactions, and Fueling of Seyfert Nuclei
- Stellar Velocity Dispersion in NGC 6240 and Arp 220
- Possible Atomic-to-Molecular Gas Transition in the Center of Merging Galaxies
- SOs with Counter-Rotating Gas: NGC 3941 and NGC 7332
- Evidence for a Tidal Interaction in the Seyfert Galaxy Markarian 315
- Interaction between the Galaxies IC 2163 and NGC 2207 358
- The NGC 5775/4 Interacting System
- High Resolution CO and HI Observations of an Interacting Galaxy NGC 3627.
- Mass-Transfer Induced Starbursts in Interacting Galaxies
- First HST Images of a Compact Group: Seyfert's Sextet (Poster paper)
- The X-Ray Structure of Merging Galaxies (Poster paper)
- The Galaxy Activity-Interaction Connection in Low Luminosity Radio Galaxies (Poster paper)
- Multi-Wavelength Observations of “Interactive” Galaxies (Poster paper)
- Seyfert Nuclei in Interacting/Merging Galaxies (Poster paper)
- Where Is the Induced Star Formation in Interacting Galaxies? (Poster paper)
- Interacting Galaxy Pairs and Seyfert Activity (Poster paper)
- Searching for Mass Transfer in E+S Pairs (Poster paper)
- K542, a Hierarchical Pair with Mass Transfer? (Poster paper)
- Kar 29: Tidal Effects from a Second or Third Party (Poster paper)
- The Fundamental Plane and Early-Type Galaxies in Binaries (Poster paper)
- Dumbbell Galaxies and Multiple Nuclei in Rich Clusters: Radio Data (Poster paper)
- Tidal Deformation of Galaxies in Binary Systems (Poster paper)
- Formation of Dwarf Galaxies During Close Tidal Encounters (Poster paper)
- Gas Fueling to the Central 10 pc in Merging Galaxies (Poster paper)
- Gas in Shell Galaxies: Non-Spherical Potentials (Poster paper)
- Merging and Multiply–Nucleated Brightest Cluster Galaxies (Poster paper)
- Self–Gravitating Simulations of M51 Multiple Encounter History (Poster paper)
- Formation of Ring Structures through N–Body Simulations (Poster paper)
- Self–Consistent Evolution of Ring Galaxies (Poster paper)
- Interacting Galaxy Pair Arp 86 (Poster paper)
- VIII GAS DYNAMICS IN ELLIPTICALS
- IX AGN AND STARBURST HOSTS AT LARGE REDSHIFTS
- X CONFERENCE SUMMARY
- Subject Index
- Object Index
- Author Index
Summary
ABSTRACT
Simulations which explore mergers like those thought responsible for the shells around many elliptical galaxies find little correlation between the distribution of stars and gas in remnants. Mergers of small companion disks consisting of both gas and stars with non-spherical primary potentials produce shell galaxies with gaseous nuclear rings and clumps.
INTRODUCTION
Models which follow the infall of less-massive companion galaxies show that shell galaxies can be formed by accretion. However, it is probable that the sources of material also contain significant amounts of gas. We investigate encounters that produce shells by modeling interactions between non-spherical primary galaxies and companions containing both stars and gas with a three-dimensional code (TREESPH: Hernquist and Katz 1989). Primaries are modeled with rigid elliptical potentials of the form presented by Hernquist (1990) with scale-length a = 1. Physical time t′ is related to the calculation time unit by t′ ≈ 4.3 × 106t. The companion is a rotationally supported disk in which particles are distributed according to an exponential surface density profile. Stars have a total mass 1/10 and gas 1/100 that of the primary. In most interactions, the companion potential is disrupted at a small distance from the primary after which the particles evolve in the solitary primary gravitational field.
- Type
- Chapter
- Information
- Mass-Transfer Induced Activity in Galaxies , pp. 408 - 409Publisher: Cambridge University PressPrint publication year: 1994
- 2
- Cited by