Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T20:58:47.795Z Has data issue: false hasContentIssue false

13 - Ergodicity

Published online by Cambridge University Press:  05 August 2012

Sean Meyn
Affiliation:
University of Illinois, Urbana-Champaign
Richard L. Tweedie
Affiliation:
University of Minnesota
Get access

Summary

In Part II we developed the ideas of stability largely in terms of recurrence structures. Our concern was with the way in which the chain returned to the “center” of the space, how sure we could be that this would happen, and whether it might happen in a finite mean time.

Part III is devoted to the perhaps even more important, and certainly deeper, concepts of the chain “settling down”, or converging, to a stable or stationary regime.

In our heuristic introduction to the various possible ideas of stability in Section 1.3, such convergence was presented as a fundamental idea, related in the dynamical systems and deterministic contexts to asymptotic stability. We noted briefly, in (10.4) in Chapter 10, that the existence of a finite invariant measure was a necessary condition for such a stationary regime to exist as a limit. In Chapter 12 we explored in much greater detail the way in which convergence of Pn to a limit, on topological spaces, leads to the existence of invariant measures.

In this chapter we begin a systematic approach to this question from the other side. Given the existence of π, when do the n-step transition probabilities converge in a suitable way to π?

We will prove that for positive recurrent ψ-irreducible chains, such limiting behavior takes place with no topological assumptions, and moreover the limits are achieved in a much stronger way than under the tightness assumptions in the topological context. The Aperiodic Ergodic Theorem, which unifies the various definitions of positivity, summarizes this asymptotic theory.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×