Book contents
- Frontmatter
- Contents
- Introduction
- Preface
- The Mandelbrot set is universal
- Baby Mandelbrot sets are born in cauliflowers
- Modulation dans l'ensemble de Mandelbrot
- Local connectivity of Julia sets: expository lectures
- Holomorphic motions and puzzles (following M. Shishikura)
- Local properties of the Mandelbrot set at parabolic points
- Convergence of rational rays in parameter spaces
- Bounded recurrence of critical points and Jakobson's Theorem
- The Herman-Światek Theorems with applications
- Perturbation d'une fonction linéarisable
- Indice holomorphe et multiplicateur
- An alternative proof of Mañé's theorem on non-expanding Julia sets
- Geometry and dimension of Julia sets
- On a theorem of M. Rees for the matings of polynomials
- Le théorème d'intégrabilité des structures presque complexes
- Bifurcation of parabolic fixed points
- References
Local properties of the Mandelbrot set at parabolic points
Published online by Cambridge University Press: 05 August 2011
- Frontmatter
- Contents
- Introduction
- Preface
- The Mandelbrot set is universal
- Baby Mandelbrot sets are born in cauliflowers
- Modulation dans l'ensemble de Mandelbrot
- Local connectivity of Julia sets: expository lectures
- Holomorphic motions and puzzles (following M. Shishikura)
- Local properties of the Mandelbrot set at parabolic points
- Convergence of rational rays in parameter spaces
- Bounded recurrence of critical points and Jakobson's Theorem
- The Herman-Światek Theorems with applications
- Perturbation d'une fonction linéarisable
- Indice holomorphe et multiplicateur
- An alternative proof of Mañé's theorem on non-expanding Julia sets
- Geometry and dimension of Julia sets
- On a theorem of M. Rees for the matings of polynomials
- Le théorème d'intégrabilité des structures presque complexes
- Bifurcation of parabolic fixed points
- References
Summary
- Type
- Chapter
- Information
- The Mandelbrot Set, Theme and Variations , pp. 133 - 160Publisher: Cambridge University PressPrint publication year: 2000
- 2
- Cited by