Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T20:23:20.592Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

10 - Knot theory and physical states of quantum gravity

Rodolfo Gambini
Affiliation:
Universidad de la República, Uruguay
Jorge Pullin
Affiliation:
Pennsylvania State University
Get access

Summary

Introduction

In the previous two chapters we developed several aspects of the loop representation of quantum gravity. One of the main consequences of these developments is a radically new description of one of the symmetries of the theory: because of diffeomorphism invariance wavefunctions in the loop representation must be invariant under deformations of the loops, they have to be knot invariants. This statement is much more than a semantical note. Knot invariants have been studied by mathematicians for a considerable time and recently there has been a surge in interest in knot theory. Behind this surge of interest is the discovery of connections between knot theory and various areas of physics, among them topological field theories. We will see in this chapter that such connections seem to play a crucial role in the structure of the space of states of quantum gravity in the loop representation. As a consequence we will discover a link between quantum gravity and particle physics that was completely unexpected and that involves in an explicit way the non-trivial dynamics of the Einstein equation. Such a link could be an accident or could be the first hint of a complete new sets of relationships between quantum gravity, topological field theories and knot theory.

We will start this chapter with a general introduction to the ideas of knot theory. We will then develop the notions of knot polynomials and the braid group.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×