Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-12T22:13:36.212Z Has data issue: false hasContentIssue false

Mathematical Fuzzy Logic – State of Art

Published online by Cambridge University Press:  31 March 2017

Petr Hájek
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Samuel R. Buss
Affiliation:
University of California, San Diego
Petr Hájek
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Pavel Pudlák
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access
Type
Chapter
Information
Logic Colloquium '98 , pp. 197 - 205
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. R., Adillon, V., Verdu: On product logic. Soft Computing 2 (1998) 141-146.Google Scholar
2. S., Aguzzoli, D., Mundici: An algorithmic desingularization of 3-dimensional toric varieties. Tohoku Mathematical Journal 46 (1994) 557-572Google Scholar
3. M., Baaz, A., Ciabattoni, C., Fermüller, H., Veith: Proof theory of fuzzy logic: Urquhart's C and related logics. In: Proc. MFCS'98, Brim, L., et al. eds, LNCS 1450 p. 203-213 Springer 1998
4. M., Baaz, P., Hájek, J., Krajíček, D., Švejda: Embedding logics into product logic. Studia Logica 61 (1998) 35-47Google Scholar
5. M., Baaz, A., Leitsch, R., Zach: Incompleteness of an infinite-valued first-order Gödel logic and of some temporal logic of programs. Kleine, Büning|H. ed. Computer Science Logic. Selected Papers from CSL'95, LNCS 1092 p. 1-15 Springer 1996
6. M., Baaz, H., Veith: Interpolation in fuzzy logic. Archive for Math. logic (to appear)
7. M., Baaz, R., Zach: Compact Propositional Gödel Logics. In Proc. of the 28th International Symposium on Multiple-Valued Logic, IEEE New York 1998 p. 108-113
8. L., P. Belluce and C., C. Chang A weak completeness theorem on infinite valued predicate logic. Journ. Symb.Logic 28 (1963), 43-50.Google Scholar
9. R., Cignoli, I.M.L., D'Ottaviano and D., Mundici Algebraic foundations of manyvalued reasoning, book in preparation.
10. R., Cignoli,G. A., Elliott,.,D., Mundici:Reconstructing C*-algebras fromtheirMurray von Neumann orders. Advances in Mathematics 101 (1993) 166-179Google Scholar
11. R., Cignoli, D., Mundici: An invitation to Chang'sMV-algebras. In: Advances in Algebra and Model Theory (M., Droste, R., Goebel, eds.), Gordon and Breach Publishing Group, Reading, UK, 1997, pp. 171–197.
12. R., Cignoli, D., Mundici, I., D'Ottaviano: Algebras of Łukasiewicz Logics (in Portugese). Collection CLE, State University of Campinas, Campinas, S., Paulo, Brazil (1994) 256 pages. Second Edition, 1995
13. R., Cignoli, A., Torrens: An algebraic analysis of product logic. Journal of Multiple-Valued Logic (to appear)
14. A.Di, Nola (ed.): Soft Computing 2 (1998), special issue No. 1
15. G.A., Elliott,D., Mundici: Acharacterization of lattice-ordered abelian groups. Mathematische Zeitschrift, 213 (1993) pp. 179–185.Google Scholar
16. G., Escalada-Imaz and R., Haehnle (ed.): Mathware and Soft Computing 4 (1998), special issue No. 2
17. F., Esteva, L., Godo,P.Hájek, M., Navara: Residuated logic with an involutive negation. To appear in Archive for Mathematical Logic
18. F., Esteva, L., Godo, F., Montagna: Putting Łukasiewicz and product logic together. Paper in preparation.
19. P., Hájek: Metamathematics of Fuzzy Logic. Kluwer 1998.
20. P., Hájek: Ten questions and one problem on fuzzy logic. Annals of Pure and Applied Logic, to appear.
21. P., Hájek; On metamathematics of fuzzy logic. In V., Novák, I., Perfilieva, ed.: Discovering world with fuzzy logic. Springer Heidelberg (to appear)
22. P., Hájek: Trakhtenbrot theorem and fuzzy logic, In: Proc. CSL'99 (to appear)
23. P., Hájek: Basic fuzzy logic and BL-algebras. Soft Computing 2 (1998) 124-128Google Scholar
24. P., Hájek and L., Godo: Deductive systems of fuzzy logic. In Fuzzy Structures Current Trends, R., Mesiar and B., Riečan, Eds., vol. 13 of Tatra Mountains Mathematical Publications.Math. Inst. Slovak Acad. Sci. Bratislava, 1997, pp. 35-68.
25. P., Hájek, J., Paris and J., Shepherdson: The liar paradox and fuzzy logic. To appear in Journ. Symb. Logic
26. P., Hájek, J., Paris and J., Shepherdson: Rational Pavelka predicate logic is a conservative extension of Łukasiewicz predicate logic. To appear in Journ. Symb. Logic.
27. P., Hájek and J., Paris: A dialogue on fuzzy logic. Soft Computing 1 (1997), 3-5.Google Scholar
28. R., Haehnle (ed.): Soft Computing 2 (1998), special issue No. 3
29. G., Müller, ed.: $-Bibliography of Mathematical Logic vol. II-Non-classical Logic Springer-Verlag 1987
30. D., Mundici: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus. J. Functional Analysis 65 (1986) 15-63Google Scholar
31. D., Mundici: Satisfiability in many-valued sentential logic is NP-complete. Theor. Comp. Sci. 270 (1987) 145-153
32. D., Mundici: The complexity of adaptive error-correcting codes. Lecture notes in Computer Science 533 (1991) 300-307Google Scholar
33. D., Mundici: Ulam's games, Łukasiewicz logic, and AF C*-algebras. Fundamenta Informaticae 18 (1993) 151-161Google Scholar
34. D., Mundici: Logic of infinite quantum systems. International Journal of Theoretical Physics 32 (1993) 1941-1955Google Scholar
35. D., Mundici, G., Panti: Extending addition in Elliott's local semigroup. Journal of Functional Analysis 117 (1993) 416-471Google Scholar
36. D., Mundici: Łukasiewicz normal forms and toric desingularizations In: Proceedings Logic Colloquium'93 Oxford University Press, W., Hodges et al., Editors, Oxford University Press, 1996, pp. 401–423.
37. D., Mundici: Uncertainty measures in MV-algebras, and states of AF C*-algebras, in memoriam Rolando Chuaqui. Special issue of Notas de la Sociedad deMatematica de Chile 15 (1996) 42-54Google Scholar
38. D., Mundici, N., Olivetti: Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theor. Comp. Sci. 200 (1998) 335-366
39. D., Mundici: Ulam game, the logic of MAXSAT, and many-valued partitions. In D., Dubois et. at., ed., Proc. LINZ'95 (to appear)
40. D., Mundici: Reasoning on imprecisely defined functions. In: V., Novák, I., Perfilieva, ed. Discovering world with fuzzy logic. Springer Heidelberg (to appear)
41. D., Mundici (ed.): Studia Logica 61 (1998), special issue No. 1.
42. S., Sessa (ed.): Mathware and Soft Computing 4 (1997), special issue No. 1.
43. E., Turunen: Boolean deductive systems of BL-algebras. Technical report, Lapeenranta Univ. of Technology, Dept. of Information Technology, 1998

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×