Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-12T22:13:36.618Z Has data issue: false hasContentIssue false

Dimension Theory and Smooth Stratification of Rigid Subanalytic Sets

Published online by Cambridge University Press:  31 March 2017

Leonard Lipshitz
Affiliation:
Purdue University West Lafayette
Zachary Robinson
Affiliation:
East Carolina University
Samuel R. Buss
Affiliation:
University of California, San Diego
Petr Hájek
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Pavel Pudlák
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access
Type
Chapter
Information
Logic Colloquium '98 , pp. 302 - 315
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bierstone E.,Milman, P.|:x Semianalytic and subanalytic sets. Publ. Math. Inst. HautesÉ tudes Sci. 67 (1988) 5–42
2. Bosch, S., Güntzer, U.,Remmert, R.: Non-Archimedean Analysis. Springer-Verlag, Berlin New York (1984.
3. Denef, J.,van den Dries, L.: p-adic and real subanalytic sets. Ann. Math. 128 (1988) 79–138Google Scholar
4. Gabrielov, A., M.: Projections of semi-analytic sets. Funktsional. Anal. Prilozhen 2 (1968) 18-30 (English Translation: Functional Anal. Appl. 2 (1968) 282–291Google Scholar
5. Gardener, T.: Local flattening in rigid analytic geometry. Preprint
6. Gardener, T., Schoutens, H.: Flattening and subanalytic sets in rigid analytic geometry. Preprint
7. Hasse, H.: Theorie der höheren Differentiale in einem algebraischen Funktionenk örper mit volkommenemKonstantenkörper bei beliebiger Charakteristik. J.reine agnew. Math 175 (1936), 50–54Google Scholar
8. Hasse, H.,Schmidt|F.K.:Noch eine Begründung der Theorie der höheren Differentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten. J.reine agnew. Math. 177 (1937) 215–237Google Scholar
9. Hironaka, H.:Subanalytic Sets, in Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y., Akizuki. Konokuniya, Tokyo (1973) 453–493
10. Lipshitz, L.: Isolated points on fibers of affinoid varieties. J.reine angew. Math. 384 (1988) 208–220Google Scholar
11. Lipshitz, L. p-adic zeros of polynomials. J.Reine angew. Math. 390 (1988) 208–214.Google Scholar
12. Lipshitz, L. Rigid subanalytic sets. Amer. J.Math. 115 (1993) 77-108Google Scholar
13. Lipshitz, L., Robinson, Z.: Rigid subanalytic subsets of the line and the plane. Amer. J.Math. 118 (1996) 493–527
14. Lipshitz, L.,Robinson, Z.:Rigid subanalytic subsets of curves and surfaces. To appear in J.London Math. Soc.
15. Lipshitz, L.,Robinson, Z.: One-dimensional fibers of rigid subanalytic sets. J.Symbolic Logic 63 (1998) 83–88Google Scholar
16. Lipshitz, L.,Robinson|Z.: Rings of separated power series (to appear in Asterisque)
17. Łojasiewicz, S.: Ensembles semi-analytiques. Inst. Hautes É tudes Sci., Lecture notes, 1965
18. Macintrye, A.: On definable subsets of p-adic fields. J.Symbolic Logic 41 (1976) 605–610Google Scholar
19. Matsumura, H.:Commutative Ring Theory. Cambridge University Press, Cambridge New York (1989.
20. Robinson, Z.: Smooth points of p-adic subanalytic sets.Manuscripta Math. 80 (1993) 45–71Google Scholar
21. Robinson, Z.: Flatness and smooth points of p-adic subanalytic sets. Ann. Pure Appl. Logic 88 (1997) 217–225Google Scholar
22. Robinson, Z.: A rigid analytic approximation theorem. (to appear in Asterisque)
23. Schoutens, H.: Rigid subanalytic sets. Comp. Math. 94 (1994) 269–295
24. Schoutens, H.: Rigid subanalytic sets in the plane. J.Algebra 170 (1994) 266–276Google Scholar
25. Schoutens, H.: Uniformization of rigid subanalytic sets. Comp.Math. 94 (1994) 227–245.Google Scholar
26. Schoutens, H.: Embedded resolution of singularities in rigid analytic geometry. Preprint
27. Schoutens, H.: Closure of rigid semianalytic sets. J.Algebra 198 (1997) 120–134Google Scholar
28. Schoutens, H.: Rigid analytic flatificators. Preprint
29. Serre, J-P: Lie Algebras and Lie Groups. 1964 Lectures given at Harvard University, Math Lecture Notes. W.A. Benjamin, Inc., New York (1965.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×