Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T03:51:15.507Z Has data issue: false hasContentIssue false

5 - Observations in Liquids Using an Inverted SEM

from Part I - Technique

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, I. M. and McBrain, J. W., A closed cell for electron microscopy. J. Appl. Phys., 15 (1944), 607609.Google Scholar
Daulton, T. L., Little, B. J., Lowe, K. and Jones-Meehan, J., In situ environmental cell-transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microsc. Microanal., 7 (2001), 470485.Google Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.Google Scholar
Thiberge, S., Zik, O. and Mosesa, E., An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy. Rev. Sci. Instrum., 75 (2004), 22802289.Google Scholar
de Jonge, N., Peckys, D. B., Kremers, G. J., Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.Google Scholar
Thiberge, S., Nechushtan, A. and Sprinzak, D. et al., Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc. Natl. Acad. Sci. USA, 101 (2004), 33463351.Google Scholar
Ross, F. M., In Situ Transmission Electron Microscopy, in Science of Microscopy, Ed. Hawkes, P. W. and Spence, J. C. H., pp. 445534. (New York: Springer, 2007).Google Scholar
Nishiyama, H., Suga, M. and Ogura, T. et al., Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J. Struct. Biol., 172 (2010), 191202.CrossRefGoogle ScholarPubMed
Nishiyama, H., Koizumi, M., Ogawa, K. et al., Atmospheric scanning electron microscope system with an open sample chamber: configuration and applications. Ultramicroscopy, 147 (2014), 8697.Google Scholar
Memtily, N., Okada, T., Ebihara, T. et al., Observation of tissues in open aqueous solution by atmospheric scanning electron microscopy: applicability to intraoperative cancer diagnosis. Int. J. Oncol., 46 (2015), 18721882Google Scholar
Sato, C., Manaka, S., Nakane, D. et al., Rapid imaging of mycoplasma in solution using atmospheric scanning electron microscopy (ASEM). Biochem. Biophys. Res. Commun., 417 (2012), 12131218.Google Scholar
Maruyama, Y., Ebihara, T., Nishiyama, H., Suga, M. and Sato, C., Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM). J. Struct. Biol., 180 (2012), 259270.Google Scholar
Kinoshita, T., Mori, Y., Hirano, K. et al., Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy. Microsc. Microanal., 20 (2014), 469483.CrossRefGoogle ScholarPubMed
Hirano, K., Kinoshita, T., Uemura, T. et al., Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy, 143 (2014), 5266.Google Scholar
Nyska, A., Cummings, C. A., Vainshtein, A. et al., Electron microscopy of wet tissues: a case study in renal pathology. Toxicol. Pathol., 32 (2004), 357363.Google Scholar
Barshack, I., Polak-Charcon, S., Behar, V. et al., Wet SEM: a novel method for rapid diagnosis of brain tumors. Ultrastruct. Pathol., 28 (2004), 255260.Google Scholar
Junt, T., Schulze, H., Chen, Z. et al., Dynamic visualization of thrombopoiesis within bone marrow. Science, 317 (2007), 17671770.Google Scholar
Suga, M., Nishiyama, H., Konyuba, Y. et al., The atmospheric scanning electron microscope with open sample space observes dynamic phenomena in liquid or gas. Ultramicroscopy, 111 (2011), 16501658.Google Scholar
Fukushima, K., Ishikawa, A. and Fukami, A., Injection of liquid into environmental cell for in situ observations. J. Electron Microsc., 34 (1985), 4751.Google Scholar
Koopman, N., Application of ESEM to fluxless soldering. Microsc. Res. Tech., 25 (1993), 493502.Google Scholar
Agronskaia, A. V., Valentijn, J. A., van Driel, L. F. et al., Integrated fluorescence and transmission electron microscopy. J. Struct. Biol., 164 (2008), 183189.Google Scholar
Sartori, A., Gatz, R., Beck, F. et al., Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol., 160 (2007), 135145.CrossRefGoogle ScholarPubMed
Dukes, M. J., Peckys, D. B. and de Jonge, N., Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano, 4 (2010), 41104116.CrossRefGoogle ScholarPubMed
Powell, R. D., Halsey, C. M., Spector, D. L. et al., A covalent fluorescent-gold immunoprobe: simultaneous detection of a pre-mRNA splicing factor by light and electron microscopy. J. Histochem. Cytochem., 45 (1997), 947956.CrossRefGoogle ScholarPubMed
Robinson, J. M. and Vandre, D. D., Efficient immunocytochemical labeling of leukocyte microtubules with FluoroNanogold: an important tool for correlative microscopy. J. Histochem. Cytochem., 45 (1997), 631642.Google Scholar
Giepmans, B. N., Deerinck, T. J., Smarr, B. L., Jones, Y. Z. and Ellisman, M. H., Correlated light and electron microscopic imaging of multiple endogenous proteins using quantum dots. Nat. Methods, 2 (2005), 743749.Google Scholar
Smith, A. M. and Nie, S., Next-generation quantum dots. Nat. Biotechnol., 27 (2009) 732733.Google Scholar
Gaietta, G., Deerinck, T. J., Adams, S. R. et al., Multicolor and electron microscopic imaging of connexin trafficking. Science, 296 (2002), 503507.Google Scholar
Nakane, D. and Miyata, M., Cytoskeletal “jellyfish” structure of Mycoplasma mobile. Proc. Natl. Acad. Sci. USA, 104 (2007), 1951819523.Google Scholar
Nawa, Y., Inami, W., Miyake, A. et al., Dynamic autofluorescence imaging of intracellular components inside living cells using direct electron beam excitation. Biomed. Opt. Express, 5 (2014), 378386.Google Scholar
Glenn, D. R., Zhang, H., Kasthuri, N. et al., Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours. Sci. Rep., 2 (2012), 865.Google Scholar
Inami, W., Nakajima, K., Miyakawa, A. and Kawata, Y., Electron beam excitation assisted optical microscope with ultra-high resolution. Opt. Express, 18 (2010), 1289712902.Google Scholar
Swift, J. A. and Brown, A., An environmental cell for the examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy. J. Phys. E: Sci. Instrum., 3 (1970), 924926.Google Scholar
Grogan, J. M. and Bau, H. H., The Nanoaquarium: a platform for in situ transmission electron microscopy in liquid media. J. Microelectromech. Syst., 19 (2010), 885894.Google Scholar
Liv, N., Zonnevylle, A. C., Narvaez, A. C. et al., Simultaneous correlative scanning electron and high-NA fluorescence microscopy. PLoS One, 8 (2013), e55707.Google Scholar
Green, E. D. and Kino, G. S., Atmospheric scanning electron-microscopy using silicon-nitride thin-film windows. J. Vac. Sci. Technol. B, 9 (1991), 15571558.Google Scholar
Vidavsky, N., Addadi, S., Mahamid, J. et al., Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc. Natl. Acad. Sci. USA, 111 (2014), 3944.Google Scholar
Nguyen, K., Holtz, M. and Muller, D., AirSEM: electron microscopy in air, without a specimen chamber. Microsc. Microanal., 19 (Suppl. 2) (2013), 428429.Google Scholar
Nguyen, K., Richmond-Decker, J. D., Holtz, M., Milstein, Y. and Muller, D. A., Spatial resolution of scanning electron microscopy without a vacuum chamber. Microsc. Microanal., 20 (2014), 2627.Google Scholar
Ominami, Y., Kawanishi, S., Ushiki, T. and Ito, S., Observation of wet samples using a novel atmospheric scanning electron microscope. Microsc. Microanal., 20 (2014), 11541155.Google Scholar
Ominami, Y., Kawanishi, S., Ushiki, T. and Ito, S., A novel approach to scanning electron microscopy at ambient atmospheric pressure. Microscopy, 64 (2015), 97104.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×