Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T08:47:11.005Z Has data issue: false hasContentIssue false

14 - Spontaneous emission from resonant cavities

Published online by Cambridge University Press:  05 September 2012

E. Fred Schubert
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

Modification of spontaneous emission

Radiative transitions, i.e. transitions of electrons from an initial quantum state to a final state and the simultaneous emission of a light quantum, are one of the most fundamental processes in optoelectronic devices. There are two distinct ways by which the emission of a photon can occur, namely by spontaneous and stimulated emission. These two processes were first postulated by Einstein (1917).

Stimulated emission is employed in semiconductor lasers and superluminescent LEDs. It was realized in the 1960s that the stimulated emission mode can be used in semiconductors to drastically change the radiative emission characteristics. The efforts to harness stimulated emission resulted in the first room-temperature operation of semiconductor lasers (Hayashi et al., 1970) and the first demonstration of a superluminescent LED (Hall et al., 1962).

Spontaneous emission implies the notion that the recombination process occurs spontaneously, that is without a means to influence this process. In fact, spontaneous emission has long been believed to be uncontrollable. However, research in microscopic optical resonators, where spatial dimensions are of the order of the wavelength of light, showed the possibility of controlling the spontaneous emission properties of a light-emitting medium. The changes of the emission properties include the spontaneous emission rate, spectral purity, and emission pattern. These changes can be employed to make more efficient, faster, and brighter semiconductor devices.

Type
Chapter
Information
Light-Emitting Diodes , pp. 239 - 254
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×