Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T09:23:17.226Z Has data issue: false hasContentIssue false

Section 2

from Part I - Neuroscience, Mechanisms, and RDoC

Published online by Cambridge University Press:  02 April 2020

Kenneth S. Kendler
Affiliation:
Virginia Commonwealth University
Josef Parnas
Affiliation:
University of Copenhagen
Peter Zachar
Affiliation:
Auburn University, Montgomery
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Levels of Analysis in Psychopathology
Cross-Disciplinary Perspectives
, pp. 55 - 86
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bilder, R. M., Howe, A. G., & Sabb, F. W. (2013) ‘Multilevel models from biology to psychology: Mission impossible?Journal of Abnormal Psychology, 122(3), 917927.CrossRefGoogle ScholarPubMed
Bilder, R. M., Lenartowicz, A., Rissman, J., Loo, S., Pochon, J. B., Truong, H., … Sugar, C. (2018) RDoC working memory constructs spanning levels from disability to structural MRI. Paper presented at the American College of Neuropsychopharmacology, Hollywood, FL.Google Scholar
Bilder, R. M., & Reise, S. P. (2019) ‘Neuropsychological tests of the future: How do we get there from here?The Clinical Neuropsychologist, 33(2), 220245.CrossRefGoogle Scholar
Bilder, R. M., Volavka, J., Lachman, H., & Grace, A. (2004) ‘The catechol-O-methyltransferase polymorphism: Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes.’ Neuropsychopharmacology, 29(11), 19431961.CrossRefGoogle Scholar
Borsboom, D. (2006) ‘The attack of the psychometricians.’ Psychometrika, 71(3), 425.CrossRefGoogle ScholarPubMed
Borsboom, D., & Cramer, A. O. (2013) ‘Network analysis: An integrative approach to the structure of psychopathology.’ Annual Review of Clinical Psychology, 9, 91121.Google Scholar
Collins, A. G., & Frank, M. J. (2018) ‘Within-and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory.’ Proceedings of the National Academy of Sciences, 115(10), 25022507.CrossRefGoogle ScholarPubMed
Cronbach, L. J. (1951) ‘Coefficient alpha and the internal structure of tests.’ Psychometrika, 16(3), 297334.Google Scholar
Cronbach, L. J., & Meehl, P. E. (1955) ‘Construct validity in psychological tests.’ Psychological Bulletin, 52(4), 281302.CrossRefGoogle ScholarPubMed
Decker, H. S. (2007) ‘How Kraepelinian was Kraepelin? How Kraepelinian are the neo-Kraepelinians? – From Emil Kraepelin to DSM-III.’ History of Psychiatry, 18(71 Pt 3), 337360.Google Scholar
Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000a) ‘Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.’ Journal of Neurophysiology, 83(3), 17331750.CrossRefGoogle Scholar
Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000b) ‘Neurocomputational models of working memory.’ Nature Neuroscience, 3(Suppl.), 11841191.CrossRefGoogle ScholarPubMed
Embretson, S. E., & Reise, S. P. (2002) Item response theory for psychologists. Mahwah, NJ: Erlbaum.Google Scholar
Flint, J., & Munafo, M. R. (2007) ‘The endophenotype concept in psychiatric genetics.’ Psychological Medicine, 37(2), 163180.CrossRefGoogle ScholarPubMed
Freud, S. (1966) Project for a scientific psychology (1950 [1895]). London: Hogarth Press.Google Scholar
Friston, K. J., Li, B., Daunizeau, J., & Stephan, K. E. (2011) ‘Network discovery with DCM.’ NeuroImage, 56(3), 12021221.CrossRefGoogle ScholarPubMed
Geschwind, N., & Galaburda, A. M. (1985a) ‘Cerebral lateralization: Biological mechanisms, associations, and pathology: II. A hypothesis and a program for research.’ Archives of Neurology, 42, 521552.CrossRefGoogle Scholar
Geschwind, N., & Galaburda, A. M. (1985b) ‘Cerebral lateralization: Biological mechanisms, associations, and pathology: III. A hypothesis and program for research.’ Archives of Neurology, 42, 634654.CrossRefGoogle Scholar
Geschwind, N., & Galaburda, A. M. (1985c) ‘Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research.’ Archives of Neurology, 42, 428459.CrossRefGoogle Scholar
Geschwind, N., & Galaburda, A. M. (1987) Cerebral lateralization. Biological mechanisms, associations, and pathology. Cambridge, MA: MIT Press.Google Scholar
McManus, I. C., & Bryden, M. P. (1992) ‘Geschwind’s theory of cerebral laterization: Developing a formal causal model.’ Psychological Bulletin, 110, 237253.CrossRefGoogle Scholar
Nunnally, J. C., & Bernstein, I. (1994) Psychometric theory (McGraw-Hill Series in Psychology) (Vol. 3). New York: McGraw-Hill.Google Scholar
O’Reilly, R. C., Wyatte, D. R., & Rohrlich, J. J. (2017) Deep Predictive Learning: A Comprehensive Model of Three Visual Streams. Available at https://arxiv.org/abs/1709.04654.Google Scholar
Olesen, P. J., Macoveanu, J., Tegnér, J., & Klingberg, T. (2006) ‘Brain activity related to working memory and distraction in children and adults.’ Cerebral Cortex, 17(5), 10471054.CrossRefGoogle ScholarPubMed
Pearl, J., & Mackenzie, D. (2018) The book of why: The new science of cause and effect. New York: Basic Books.Google Scholar

References

Bai, Y, Nakao, T, Xu, J, Qin, P, Chaves, P, Heinzel, A, Duncan, N, Lane, T, Yen, NS, Tsai, SY, Northoff, G. (2016) ‘Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on “rest-self overlap”.’ Society for Neuroscience. 11(3):249–63.CrossRefGoogle Scholar
Bilder, RM, Sabb, FW, Parker, DS, Kalar, D, Chu, WW, Fox, J, Freimer, NB, Poldrack, RA. (2009) ‘Cognitive ontologies for neuropsychiatric phenomics research.’ Cognitive Neuropsychiatry. 14(4–5):419–50.CrossRefGoogle ScholarPubMed
Bilder, RM, Howe, AG, Sabb, FW. (2013) ‘Multilevel models from biology to psychology: Mission impossible?Journal of Abnormal Psychology. 122(3):917–27.Google Scholar
Cole, MW, Bassett, DS, Power, JD, Braver, TS, Petersen, SE. (2014) ‘Intrinsic and task-evoked network architectures of the human brain.’ Neuron. 83(1):238–51.CrossRefGoogle ScholarPubMed
Cole, MW, Ito, T, Bassett, DS, Schultz, DH. (2016) ‘Activity flow over resting-state networks shapes cognitive task activations.’ Nature Neuroscience. 19(12):1718–26.Google Scholar
D’Argembeau, A, Collette, F, Van der Linden, M, Laureys, S, Del Fiore, G, Degueldre, C, Luxen, A, Salmon, E. (2005) ‘Self-referential reflective activity and its relationship with rest: A PET study.’ NeuroImage. 25(2):616–24.Google Scholar
Davey, CG, Pujol, J, Harrison, BJ. (2016) ‘Mapping the self in the brain’s default mode network.’ NeuroImage. 132:390–97.CrossRefGoogle ScholarPubMed
Ferri, F, Nikolova, YS, Perrucci, MG, Costantini, M, Ferretti, A, Gatta, V, Huang, Z, Edden, RAE, Yue, Q, D’Aurora, M, Sibille, E, Stuppia, L, Romani, GL, Northoff, G. (2017) ‘A neural “tuning curve” for multisensory experience and cognitive-perceptual schizotypy.’ Schizophrenia Bulletin. 43(4):801–13.CrossRefGoogle ScholarPubMed
Halligan, PW, David, AS. (2001) ‘Cognitive neuropsychiatry: Towards a scientific psychopathology.’ Nature Reviews Neuroscience. 2(3):209–15.CrossRefGoogle ScholarPubMed
Hastings, J, Frishkoff, GA, Smith, B, Jensen, M, Poldrack, RA, Lomax, J, Bandrowski, A, Imam, F, Turner, JA, Martone, ME.(2014) ‘Interdisciplinary perspectives on the development, integration, and application of cognitive ontologies.’ Frontiers in Neuroinformatics. 8:62.CrossRefGoogle ScholarPubMed
He, BJ. (2014) ‘Scale-free brain activity: Past, present, and future.’ Trends in Cognitive Sciences. 18(9):480–87.CrossRefGoogle ScholarPubMed
He, BJ, Zempel, JM, Snyder, AZ, Raichle, ME. (2010) ‘The temporal structures and functional significance of scale-free brain activity.’ Neuron. 66(3):353–69.Google Scholar
Huang, Z, Zhang, J, Wu, J, Qin, P, Wu, X, Wang, Z, Dai, R, Li, Y, Liang, W, Mao, Y, Yang, Z, Zhang, J, Wolff, A, Northoff, G. (2016) ‘Decoupled temporal variability and signal synchronization of spontaneous brain activity in loss of consciousness: An fMRI study in anesthesia.’ NeuroImage. 124(Pt A):693703.CrossRefGoogle ScholarPubMed
Huang, Z, Zhang, J, Wu, J, Liu, X, Xu, J, Zhang, J, Qin, P, Dai, R, Yang, Z, Mao, Y, Hudetz, AG, Northoff, G. (2018) ‘Disrupted neural variability during propofol-induced sedation and unconsciousness.’ Human Brain Mapping. 39(11):4533–44.Google Scholar
Insel, TR, Cuthbert, BN. (2015) ‘Medicine. Brain disorders? Precisely.’ Science. 348(6234):499500.CrossRefGoogle ScholarPubMed
Liu, X, de Zwart, JA, Schölvinck, ML, Chang, C, Ye, FQ, Leopold, DA, Duyn, JH. (2018) ‘Subcortical evidence for a contribution of arousal to fMRI studies of brain activity.’ Nature Communications. 9(1):395.Google Scholar
Logothetis, NK, Murayama, Y, Augath, M, Steffen, T, Werner, J, Oeltermann, A. (2009) ‘How not to study spontaneous activity.’ NeuroImage. 45(4):1080–89.Google Scholar
Morcom, AM, Fletcher, PC. (2007) ‘Does the brain have a baseline? Why we should be resisting a rest.’NeuroImage. 37(4):1073–82.Google Scholar
Northoff, G. (2012) ‘Immanuel Kant’s mind and the brain’s resting state.’ Trends in Cognitive Sciences. 16(7):356–9.CrossRefGoogle ScholarPubMed
Northoff, G. (2014a) Unlocking the Brain. Volume I: Coding. New York: Oxford University Press.Google Scholar
Northoff, G. (2014b) Unlocking the Brain. Volume II: Consciousness. Oxford: Oxford University.Google Scholar
Northoff, G. (2018) ‘The brain’s spontaneous activity and its psychopathological symptoms; “Spatiotemporal binding and integration”.’ Progress in Neuro-Psychopharmacology & Biological Psychiatry. 80(Pt B):8190.CrossRefGoogle Scholar
Northoff, G, Huang, Z. (2017) ‘How do the brain’s time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC).’Neuroscience and Biobehavioral Reviews. 80:630–45.Google Scholar
Northoff, G, Sibille, E. (2014) ‘Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings.’ Molecular Psychiatry. 19(9):966–77.Google Scholar
Poldrack, RA, Kittur, A, Kalar, D, Miller, E, Seppa, C, Gil, Y, Parker, DS, Sabb, FW, Bilder, RM. (2011) ‘The cognitive atlas: Toward a knowledge foundation for cognitive neuroscience.’ Frontiers in Neuroinformatics. 5:17.CrossRefGoogle Scholar
Power, JD, Schlaggar, BL, Petersen, SE. (2015) ‘Recent progress and outstanding issues in motion correction in resting state fMRI.’ NeuroImage. 105:536–51.CrossRefGoogle ScholarPubMed
Power, JD, Plitt, M, Laumann, TO, Martin, A. (2017) ‘Sources and implications of whole-brain fMRI signals in humans.’ NeuroImage. 146:609–25.Google Scholar
Power, JD, Plitt, M, Gotts, SJ, Kundu, P, Voon, V, Bandettini, PA, Martin, A. (2018) ‘Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.’ Proceedings of the National Academy of Sciences of the United States of America. 115(9):E2105–14.Google ScholarPubMed
Qin, P, Northoff, G. (2011) ‘How is our self related to midline regions and the default-mode network?NeuroImage. 57(3):1221–33.CrossRefGoogle Scholar
Raichle, ME. (2009) ‘A brief history of human brain mapping.’ Trends in Neuro-science. 32(2):118–26.CrossRefGoogle ScholarPubMed
Raichle, ME. (2015) ‘The brain’s default mode network.’ Annual Review of Neuroscience. 38:433–47.CrossRefGoogle ScholarPubMed
Schölvinck, ML, Maier, A, Ye, FQ, Duyn, JH, Leopold, DA. (2010) ‘Neural basis of global resting-state fMRI activity.’ Proceedings of the National Academy of Sciences of the United States of America. 107(22):10238–43.Google ScholarPubMed
Tagliazucchi, E Wegner, F, Morzelewski, A, Brodbeck, V, Jahnke, K, Laufs, H. (2013) ‘Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep.’ Proceedings of the National Academy of Sciences of the United States of America. 110(38):15419–24.Google Scholar
Tagliazucchi, E, Chialvo, DR, Siniatchkin, M, Amico, E, Brichant, JF, Bonhomme, V, Noirhomme, Q, Laufs, H, Laureys, S. (2016) ‘Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics.’ Journal of the Royal Society Interface. 13(114):20151027.CrossRefGoogle ScholarPubMed
Tsuchiya, N, Wilke, M, Frässle, S, Lamme, VAF. (2015) ‘No-report paradigms: Extracting the true neural correlates of consciousness.’ Trends in Cognitive Science. 19(12):757–70.Google Scholar
Whitfield-Gabrieli, S, Moran, JM, Nieto-Castanon, A, Triantafyllou, C, Saxe, R, Gabrieli, JD. (2011) ‘Associations and dissociations between default and self-reference networks in the human brain.’ NeuroImage. 55(1):225–32.Google Scholar
Wolff, A, Di Giovanni, DA, Gómez-Pilar, J, Nakao, T, Huang, Z, Longtin, A, Northoff, G. (2019) ‘The temporal signature of self: Temporal measures of resting-state EEG predict self-consciousness.’ Human Brain Mapping. 40(3):789803.Google Scholar
Zhang, J, Magioncalda, P, Huang, Z, Tan, Z, Hu, X, Hu, Z, Conio, B, Amore, M, Inglese, M, Martino, M, Northoff, G.(2018) ‘Altered global signal topography and its different regional localization in motor cortex and hippocampus in mania and depression.’ Schizophrenia Bulletin. 45(4):902–10.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×