Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-04T09:24:44.211Z Has data issue: false hasContentIssue false

2 - HIV and the evolution of infectious diseases

Published online by Cambridge University Press:  14 January 2010

Janis F. Hutchinson
Affiliation:
Department of Anthropology, University of Houston, Houston, TX 77204, USA
George Ellison
Affiliation:
South Bank University, London
Melissa Parker
Affiliation:
Brunel University
Catherine Campbell
Affiliation:
London School of Economics and Political Science
Get access

Summary

Introduction

In 1962, Sir McFarland Burnet contended that infectious diseases would be eliminated as a significant factor in the social life of the twentieth century (Burnet and White, 1962). Many health experts in the 1970s made similar statements when smallpox was eradicated from the world (Nicastri et al., 2001). Indeed the achievement of the twentieth century was the control of numerous infectious diseases through vaccination. For instance, in the 1950s we witnessed the development of a vaccine against poliomyelitis. Consequently, by the 1990s, indigenous poliomyelitis was eradicated from the Americas (Ada, 2000; Apostolopoulos and Plebanski, 2000). Death rates from infectious diseases declined during both the nineteenth and twentieth centuries because of better public health and sanitation, and through advances in medical treatments and prophylaxis (Nicastri et al., 2001).

In the 1990s, however, it was clear that infectious diseases were still a problem. For instance, tuberculosis remained the major killer among infectious disease worldwide and this has been worsened by HIV (Kaufmann, 2000; Andersen, 2001). Also, with the HIV pandemic there is increasing prevalence of multi-drug-resistant strains of Mycobacterium tuberculosis (Fine, 1989).

With increased prevalence of old diseases and the emergence of new ones, international organizations renewed their focus on infectious diseases. The Institute of Medicine defined emerging infectious diseases as ‘clinically recognized characteristics that appeared within the past two decades or may appear in the near future with increased incidence regionally or worldwide’ (CDC, 1994; 1998; WHO, 1994; Wilson et al., 1994; Stephens et al., 1998).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ada, G. (2000). HIV and pandemic influenza virus: two great infectious disease challenges. Virology 268: 227–230CrossRefGoogle ScholarPubMed
Alter, H. J., Purcell, R. J., Shih, J. W.et al. (1989). Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. New England Journal of Medicine 321: 1494–1500CrossRefGoogle ScholarPubMed
Andersen, P. (2001). TB vaccines: progress and problems. Trends in Immunology 22: 160–168CrossRefGoogle ScholarPubMed
Anderson, R. M. and May, R. M. (1982). Coevolution of hosts and parasites. Parasitology 85: 411–426CrossRefGoogle ScholarPubMed
Anderson, R. M. and May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. New York: Oxford University Press
Antia, R., Nowak, M. A. and Anderson, R. M. (1996). Antigenic variation and the within-host dynamics of parasites. Proceedings of the National Academy of Sciences 93: 985–989CrossRefGoogle ScholarPubMed
Anzala, A. O., Ball, T. B., Rostron, T.et al. (1998). CCR2–64I allele and genotype association with delayed AIDS progression in African women. University of Nairobi Collaboration for HIV Research. Lancet 351: 1632–1633CrossRefGoogle ScholarPubMed
Apostolopoulos, V. and Plebanski, M. (2000). The evolution of DNA vaccines. Current Opinion in Molecular Therapeutics 2: 441–447Google ScholarPubMed
Bakker, L. J., Nottett, S. L. M., deVos, N. M., et al. (1992). Antibodies and complement enhance binding and uptake of HIV-1 by human monocytes. AIDS 6: 35–34CrossRefGoogle ScholarPubMed
Beer, B. E., Bailes, E., Sharp, P. M. and Hirsch, V. M. (1999). Diversity and Evolution of Primate Lentiviruses. http://HIV-web.lanl.gov/compendium
Blaser, M. J. (1990). Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. Journal of Infectious Disease 161: 626–633CrossRefGoogle ScholarPubMed
Borst, P. (1991). Molecular genetics of antigenic variation. Immunology Today 12: A29–A33CrossRefGoogle ScholarPubMed
Bonhoeffer, S., Holmes, E. C. and Nowak, M. A. (1995). Causes of HIV diversity. Nature 376: 125CrossRefGoogle ScholarPubMed
Boyd, M. T., Simpson, G. R., Cann, A., , J., Johnson, M. A. and Weiss, R. A. (1993). A single amino acid substitution in the V1 loop of human immunodeficiency virus type 1 gp120 alters cellular tropism. Journal of Virology 67: 3649–3652Google ScholarPubMed
Bratt, G., Leandersson, A. C., Albert, J., Sandstrom, E. and Wahren, B. (1998). MT-2 tropism and CCR-5 genotype strongly influence disease progression in HIV-1-infected individuals. AIDS 12: 729–736CrossRefGoogle ScholarPubMed
Brennan, F. M. and Feldmann, M. (1996). Cytokines in autoimmunity. Current Opinion Immunology 8: 872–877CrossRefGoogle ScholarPubMed
Brinkman, B. M., Keet, I. P., Miedema, F.et al. (1997). Polymorphisms within the human tumor necrosis factor-alpha promoter region in human immunodeficiency virus type 1-seropositive persons. Journal of Infectious Disease 175: 188–190CrossRefGoogle ScholarPubMed
Burnet, M. and White, D. O. (1962). Natural History of Infectious Diseases. London: Cambridge University Press
Carrington, M., Nelson, G. W., Martin, M. P.et al. (1999). HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283: 1748–1752CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (CDC) (1994). Addressing Emerging Infectious Disease Threats: A Prevention Strategy for the United States. Atlanta, GA: US Department of Health and Human Services
Centers for Disease Control and Prevention (CDC) (1998). Preventing Emerging Infectious Diseases: A Strategy for the 21stCentury. Atlanta, GA: US Department of Health and Human Services
Chakravarti, M. R. and Vogel, F. (1973). A Twin Study on Leprosy. Stuttgart: Thieme
Chang, K. S. S. (1991). An evolutionary view of viral regulatory genes. Chinese Journal Microbiology Immunology 24: 10–18Google ScholarPubMed
Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C. and Lusso, P. (1995). Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270: 1811–1815CrossRefGoogle Scholar
Cohen, J. (1997). The flu pandemic that might have been. Science 277: 1600–1601CrossRefGoogle Scholar
Cohen, M. L. (2000). Changing patterns of infectious disease. Nature 406: 762–767CrossRefGoogle ScholarPubMed
Collman, R., Baillet, J. W., Gregory, S. A.et al. (1992). An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. Journal of virology 66: 7512–7521Google ScholarPubMed
Connor, R. I. and Ho, D. D. (1994). Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. Journal of Virology 68: 4400–4408Google ScholarPubMed
Connor, R. I., Mohri, H., Cao, Y. and Ho, D. D. (1993). Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. Journal of Virology 67: 1772–1777Google ScholarPubMed
Conway, D. J. and Roper, C. (2000). Micro-evolution and emergence of pathogens. International Journal of Parasitology 30: 1423–1430CrossRefGoogle ScholarPubMed
Cock, K. M., Adjorlolo, G., Ekpini, E.et al. (1993). Epidemiology and transmission of HIV-2–-why there is no HIV-2 pandemic. Journal of the American Medical Association 270: 2083–206Google ScholarPubMed
Leys, R., Vanderborght, B., Vanden Haesevelde, M.et al. (1990). Isolation and partial characterization of an unusual human immunodeficiency retrovirus from two persons of West-Central African origin. Journal of Virology 64: 1207–1216Google ScholarPubMed
Roda Husman, A. M., Koot, M., Cornelissen, M.et al. (1997). Association between CCR5 genotype and the clinical course of HIV-1 infection. Annals of Internal Medicine 127: 882–890CrossRefGoogle ScholarPubMed
Delwart, E. L., Shpaer, E. G., Louwagie, J.et al. (1993). Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science 262: 1257–1261CrossRefGoogle ScholarPubMed
Deng, H. K., Liu, R., Ellmeier, W.et al. (1996). Identification of a major co-receptor for primary isolates of HIV-1. Nature 381: 661–666CrossRefGoogle Scholar
Dimmock, N. J. and Primrose, S. B. (1987). Introduction to Modern Virology. Oxford: Blackwell Scientific Publications
Doherty, P. C. and Zinkernagel, R. M. (1975). A biological role for the major histocompatibility antigens. Lancet 1: 1406–1409CrossRefGoogle ScholarPubMed
Doms, R. W. and Moore, J. P. (1997). HIV-1 coreceptor use: a molecular window into viral tropism. In Human Retroviruses and AIDS. http://HIV-web.lanl.gov/compendium
Dougherty, J. P. and Temin, H. M. (1988). Determination and insertion mutations in retrovirus replication. Journal of Virology 62: 2817–2822Google ScholarPubMed
Dragic, T., Litwin, V., Allaway, G.et al. (1996). HIV-1 entry into CD4(+)cells is mediated by the chemokine receptor CC-CCKR-5. Nature 381: 667–673CrossRefGoogle Scholar
Duh, E. J., Maury, W. J., Folks, T. M., Fauci, A. S. and Rabson, A. B. (1989). Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proceedings of the National Academy of Sciences 86: 5974–5978CrossRefGoogle ScholarPubMed
Ewald, P. W. (1993). The evolution of virulence. Scientific American 268: 86–93CrossRefGoogle ScholarPubMed
Fauci, A. S. (1988). The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239: 617–622CrossRefGoogle ScholarPubMed
Fenyo, E. M., Morfeldt-Mansson, L., Chiodi, F.et al. (1988). Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. Journal of Virology 62: 4414–4419Google ScholarPubMed
Fenyo, E. M., Schuitemaker, H., Asjo, B., McKeating, J. and Sattentau, Q. (1997). The History of HIV-1 Biological Phenotypes: Past, Present and Future. http://HIV-b.lanl.gov/compendium
Fine, P. E. (1989). The BCG story: lessons from the past and implications for the future. Review of Infectious Disease 11: S353–S359CrossRefGoogle ScholarPubMed
Fiorentino, D. F., Bond, M. W. and Mosmann, T. R. (1989). Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. Journal of Experimental Medicine 170: 2081–2095CrossRefGoogle Scholar
Fiorentino, D. F., Zlotnik, A., Mosmann, T. R., Howard, M. and O'Garra, A. (1991). IL-10 inhibits cytokine production by activated macrophages. Journal of Immunology 147: 3815–3822Google ScholarPubMed
Gao, F., Bailes, E., Robertson, D. L.et al. (1999). Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397: 436–444CrossRefGoogle ScholarPubMed
Gelderbloom, H. R., Reupke, H. and Pauli, G. (1985). Loss of envelope antigens of HTLV III/LAV, a factor in AIDS pathogenesis. Lancet 2: 1016–1017CrossRefGoogle Scholar
Greene, W. C. (1993). AIDS and the immune system. Scientific American 269: 98–105CrossRefGoogle ScholarPubMed
Grez, M., Dietrich, U., Balfe, P.et al. (1994) Genetic analysis of human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2) mixed infections in India reveals a recent spread of HIV-1 and HIV-2 from a single ancestor for each of these viruses. Journal of Virology 68: 2161–2168Google ScholarPubMed
Gupta, S. and Vayuvegula, B. (1987). Human immunodeficiency virus-associated changes in signal transduction. Journal of Clinical Immunolology 7: 486–489CrossRefGoogle ScholarPubMed
Gurtler, L. G., Hauser, P. H., Eberle, J.et al. (1994). A new subtype of human immunodeficiency virus type 1 (MVP-5180) from Cameroon. Journal of Virology 68: 1581–1585Google ScholarPubMed
Hahn, B. H., Shaw, G. M., Cock, K. M. and Sharp, P. M. (2000). AIDS as a zoonosis: scientific and public health implications. Science 287: 607–614CrossRefGoogle ScholarPubMed
Hahn, B. H., Shaw, G. M., Taylor, M. E.et al. (1986). Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS. Science 232: 1548–1553CrossRefGoogle ScholarPubMed
Hendel, H., Caillat-Zucman, S., Lebuanec, H., et al. (1999). New class I and II HLA alleles strongly associated with opposite patterns of progression to AIDS. Journal of Immunology 162: 6942–6945Google Scholar
Hill, A. V. S. (2001). The Genomics and genetics of human infectious disease susceptibility. Annual Review of Genomics and Human Genetics 2: 373–400CrossRefGoogle ScholarPubMed
Hill, C. M. and Littman, D. R. (1996). Natural resistance to HIV? Science 382: 668–669Google Scholar
Hirsch, V. M., Omsted, R. A., Murphey-Corb, M., Purcell, R. H. and Johnson, P. R. (1989). An African primate lentivirus (SIV) closely related to HIV-2. Nature 339: 389–392CrossRefGoogle ScholarPubMed
Ho, D. D., Neuman, A. U., Perelson, A. S., Chen, W., Leonard, J. M. and Markowitz, M. (1995). Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373: 123–126CrossRefGoogle ScholarPubMed
Holmes, E. C. (1998). Molecular epidemiology and evolution of emerging infectious diseases. British Medical Bulletin 54: 533–543CrossRefGoogle ScholarPubMed
Hoxie, J. A., Alpers, J. D., Rackowski, J. L.et al. (1986). Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV. Science 234: 1123–1127CrossRefGoogle Scholar
Hu, D. J., Dondero, T. J., Rayfield, M. A.et al. (1996). The emerging genetic diversity of HIV: the importance of global surveillance for diagnostics, research, and prevention. Journal of the American Medical Association 275: 210–216CrossRefGoogle Scholar
Huebner, R. (1996). Bacillus of Calmette and Guerin (BCG) vaccine. In Tuberculosis, ed. W. N. Rom and S. M. Gray, pp. 893–904. Boston: Little, Brown
Huet, T., Cheynier, R., Meyerhans, A., Roelants, G. and Wain-Hobson, S. (1990). Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345: 356–359CrossRefGoogle ScholarPubMed
Hutchinson, J. F. (2001). The biology and evolution of HIV. Annual Review of Anthropology 30: 85–108CrossRefGoogle Scholar
Kaufmann, S. H. (2000). Is the development of a new tuberculosis vaccine possible? Nature Medicine 6: 955–960CrossRefGoogle ScholarPubMed
Kion, T. and Hoffmann, G. M. (1991). Anti-HIV and anti-anti-MHC antibodies in alloimmune and autoimmune mice. Science 253: 1138–1140CrossRefGoogle ScholarPubMed
Korber, B., Theiler, J. and Wolinsky, S. (1998). Limitations of a molecular clock applied to considerations of the origin of HIV-1. Science 280: 1868–1871CrossRefGoogle ScholarPubMed
Kostrikis, L. G., Huang, Y., Moore, J. P.et al. (1998). A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nature Medicine 4: 350–353CrossRefGoogle ScholarPubMed
Kunanusont, C., Foy, H. M., Kreiss, J. K.et al. (1995). HIV-1 subtypes and male-to-female transmission in Thailand. Lancet 345: 1078–1083Google ScholarPubMed
Laurence, J. (1997). HIV vaccine conundrum. AIDS Reader 7: 2, 27Google Scholar
LeBlanc, S. B., Naik, E. G., Jacobson, L. and Kaslow, R. A. (2000). Association of DRB1*1501 with disseminated Mycobacterium avium complex infection in North American AIDS patients. Tissue Antigens 55: 17–23CrossRefGoogle ScholarPubMed
Leitner, T., Korber, B., Robertson, D., Gao, F. and Hahn, B. (1997). Updated Proposal of Reference Sequences of HIV-1 Genetic Subtypes. http://HIV-web.lanl.gov/compendium
Levin, B. R., Lipsitch, M. and Bonhoeffer, S. (1999). Population biology, evolution, and infectious disease: convergence and synthesis. Science 283: 806–809CrossRefGoogle ScholarPubMed
Levy, J. A. (1988). Mysteries of HIV: challenges for therapy and prevention. Nature 339: 519–522CrossRefGoogle Scholar
Lin, T. M., Chen, C. J., Wu, M. M.et al. (1989). Hepatitis B virus markers in Chinese twins. Anticancer Research 9: 737–741Google ScholarPubMed
Liu, R., Paxton, W. A., Choe, S.et al. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86: 367–377CrossRefGoogle ScholarPubMed
Los Alamos, National Laboratory (1998). Human Retroviruses and AIDS 1998: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. http://HIV-web.lanl.gov
Loussert-Ajaka, I., Ly, T. D., Chaix, M. L.et al. (1994). HIV-1/HIV-2 seronegativity in HIV-1 subtype O infected patients. Lancet 343: 1393–1394CrossRefGoogle ScholarPubMed
Louwagie, J., McCutchan, F. E., Peeters, M.et al. (1993). Phylogenetic analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple genotypes. AIDS 7: 769–780CrossRefGoogle ScholarPubMed
Lynn, W. S., Tweedale, A. and Cloyd, M. W. (1988). Human immunodeficiency virus (HIV-1) cytotoxicity: perturbation of the cell membrane and depression of phospholipid synthesis. Virology 163: 43–51CrossRefGoogle ScholarPubMed
MacDonald, K. S., Fowke, K. R., Kimani, J.et al. (2000). Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. Journal of Infectious Diseases 181: 1581–1589CrossRefGoogle ScholarPubMed
Malaty, H. M., Engstrand, L., Pedersen, N. L. and Graham, D. Y. (1994). Helicobacter pylori infection: genetic and environmental influences. A study of twins. Annals of Internal Medicine 120: 982–986CrossRefGoogle Scholar
Matsuyama, T., Kobayashi, N. and Yamamoto, N. (1991). Cytokines and HIV infection: is AIDS a tumor necrosis factor disease? AIDS 5: 1405–1417CrossRefGoogle ScholarPubMed
May, R. M., Gupta, S. and McLean, A. R. (2001). Infectious disease dynamics: what characterizes a successful invader? Philosophical Transactions of the Royal Society of London 356: 901–910CrossRefGoogle ScholarPubMed
McDermott, D. H., Beecroft, M. J., Kleeberger, C. A.et al. (2000). Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS cohort study. AIDS 14: 2671–2678CrossRefGoogle ScholarPubMed
McNeill, W. H. (1976). Plagues and Peoples. New York: Anchor Press
Michael, N. L., Louie, L. G., Rohrbaugh, A. L.et al. (1997). The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nature Medicine 3: 1160–1162CrossRefGoogle ScholarPubMed
Migueles, S. A., Sabbaghian, M. S., Shupert, W. L.et al. (2000). HLA-B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long-term nonprogressors. Proceedings of the National Academy of Sciences 97: 2709–2714CrossRefGoogle Scholar
Milich, L., Margolin, B. and Swanstrom, R. (1993). V3 loop of the human immunodeficiency virus type 1 env protein: interpreting sequence variability. Journal of Virology 67: 5623–5634Google ScholarPubMed
Moore, J. and Anderson, R. (1994). The who and why of HIV vaccine trials. Nature 372: 313–314CrossRefGoogle ScholarPubMed
Moore, J. P. and Ho, D. D. (1995). HIV-1 neutralization: the consequences of viral adaptation to growth on transformed T cells. AIDS 9: S117–S136Google ScholarPubMed
Morse, S. S. (1995). Factors in emerging infectious diseases. Emerging Infectious Diseases 1: 7–15CrossRefGoogle Scholar
Nicastri, E., Girardi, E. and Ippolito, G. (2001). Determinants of emerging and re-emerging infectious disease. Journal of Biological Regulators and Homeostatic Agents 15: 212–217Google Scholar
Nowak, M. (1990). HIV mutation rate. Nature 347: 522CrossRefGoogle ScholarPubMed
Nowak, R. (1995). How the parasite disguises itself. Science 269: 755CrossRefGoogle Scholar
Pantaleo, G., Graziosi, C. and Fauci, A. S. (1993). The immunopathogenesis of human immunodeficiency virus infection. New England Journal of Medicine 328: 327–335Google ScholarPubMed
Paxton, W. A., Liu, R., Kang, S.et al. (1998). Reduced HIV-1 infectability of CD4+ lymphocytes from exposed-uninfected individuals: association with low expression of CCR5 and high production of beta-chemokines. Virology 244: 66–73CrossRefGoogle ScholarPubMed
Peeters, M., Fransen, K., Delaporte, E.et al. (1992). Isolation and characterization of a new chimpanzee lentivirus (simian immunodeficiency virus isolate cpz-ant) from a wild-captured chimpanzee. AIDS 6: 447–451CrossRefGoogle Scholar
Pienizak, N. J., Bornay-Llinares, F. J., Slemenda, S. B.et al. (1999). New cryptosporidium genotypes in HIV-infected persons. Emerging Infectious Diseases 5: 444–449Google Scholar
Proffitt, M. R. and Yen-Lieberman, B. (1993). Laboratory diagnosis of human immunodeficiency virus infection. Infectious Disease Clinic North America 7: 203–219Google ScholarPubMed
Rabkin, C. S., Yang, Q., Goedert, J. J.et al. (1999). Chemokine and chemokine receptor gene variants and risk of non-Hodgkin's lymphoma in human immunodeficiency virus-1-infected individuals. Blood 93: 1838–1842Google ScholarPubMed
Read, A. F. (1994). The evolution of virulence. Trends in Microbiology 2: 73–76CrossRefGoogle ScholarPubMed
Robertson, D. L., Gao, F., Hahn, B. H. and Sharp, P. M. (1997). Inter-subtype Recombinant HIV-1 Sequences. http://HIV-web.lanl.gov/compendium
Saag, M. S., Hahn, B. H., Gibbons, J.et al. (1988). Extensive variation of human immunodeficiency virus type-1 in vivo. Nature 334: 440–444CrossRefGoogle ScholarPubMed
Samson, M., Libert, F., Doranz, B. J.et al. (1996). Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382: 722–725CrossRefGoogle ScholarPubMed
Schable, C., Zekeng, L., Pau, C. P.et al. (1994). Sensitivity of United States HIV antibody tests for detection of HIV-1 group O infections. Lancet 344: 1333–1334CrossRefGoogle ScholarPubMed
Schuitemaker, H., Koot, M., Kootstra, N. A.et al. (1992). Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. Journal of Virology 66: 1354–1360Google ScholarPubMed
Sharp, P. M., Robertson, D. L., Gao, F.et al. (1994). Origins and diversity of human immunodeficiency viruses. AIDS 8: S27–S42Google Scholar
Shaper, E. G. and Mullins, J. I. (1993). Rates of amino acid change in the envelope protein correlate with pathogenicity of primate lentiviruses. Journal of Molecular Evolution 37: 57–65Google Scholar
Shioda, T., Levy, J. A. and Cheng-Mayer, C. (1991). Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 349: 167–169CrossRefGoogle Scholar
Simmons, G., Wilkinson, D., Reeves, J. D.et al. (1996). Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as co-receptors for virus entry. Journal of Virology 70: 8355–8360Google ScholarPubMed
Simon, F., Mauclere, P., Roques, P.et al. (1998). Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nature Medicine 4: 1032–1037CrossRefGoogle Scholar
Smith, M. W., Dean, M., Carrington, M.et al. (1997a). Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science 277: 959–965CrossRefGoogle Scholar
Smith, M. W., Carrington, M., Winkler, C.et al. (1997b). CCR2 chemokine receptor and AIDS progression. Nature Medicine 3: 1052CrossRefGoogle Scholar
Sodroski, J., Goh, W. C., Rosen, C., Campbell, K. and Haseltine, W. (1986). Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 322: 470–474CrossRefGoogle ScholarPubMed
Stephens, D. S., Moxon, E. R., Adams, H.et al. (1998). Emerging and re-emerging infectious diseases: a multidisciplinary perspective. American Journal of the Medical Sciences 315: 64–75Google ScholarPubMed
Stine, G. J. (2000). AIDS Update 2000: An Annual Overview of Acquired Immune Deficiency Syndrome. New Jersey: Prentice Hall
Sullivan, N., Sun, Y., Li, J., Hofmann, W. and Sodroski, J. (1995). Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immundeficiency virus type 1 isolates. Journal of Virology 69: 4413–4422Google Scholar
Temin, H. M. (1989). Is HIV unique or merely different? Journal of Acquired Immune Deficiency Syndromes 2: 1–9Google ScholarPubMed
Tersmette, M., Goede, R. E. Y., Eeftink-Schattenkerk, J. K. M.et al. (1989). Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet 1: 983–985CrossRefGoogle ScholarPubMed
Vlahov, D., Anthony, J. C., Munoz, A.et al. (1991). The ALIVE study, a longitudinal study of HIV-1 infection in intravenous drug users: description of methods and characteristics of participants. NIDA Research Monograph 109: 75–100Google ScholarPubMed
Weiss, R. A. (1996). HIV receptors and the pathogenesis of AIDS. Science 272: 1885–1886CrossRefGoogle Scholar
Wilson, M. E., Levins, R. and Spielman, A. (1994). Disease in evolution: global changes and emergence of infectious diseases. Annals of the New York Academy of Sciences 740: 1–469CrossRefGoogle Scholar
Winkler, C., Modi, W., Smith, M. W.et al. (1998). Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. Science 279: 389–393CrossRefGoogle ScholarPubMed
Wolinsky, S. M., Korber, B. T. M., Newumann, A. U.et al. (1996). Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science 272: 537–542CrossRefGoogle ScholarPubMed
World Health Organization (1994). Emerging infectious diseases: memorandum from a WHO meeting. Bulletin of the World Health Organization 72: 845–850
Yang, K. D. and Hill, H. R. (1996). Immune responses to infectious diseases: an evolutionary perspective. Pediatric Infectious Disease Journal 15: 355–364CrossRefGoogle Scholar
Zhang, L., Huang, Y., He, T., Cao, Y. and Ho, D. D. (1996). HIV-1 subtype and second receptor use. Nature 383: 768CrossRefGoogle ScholarPubMed
Zimmerman, P. A., Buckler-White, A., Alkhatib, G.. et al. (1997). Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Molecular Medicine 3: 23–26Google ScholarPubMed
Zinkernagel, R. M. (1996). Immunology taught by viruses. Science 271: 173–178CrossRefGoogle ScholarPubMed
Zhu, T., Korber, B. T., Nahmias, A. J., Hooper, E., Sharp, P. M. and Ho, D. D. (1998). An African HIV-1 sequence from 1950 and implications for the origin of the epidemic. Nature 391: 594–597Google Scholar
Zhu, T., Mo, H., Wang, N.et al. (1993). Genotypic and phenotypic characterization of HIV-I in patients with primary infection. Science 261: 1179–1181CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×