[1] Abu-Surra, S., Divsalar, D., and Ryan, W.E.
2010 (Jan.). On the existence of typical minimum distance for protograph-based LDPC codes. Pages 1–7 of: Proc. IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, January 31–February 5 2010.
[2] Abu-Surra, S., Divsalar, D., and Ryan, W.E.
2011. Enumerators for protograph-based ensembles of LDPC and generalized LDPC codes. IEEE Trans. Inf. Theory, 57(2), 858–886.
[3] Ammar, B., Honary, B., Kou, Y., Xu, J., and Lin, S.
2004. Construction of low-density parity-check codes based on balanced incomplete block designs. IEEE Trans. Inf. Theory, 50(6), 1257–1269.
[4] Bahl, L., Cocke, J., Jelinek, F., and Raviv, J.
1974. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory, 20(2), 284–287.
[5] Barnault, L., and Declercq, D.
2003 (Mar.). Fast decoding algorithm for LDPC over GF(2q). Pages 70–73 of: Proc. IEEE Inf. Theory Workshop. La Sorbonne, Paris, France, March 31–April 4, 2003.
[6] Batten, L.M.
1997. Combinatorics of Finite Geometries, 2nd ed. Cambridge, UK: Cambridge University Press.
[7] Bellorado, J., and Kavcic, A.
2010. Low-complexity soft-decoding algorithms for Reed–Solomon codes part I: An algebraic soft-in hard-out Chase decoder. IEEE Trans. Inf. Theory, 56(3), 945–959.
[8] Berlekamp, E.R.
1984. Algebraic Coding Theory. Laguna Hills, CA: Aegean Park Press.
[9] Bose, R.C.
1939. On the construction of balanced incomplete block designs. Ann. Eugenics, 9(4), 353–399.
[10] Bose, R.C.
1963. Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math., 13(2), 389–419.
[11] Butler, B.K., and Siegel, P.H.
2010 (Jun.). On distance properties of quasi-cyclic protograph-based LDPC codes. Pages 809–813 of: Proc. IEEE Int. Symp. Inf. Theory. Austin, TX, USA, June 13–18, 2010.
[12] Cameron, P.J., and Van Lint, J.H.
1991. Designs, Graphs, Codes, and Their Links. Cambridge, UK: Cambridge University Press.
[13] Carmichael, R.D.
1956. Introduction to the Theory of Groups of Finite Orders. New York, NY: Dover.
[14] Chandrasetty, V.A., Johnson, S.J., and Lechner, G.
2013. Memory efficient decoders using spatially coupled quasi-cyclic LDPC codes. CoRR, arXiv:abs/1305.5625.
[15] Chang, B.Y., Dolecek, L., and Divsalar, D.
2011 (Nov.). EXIT chart analysis and design of non-binary protograph-based LDPC codes. Pages 566–571 of: IEEE Military Commun. Conf. (Milcom). Baltimore, MD, USA, November 7–10, 2011.
[16] Chang, B.Y., Divsalar, D., and Dolecek, L.
2012 (September 3–7). Non-binary protograph-based LDPC codes for short block-lengths. Pages 282–286 of: Proc. IEEE Inf. Theory Workshop. Lausanne, Switzerland, September 3–7, 2012.
[17] Chen, C.L., Peterson, W.W., and Weldon, E.J., Jr. 1969. Some results on quasi-cyclic codes. Inf. Control, 15(5), 407–423.
[18] Chen, J., and Fossorier, M. P. C.
2002. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Trans. Commun., 50(3), 406–414.
[19] Chen, L., Xu, J., Djurdjevic, I., and Lin, S.
2004. Near Shannon-limit quasi-cyclic low-density parity-check codes. IEEE Trans. Commun., 52(7), 1038–1042.
[20] Chen, Y., and Parhi, K.K.
2004. Overlapped message passing for quasi-cyclic low-density parity check codes. IEEE Trans. Circuits Syst. I, 51(6), 1106–1113.
[21] Colbourn, C.J., and Dintz, J.H.
1996. The Handbook of Combinatorial Design. Boca Raton, FL: CRC Press.
[22] Costello, D.J., Jr., Dolecek, L., Fuja, T., Kliewer, J., Mitchell, D.G.M., and Smarandache, R.
2014. Spatially coupled sparse codes on graphs: Theory and practice. IEEE Commun. Mag., 52(7), 168–176.
[23] Davey, M.C., and MacKay, D.J.C.
1998. Low-density parity check codes over GF(q). IEEE Commun. Lett., 2(6), 165–167.
[24] Di, C., Proietti, D., Telatar, I.E., Richardson, T.J., and Urbanke, R.L.
2002. Finite-length analysis of low-density parity-check codes on the binary erasure channel. IEEE Trans. Inf. Theory, 48(6), 1570–1579.
[25] Diao, Q., Huang, Q., Lin, S., and Abdel-Ghaffar, K.
2011 (Feb.). A transform approach for analyzing and constructing quasi-cyclic low-density parity-check codes. Pages 1–8 of: Proc. IEEE Inf. Theory Applic. Workshop. La Jolla, CA, USA, February 6–11, 2011.
[26] Diao, Q., Huang, Q., Lin, S., and Abdel-Ghaffar, K.
2012a. A matrix-theoretic approach for analyzing quasi-cyclic low-density parity-check codes. IEEE Trans. Inf. Theory, 58(6), 4030–4048.
[27] Diao, Q., Zhou, W., Lin, S., and Abdel-Ghaffar, K.
2012b (Feb.). A transform approach for constructing quasi-cyclic Euclidean geometry LDPC codes. Pages 204–211 of: Proc. IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, February 5–10, 2012.
[28] Diao, Q., Tai, Y.Y., Lin, S., and Abdel-Ghaffar, K.
2013. LDPC codes on partial geometries: Construction, trapping set structure, and puncturing. IEEE Trans. Inf. Theory, 59(12), 7898–7914.
[29] Diao, Q., Li, J., Lin, S., and Blake, I.F.
2016. New classes of paritial geometries and their associated LDPC codes. IEEE Trans. Inf. Theory, 62(6) 2947–2965.
[30] Divsalar, D., Dolinar, S., and Jones, C.
2005a (Sep.). Low-rate LDPC codes with simple protograph structure. Pages 1622–1626 of: Proc. IEEE Int. Symp. Inf. Theory. Adelaide, SA, USA, September 4–9, 2005.
[31] Divsalar, D., Jones, C., Dolinar, S., and Thorpe, J.
2005b (Nov.). Protograph based LDPC codes with minimum distance linearly growing with block size. Page 5 of: Proc. IEEE Glob. Commun. Conf., vol. 3. St. Louis, MO, USA, November 28–December 2, 2005.
[32] Divsalar, D., Dolinar, S., and Jones, C.
2006 (Jul.). Construction of protograph LDPC codes with linear minimum distance. Pages 664–668 of: Proc. IEEE Int. Symp. Inf. Theory. Seattle, WA, USA, July 9–14, 2006.
[33] Divsalar, D., Dolinar, S., and Jones, C.
2007 (Oct.). Short protograph-based LDPC codes. Pages 1–6 of: IEEE Military Commun. Conf. (Milcom). Orlando, FL, USA, October 29–31, 2007.
[34] Divsalar, D., Dolinar, S., Jones, C.R., and Andrews, K.
2009. Capacity-approaching protograph codes. IEEE J. Sel. Areas Commun., 27(6), 876–888.
[35] Djurdjevic, I., Xu, J., Abdel-Ghaffar, K., and Lin, S.
2003. A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols. IEEE Commun. Lett., 7(7), 317–319.
[36] Dolecek, L., Divsalar, D., Sun, Y., and Amiri, B.
2014. Non-binary protograph-based LDPC codes: Enumerators, analysis, and designs. IEEE Trans. Inf. Theory, 60(7), 3913–3941.
[37] El-Khamy, M., and McEliece, R.J.
2006. Iterative algebraic soft-decision list decoding of Reed–Solomon codes. IEEE J. Sel. Areas Commun., 24(3), 481–490.
[38] Fan, J.L.
2000 (Sep.). Array codes as low-density parity-check codes. Pages 543–546 of: Proc. 2nd Int. Sym. on Turbo Codes and Related Topics. Brest, France, September 4–7, 2000.
[39] Fossorier, M.P.C.
2004. Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory, 50(8), 1788–1793.
[40] Gallager, R.G.
1962. Low-density parity-check codes. IRE Trans. Inform. Theory, IT-8(Jan.), 21–28.
[41] Han, Y., and Ryan, W.E.
2009. Low-floor decoders for LDPC codes. IEEE Trans. Commun., 57(6), 1663–1673.
[42] Horn, R.A., and Johnson, C.R.
1985. Matrix Analysis. Cambridge, UK: Cambridge University Press.
[43] Hu, X.Y., Eleftheriou, E., and Arnold, D.M.
2001. Progressive edge-growth Tanner graphs. Pages 995–1001 of: Proc. IEEE Glob. Commun. Conf., vol. 2. San Antonio, TX, USA, November 25–29, 2001.
[44] Hu, X.Y., Eleftheriou, E., and Arnold, D.M.
2005. Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans. Inf. Theory, 51(1), 386–398.
[45] Huang, J., Liu, L., Zhou, W., and Zhou, S.
2010. Large-girth nonbinary QC-LDPC codes of various lengths. IEEE Trans. Commun., 58(12), 3436–3447.
[46] Huang, Q., Diao, Q., Lin, S., and Abdel-Ghaffar, K.
2012. Cyclic and quasi-cyclic LDPC codes on constrained parity-check matrices and their trapping sets. IEEE Trans. Inf. Theory, 58(5), 2648–2671.
[47] Iyengar, A.R., Papaleo, M., Siegel, P.H., Wolf, J.K., Vanelli-Coralli, A., and Corazza, G.E.
2012. Windowed decoding of protograph-based LDPC convolutional codes over erasure channels. IEEE Trans. Inf. Theory, 58(4), 2303–2320.
[48] Jiang, J., and Narayanan, K.R.
2008. Algebraic soft-decision decoding of Reed–Solomon codes using bit-level soft information. IEEE Trans. Inf. Theory, 54(9), 3907–3928.
[49] Jimenez Felstrom, A., and Zigangirov, K.S.
1999. Time-varying periodic convolutional codes with low-density parity-check matrix. IEEE Trans. Inf. Theory, 45(6), 2181–2191.
[50] Kang, J., Huang, Q., Zhang, L., Zhou, B., and Lin, S.
2010. Quasi-cyclic LDPC codes: An algebraic construction. IEEE Trans. Commun., 58(5), 1383–1396.
[51] Kang, J., Huang, Q., Lin, S., and Abdel-Ghaffar, K.
2011. An iterative decoding algorithm with backtracking to lower the error-floors of LDPC codes. IEEE Trans. Commun., 59(1), 64–73.
[52] Karlin, M.
1969. New binary coding results by circulants. IEEE Trans. Inf. Theory, 15(1), 81–92.
[53] Kasami, T.
1974. A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2. IEEE Trans. Inf. Theory, 20(5), 679.
[54] Köetter, R., and Vardy, A.
2003. Algebraic soft-decision decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory, 49(11), 2809–2825.
[55] Kou, Y., Lin, S., and Fossorier, M.P.C.
2000a (Sep.). Construction of low density parity check codes: A geometric approach. Pages 137–140 of: Proc. 2nd Int. Sym. on Turbo Codes and Related Topics. Brest, France, September 4–7, 2000.
[56] Kou, Y., Lin, S., and Fossorier, M.P.C.
2000b. Low density parity check codes based on finite geometries: A rediscovery. Page 200 of: Proc. IEEE Int. Symp. Inf. Theory. Sorrento, Italy, June 25–30, 2000.
[57] Kou, Y., Lin, S., and Fossorier, M.P.C.
2000c (Nov./Dec.). Low density parity check codes: Construction based on finite geometries. Pages 825–829 of: Proc. IEEE Glob. Commun. Conf., vol. 2. San Francisco, CA, USA, November 27–December 1, 2000.
[58] Kou, Y., Lin, S., and Fossorier, M.P.C.
2001. Low-density parity-check codes based on finite geometries: A rediscovery and new results. IEEE Trans. Inf. Theory, 47(7), 2711–2736.
[59] Kudekar, S., Richardson, T.J., and Urbanke, R.L.
2011. Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC. IEEE Trans. Inf. Theory, 57(2), 803–834.
[60] Kudekar, S., Richardson, T., and Urbanke, R.L.
2013. Spatially coupled ensembles universally achieve capacity under belief propagation. IEEE Trans. Inf. Theory, 59(12), 7761–7813.
[61] Kumar, S., and Pfister, H.D.
2015. Reed–Muller codes achieve capacity on erasure channels. CoRR, arXiv:abs/1505.05123.
[62] Laendner, S., and Milenkovic, O.
2005. Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes. Pages 630–635 of: Wireless Networks, Communications and Mobile Computing, 2005 International Conference on, vol. 1. Maui, HI, USA, June 13–16, 2005.
[63] Laendner, S., and Milenkovic, O.
2007. LDPC codes based on Latin squares: Cycle structure, stopping set, and trapping set analysis. IEEE Trans. Commun., 55(2), 303–312.
[64] Lan, L., Zeng, L., Tai, Y.Y., Chen, L., Lin, S., and Abdel-Ghaffar, K.
2007. Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: A finite field approach. IEEE Trans. Inf. Theory, 53(7), 2429–2458.
[65] Lan, L., Tai, Y.Y., Lin, L., Behshad, M., and Honary, B.
2008. New constructions of quasi-cyclic LDPC codes based on special classes of BIBDs for the AWGN and binary erasure channels. IEEE Trans. Commun., 56(1), 39–48.
[66] Lentmaier, M., Sridharan, A., Zigangirov, K.S., and Costello, D.J., Jr. 2005 (Sep.). Terminated LDPC convolutional codes with thresholds close to capacity. Pages 1372–1376 of: Proc. IEEE Int. Symp. Inf. Theory. Adelaide, SA, USA, September 4–9, 2005.
[67] Lentmaier, M., Sridharan, A., Costello, D.J., Jr., and Zigangirov, K.S.
2010. Iterative decoding threshold analysis for LDPC convolutional codes. IEEE Trans. Inf. Theory, 56(10), 5274–5289.
[68] Li, J., Liu, K., Lin, S., and Abdel-Ghaffar, K.
2014a. Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme. IEEE Trans. Commun., 62(8), 2626–2637.
[69] Li, J., Liu, K., Lin, S., and Abdel-Ghaffar, K.
2014b (Feb.). Decoding of quasi-cyclic LDPC codes with section-wise cyclic structure. Pages 1–10 of: Proc. IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, February 9–14, 2014.
[70] Li, J., Liu, K., Lin, S., and Abdel-Ghaffar, K.
2014c (Jun.). Quasi-cyclic LDPC codes on two arbitrary sets of a finite field. Pages 2454–2458 of: Proc. IEEE Int. Symp. Inf. Theory. Honolulu, HI, USA, June 29–July 4, 2004.
[71] Li, J., Lin, S., and Abdel-Ghaffar, K.
2015 (Jun.). Improved message-passing algorithm for counting short cycles in bipartite graphs. In: Proc. IEEE Int. Symp. Inf. Theory. Hong Kong, China, June 14–19, 2015.
[72] Li, Z., Chen, L., Zeng, L., Lin, S., and Fong, W.H.
2006. Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans. Commun., 54(1), 71–81.
[73] Lidl, R., and Niederreiter, H.
1997. Finite Fields. Cambridge, UK: Cambridge University Press.
[74] Lin, S., and Costello, D.J., Jr. 2004. Error Control Coding: Fundamentals and Applications, 2nd edition. Upper Saddle River, NJ: Prentice Hall.
[75] Lin, S., Kasami, T., Fujiwara, T., and Fossorier, M.P.C.
1998. Trellis and Trellis-Based Decoding Algorithm for Linear Block Codes. New York, NY: Springer-Verlag New York.
[76] Lin, S., Xu, J., Djurdjevic, I., and Tang, H.
2002 (Oct.). Hybrid construction of LDPC codes. Pages 1149–1158 of: Proc. 40th Annual Allerton Conf. Commun., Control, Computing. Monticello, IL, USA, October 1–3, 2002.
[77] Lin, S., Diao, Q., and Blake, I.F.
2014a (Aug.). Error floors and finite geometries. Pages 42–46 of: Proc. 8th Int. Sym. on Turbo Codes and Iterative Inf. Processing. Bremen, Germany, August 18–22, 2014.
[78] Lin, S., Liu, K., Li, J., and Abdel-Ghaffar, K.
2014b (Nov.). A reduced-complexity iterative scheme for decoding quasi-cyclic low-density parity-check codes. Pages 119–125 of: Proc. 48th Annual Allerton Conf. Commun., Control, Computing. Pacific Grove, CA, USA, November 2–5, 2014.
[79] Liu, K., Lin, S., and Abdel-Ghaffar, K.
2013. A Revolving iterative algorithm for decoding algebraic cyclic and quasi-cyclic LDPC codes. IEEE Trans. Commun., 61(12), 4816–4827.
[80] Liva, G., and Chiani, M.
2007 (Nov.). Protograph LDPC codes design based on EXIT analysis. Pages 3250–3254 of: Proc. IEEE Glob. Commun. Conf.
Washington, DC, USA, November 26–30, 2007.
[81] MacKay, D.J.C.
1999. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory, 45(2), 399–431.
[82] MacKay, D.J.C., and Davey, M.C.
2001. Evaluation of Gallager codes for short block length and high rate applications. The IMA Volumes in Mathematics and its Applications, 123(Jun.), 113–130.
[83] MacKay, D.J.C., and Neal, R.M.
1996. Near Shannon limit performance of low density parity-check codes. Electro. Lett., 32(18), 1645–1646.
[84] Mann, H.
1949. Analysis and Design of Experiments. New York, NY: Dover.
[85] Mitchell, D.G.M., Smarandache, R., and Costello, D.J., Jr. 2014. Quasi-cyclic LDPC codes based on pre-lifted protographs. IEEE Trans. Inf. Theory, 60(10), 5856–5874.
[86] Mitchell, D.G.M., Lentmaier, M., and Costello, D.J., Jr. 2015. Spatially coupled LDPC codes constructed from protographs. IEEE Trans. Inf. Theory, 61(9), 4866–4889.
[87] NASA, Standards. 2008. GSFC-STD-9100. https://standards.nasa.gov/documents/ viewdoc/3315856/3315856. Accessed May 4, 2015.
[88] Nguyen, T.V., Nosratinia, A., and Divsalar, D.
2012. The design of rate-compatible protograph LDPC codes. IEEE Trans. Commun., 60(10), 2841–2850.
[89] Peterson, W.W., and Weldon, E.J., Jr. 1972. Error-Correcting Codes, 2nd edition. Cambridge, MS, USA: MIT Press.
[90] Pishro-Nik, H., and Fekri, F.
2004. On decoding of low-density parity-check codes over the binary erasure channel. IEEE Trans. Inf. Theory, 50(3), 439–454.
[91] Pishro-Nik, H., and Fekri, F.
2007. Results on punctured low-density parity-check codes and improved iterative decoding techniques. IEEE Trans. Inf. Theory, 53(2), 599–614.
[92] Pusane, A.E., Smarandache, R., Vontobel, P.O., and Costello, D.J., Jr. 2011. Deriving good LDPC convolutional codes from LDPC block codes. IEEE Trans. Inf. Theory, 57(2), 835–857.
[93] Reed, I.S., and Solomon, G.
1960. Polynomial codes over certain finite fields. J. Soc. Indust. Appl. Math., 8(2), 300–304.
[94] Richardson, T.
2003 (October 1–3). Error-floors of LDPC codes. Pages 1426–1435 of: Proc. 41st Annual Allerton Conf. Commun. Control, Computing. Monticello, IL, USA, October 1–3, 2003.
[95] Richardson, T., and Urbanke, R.L.
2008. Morden Coding Theory. Cambridge, UK: Cambridge University Press.
[96] Richardson, T.J., Shokrollahi, M.A., and Urbanke, R.L.
2001. Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory, 47(2), 619–637.
[97] Ryan, W.E., and Lin, S.
2009. Channel Codes: Classical and Modern. NewYork, NY: Cambridge University Press.
[98] Ryser, H.J.
1996. Combinatorial Mathematics. New York, NY: Wiley.
[99] Sassatelli, L., and Declercq, D.
2010. Nonbinary hybrid LDPC codes. IEEE Trans. Inf. Theory, 56(10), 5314–5334.
[100] Song, S., Zhou, B., Lin, S., and Abdel-Ghaffar, K.
2009. A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields. IEEE Trans. Commun., 57(1), 84–93.
[101] Tai, Y.Y., Lan, L., Zeng, L., Lin, S., and Abdel-Ghaffar, K.
2006. Algebraic construction of quasi-cyclic LDPC codes for the AWGN and erasure channels. IEEE Trans. Commun., 54(10), 1765–1774.
[102] Tang, H., Xu, J., Lin, S., and Abdel-Ghaffar, K.
2005. Codes on finite geometries. IEEE Trans. Inf. Theory, 51(2), 572–596.
[103] Tanner, R.M.
1981. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory, 27(5), 533–547.
[104] Tanner, R.M., Sridhara, D., Sridharan, A., Fuja, T.E., and Costello, D.J., Jr. 2004. LDPC block and convolutional codes based on circulant matrices. IEEE Trans. Inf. Theory, 50(12), 2966–2984.
[105] Thorpe, J.
2003. Low density parity check (LDPC) codes constructed from protographs. JPL INP Progress Report, August 15, 42–154.
[106] Townsend, R., and Weldon, E.
1967. Self-orthogonal quasi-cyclic codes. IEEE Trans. Inf. Theory, 13(2), 183–195.
[107] Vasic, B., and Milenkovic, O.
2004. Combinatorial constructions of low-density parity-check codes for iterative decoding. IEEE Trans. Inf. Theory, 50(6), 1156–1176.
[108] Vellambi, H., and Fekri, F.
2007. Results on the improved decoding algorithm for low-density parity-check codes over the binary erasure channel. IEEE Trans. Inf. Theory, 53(4), 1510–1520.
[109] Xu, J., and Lin, S.
2003 (Jun.). A combinatoric superposition method for constructing low density parity check codes. Page 30 of: Proc. IEEE Int. Symp. Inf. Theory. Pacifico Yokohama, Yokohama, Japan, June 29–July 4, 2003.
[110] Xu, J., Lin, S., and Blake, I.F.
2003 (Mar.). On products of graphs for LDPC codes. Pages 6–9 of: Proc. IEEE Inf. Theory Workshop. La Sorbonne, Paris, France, March 31–April 4, 2003.
[111] Xu, J., Chen, L., Zeng, L., Lan, L., and Lin, S.
2005. Construction of low-density parity-check codes by superposition. IEEE Trans. Commun., 53(Feb.), 243–251.
[112] Xu, J., Chen, L., Djurdjevic, I., Lin, S., and Abdel-Ghaffar, K.
2007. Construction of regular and irregular LDPC codes: Geometry decomposition and masking. IEEE Trans. Inf. Theory, 53(1), 121–134.
[113] Zhang, L., Huang, Q., Lin, S., Abdel-Ghaffar, K., and Blake, I.F.
2010. Quasi-cyclic LDPC Codes: An algebraic construction, rank analysis, and codes on Latin squares. IEEE Trans. Commun., 58(11), 3126–3139.
[114] Zhang, L., Lin, S., Abdel-Ghaffar, K., Ding, Z., and Zhou, B.
2011. Quasi-cyclic LDPC codes on cyclic subgroups of finite fields. IEEE Trans. Commun., 59(9), 2330–2336.
[115] Zhang, Z., Dolecek, L., Nikolic, B., Anantharam, V., and Wainwright, M.J.
2008 (November 30–December 4). Lowering LDPC error floors by postprocessing. Pages 1–6 of: Proc. IEEE Glob. Commun. Conf.
New Orleans, LO, USA, November 30–December 4, 2008.
[116] Zhou, B., Kang, J., Tai, Y.Y., Lin, S., and Ding, Z.
2009. High performance non-binary quasi-cyclic LDPC codes on Euclidean geometries. IEEE Trans. Commun., 57(5), 1298–1311.