Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 A simple model of fluid mechanics
- 2 Two routes to hydrodynamics
- 3 Inviscid two-dimensional lattice-gas hydrodynamics
- 4 Viscous two-dimensional hydrodynamics
- 5 Some simple three-dimensional models
- 6 The lattice-Boltzmann method
- 7 Using the Boltzmann method
- 8 Miscible fluids
- 9 Immiscible lattice gases
- 10 Lattice-Boltzmann method for immiscible fluids
- 11 Immiscible lattice gases in three dimensions
- 12 Liquid-gas models
- 13 Flow through porous media
- 14 Equilibrium statistical mechanics
- 15 Hydrodynamics in the Boltzmann approximation
- 16 Phase separation
- 17 Interfaces
- 18 Complex fluids and patterns
- Appendix A Tensor symmetry
- Appendix B Polytopes and their symmetry group
- Appendix C Classical compressible flow modeling
- Appendix D Incompressible limit
- Appendix E Derivation of the Gibbs distribution
- Appendix F Hydrodynamic response to forces at fluid interfaces
- Appendix G Answers to exercises
- Author Index
- Subject Index
17 - Interfaces
Published online by Cambridge University Press: 23 September 2009
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 A simple model of fluid mechanics
- 2 Two routes to hydrodynamics
- 3 Inviscid two-dimensional lattice-gas hydrodynamics
- 4 Viscous two-dimensional hydrodynamics
- 5 Some simple three-dimensional models
- 6 The lattice-Boltzmann method
- 7 Using the Boltzmann method
- 8 Miscible fluids
- 9 Immiscible lattice gases
- 10 Lattice-Boltzmann method for immiscible fluids
- 11 Immiscible lattice gases in three dimensions
- 12 Liquid-gas models
- 13 Flow through porous media
- 14 Equilibrium statistical mechanics
- 15 Hydrodynamics in the Boltzmann approximation
- 16 Phase separation
- 17 Interfaces
- 18 Complex fluids and patterns
- Appendix A Tensor symmetry
- Appendix B Polytopes and their symmetry group
- Appendix C Classical compressible flow modeling
- Appendix D Incompressible limit
- Appendix E Derivation of the Gibbs distribution
- Appendix F Hydrodynamic response to forces at fluid interfaces
- Appendix G Answers to exercises
- Author Index
- Subject Index
Summary
Whereas phase separation is undoubtedly the most striking aspect of immiscible lattice-gas models, the interfaces that form due to phase separation are themselves an object of at least equal interest. In this chapter, we consider the interfaces formed by the 2D immiscible lattice-gas (ILG) model of Chapter 9.
We first discuss a theoretical calculation of the surface tension. Our calculation of surface tension not only provides a better understanding of ILG interfaces, but it also predicts the phase transition from the mixed to the unmixed phase described earlier in Chapter 16.
We then present a detailed view of interface fluctuations. In real fluids, interfaces fluctuate due to thermal noise. Lattice-gas interfaces, on the other hand, fluctuate due to the statistical noise in the Boolean dynamics. In both cases, the detailed motion of the interfaces results from a combination of surface tension, viscous hydrodynamics, and noisy excitation. We shall see that a study of interface fluctuations provides a delicate probe of the hydrodynamic and statistical properties of the ILG.
Surface tension: a Boltzmann approximation
The calculation of surface tension in ILG's offers neither the elegance nor the accuracy of the analogous calculation for lattice-Boltzmann models that we presented in Chapter 10. It does however yield several interesting results.
As in Section 10.2, we once again consider the surface tension of a flat interface. As we have already indicated in Exercise 11.3, there is no reason to expect that surface tension is isotropic in Boolean models.
- Type
- Chapter
- Information
- Lattice-Gas Cellular AutomataSimple Models of Complex Hydrodynamics, pp. 220 - 238Publisher: Cambridge University PressPrint publication year: 1997