Published online by Cambridge University Press: 13 October 2009
As LGAs are constructed as model systems where point particles undergo displacements in discrete time steps and where configurational transitions on the lattice nodes represent collisional processes, one can view the lattice gas as a discretized version of a hard sphere gas on a regular lattice where particles are subject to an exclusion principle instead of an excluded volume. The advantage with LGAs is that, starting from exact microdynamical equations, statistical mechanical computations can be conducted rather straightforwardly in a logical fashion with well controlled assumptions to bypass the many-body problem. This is well exemplified by the development in Chapter 4 leading to the lattice Boltzmann equation. For the moment we shall consider the lattice gas automaton as a bona fide statistical mechanical model with extremely simplified dynamics. Nevertheless we may argue that the lattice gas exhibits two important features:
(i) it possesses a large number of degrees of freedom;
(ii) its Boolean microscopic nature combined with stochastic microdynamics results in intrinsic fluctuations.
Because of these spontaneous fluctuations and of its large number of degrees of freedom, the lattice gas can be considered as a ‘reservoir of thermal excitations’ in much the same way as a real fluid. Now the question must be raised – as for the hard sphere model in usual statistical mechanics – as to the validity of the lattice gas automaton to represent actual fluids. In Chapters 5 and 8 we consider full hydrodynamics and macroscopic phenomena.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.