Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T01:32:15.414Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

References

Jianfeng Yao
Affiliation:
The University of Hong Kong
Shurong Zheng
Affiliation:
Northeast Normal University, China
Zhidong Bai
Affiliation:
Northeast Normal University, China
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, G. W., Guionnet, A., and Zeitouni, O. 2010. An introduction to random matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge: Cambridge University Press.Google Scholar
Anderson, T. W. 2003. An introduction to multivariate statistical analysis. 3rd edn. Hoboken, NJ: John Wiley.Google Scholar
Anderson, T. W., and Amemiya, Y. 1988. The asymptotic normal distribution of estimators in factor analysis under general conditions. Ann. Statist., 16(2), 759–771.CrossRefGoogle Scholar
Anderson, T. W., and Rubin, H. 1956. Statistical inference in factor analysis. Pages 111–150 of Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. 5. Berkeley: University of California Press.Google Scholar
Arnold, L. 1967. On the asymptotic distribution of the eigenvalues of random matrices. J. Math. Anal. Appl., 20, 262–268.CrossRefGoogle Scholar
Arnold, L. 1971. On Wigner's semicircle law for the eigenvalues of random matrices. Z. Wahrsch. Verw. Gebiete, 19, 191–198.CrossRefGoogle Scholar
Bai, Z. 1985. A note on limiting distribution of the eigenvalues of a class of random matrice. J. Math. Res. Exposition, 5(2), 113–118.Google Scholar
Bai, Z. 1999. Methodologies in spectral analysis of large dimensional random matrices: A review. Stat. Sin., 9, 611–677. With comments by G. J., Rodgers and Jack W., Silverstein; and a rejoinder by the author.Google Scholar
Bai, Z. 2005. High dimensional data analysis. Cosmos, 1(1), 17–27.CrossRefGoogle Scholar
Bai, Z., and Ding, X. 2012. Estimation of spiked eigenvalues in spiked models. Random Matrices Theory Appl., 1(2), 1150011.CrossRefGoogle Scholar
Bai, Z., and Saranadasa, H. 1996. Effect of high dimension: By an example of a two sample problem. Stat. Sin., 6(2), 311–329.Google Scholar
Bai, Z., and Silverstein, J. W. 1998. No eigenvalues outside the support of the limiting spectral distribution of large dimensional sample covariance matrices. Ann. Probab., 26, 316–345.Google Scholar
Bai, Z., and Silverstein, J. W. 1999. Exact separation of eigenvalues of large dimensional sample covariance matrices. Ann. Probab., 27(3), 1536–1555.Google Scholar
Bai, Z., and Silverstein, J. W. 2004. CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab., 32, 553–605.Google Scholar
Bai, Z., and Silverstein, J. W. 2010. Spectral Analysis of Large Dimensional Random Matrices. 2nd ed. New York: Springer.CrossRefGoogle Scholar
Bai, Z., and Yao, J. 2008. Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri Poincare Probab. Stat., 44(3), 447–474.Google Scholar
Bai, Z., and Yao, J. 2012. On sample eigenvalues in a generalized spiked population model. J. Multivariate Anal., 106, 167–177.CrossRefGoogle Scholar
Bai, Z., and Yin, Y. Q. 1988. A convergence to the semicircle law. Ann. Probab., 16(2), 863–875.CrossRefGoogle Scholar
Bai, Z., Yin, Y. Q., and Krishnaiah, P. R. 1986. On limiting spectral distribution of product of two random matrices when the underlying distribution is isotropic. J. Multvariate Anal., 19, 189–200.Google Scholar
Bai, Z., Yin, Y. Q., and Krishnaiah, P. R. 1987. On the limiting empirical distribution function of the eigenvalues of a multivariate F-matrix. Probab. Theory Appl., 32, 490–500.Google Scholar
Bai, Z., Miao, B. Q., and Pan, G. M. 2007. On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab., 35(4), 1532–1572.CrossRefGoogle Scholar
Bai, Z., Jiang, D., Yao, J., and Zheng, S. 2009a. Corrections to LRT on large-dimensional covariance matrix by RMT. Ann. Stat., 37(6B), 3822–3840.CrossRefGoogle Scholar
Bai, Z., Liu, H., and Wong, W. 2009b. Enhancement of the applicability of Markowitz's portfolio optimization by utilizing random matrix theory. Math. Finance, 19, 639–667.CrossRefGoogle Scholar
Bai, Z., Chen, J., and Yao, J. 2010. On estimation of the population spectral distribution from a high-dimensional sample covariance matrix. Aust.N. Z.J. Stat., 52(4), 423–437.CrossRefGoogle Scholar
Bai, Z., Li, H., and Wong, W. K. 2013a. The best estimation for high-dimensional Markowitz mean-variance optimization. Tech. rept. Northeast Normal University, Changchun.Google Scholar
Bai, Z., Jiang, D., Yao, J., and Zheng, S. 2013c. Testing linear hypotheses in high-dimensional regressions. Statistics, 47(6), 1207–1223.CrossRefGoogle Scholar
Baik, J., and Silverstein, J. W. 2006. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal., 97, 1382–1408.CrossRefGoogle Scholar
Baik, J., Ben Arous, G., and Pch, S. 2005. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab., 33(5), 1643–1697.CrossRefGoogle Scholar
Bartlett, M. S. 1934. The vector representation of a sample. Proc. Cambridge Philos. Soc., 30, 327–340.CrossRefGoogle Scholar
Bartlett, M. S. 1937. Properties of sufficiency arid statistical tests. Proc. R. Soc. London Ser. A, 160, 268282.CrossRefGoogle Scholar
Benaych-Georges, F., and Nadakuditi, R. R. 2011. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math., 227(1), 494–521.CrossRefGoogle Scholar
Benaych-Georges, F., Guionnet, A., and Maida, M. 2011. Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Electron. J. Probab., 16(60), 1621–1662.CrossRefGoogle Scholar
Benjamini, Y., and Hochberg, Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B, 57, 289–300.Google Scholar
Bickel, P., and Levina, E. 2004. Some theory for Fisher's linear discriminant function ‘naive Bayes’, and some alternatives when there are many more variables than observations. Bernoulli, 10(6), 989–1010.CrossRefGoogle Scholar
Billingsley, P. 1968. Convergence of probability measures. New York: John Wiley.Google Scholar
Birke, M., and Dette, H. 2005. A note on testing the covariance matrix for large dimension. Statistics and Probability Letters, 74, 281–289.CrossRefGoogle Scholar
Bouchaud, J. P., and Potters, M. 2011. The Oxford handbook of random matrix theory. Oxford: Oxford University Press.Google Scholar
Box, G. E. P. 1949. A general distribution theory for a class of likelihood criteria. Biometrika, 36, 317–346.CrossRefGoogle ScholarPubMed
Buja, A., Hastie, T., and Tibshirani, R. 1995. Penalized discriminant analysis. Ann. Statist., 23, 73–102.Google Scholar
Canner, N., Mankiw, N. G., and Weil, D.N. 1997. An asset allocation puzzle. Am.Econ. Rev., 87(1), 181–191.Google Scholar
Capitaine, M., Donati-Martin, C., and Féral, D. 2009. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. Ann. Probab., 37(1), 1–47.CrossRefGoogle Scholar
Chen, J., Delyon, B., and Yao, J. 2011. On a model selection problem from high-dimensional sample covariance matrices. J. Multivariate Anal., 102, 1388–1398.CrossRefGoogle Scholar
Chen, S. X., and Qin, Y.-L. 2010. A two-sample test for high-dimensional data with applications to gene-set testing. Ann. Stat., 38, 808–835.CrossRefGoogle Scholar
Chen, S. X., Zhang, L.-X., and Zhong, P.-S. 2010. Tests for high-dimensional covariance matrices. J. Am. Stat. Assoc., 105, 810–819.CrossRefGoogle Scholar
Cheng, Y. 2004. Asymptotic probabilities of misclassification of two discriminant functions in cases of high dimensional data. Stat. Probab. Lett., 67, 9–17.CrossRefGoogle Scholar
Delyon, B. 2010. Concentration inequalities for the spectral measure of random matrices. Electron. Commun. Probab., 15, 549–562.CrossRefGoogle Scholar
Dempster, A. P. 1958. A high dimensional two sample significance test. Ann. Math. Stat., 29, 995–1010.CrossRefGoogle Scholar
Dempster, A. P. 1960. A significance test for the separation of two highly multivariate small samples. Biometrics, 16, 41–50.CrossRefGoogle Scholar
El Karoui, N. 2008. Spectrum estimation for large dimensional covariance matrices using random matrix theory. Ann. Stat., 36(6), 2757–2790.Google Scholar
Fan, J., Feng, Y., and Tong, X. 2012. A road to classification in high dimensional space: The regularized optimal affine discriminant. J. R. Stat. Soc. Ser. B, 74(4), 745–771.CrossRefGoogle Scholar
Féral, D., and Péché, S. 2007. The largest eigenvalue of rank one deformation of large Wigner matrices. Comm. Math. Phys., 272(1), 185–228.CrossRefGoogle Scholar
Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7, 179–188.CrossRefGoogle Scholar
Frankfurter, G. M., Phillips, H. E., and Seagle, J. P. 1971. Portfolio selection: The effects of uncertain means, variances and covariances. J. Finan. Quant. Anal., 6, 1251–1262.CrossRefGoogle Scholar
Giroux, A. 2013. Analyse Complexe (cours et exercices corrigés). Tech. rept. Département de mathématiques et statistique, Université de Montréal, http://dms.umontreal.ca/~giroux/.Google Scholar
Gnedenko, B. V., and Kolmogorov, A. N. 1948. Limit distributions for sums of independent random variables. Cambridge, MA: Addison-Wesley. [translated from the Russian and annotated by K. L., Chung, with appendix by J. L., Doob (1954)].Google Scholar
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. 1999. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531–537.CrossRefGoogle ScholarPubMed
Grenander, U. 1963. Probabilities on Algebraic Structures. New York: John Wiley.Google Scholar
Grenander, U., and Silverstein, J. 1977. Spectral analysis of networks with random topologies. SIAMJ. Appl. Math., 32, 499–519.CrossRefGoogle Scholar
Guo, Y., Hastie, T., and Tibshirani, R. 2005. Regularized discriminant analysis and its application in microar-rays. Biostatistics, 1(1), 1–18. R package downloadable at http://cran.r-project.org/web/packages/ascrda/.Google Scholar
Hastie, T., Tibshirani, R., and Friedman, J. 2009. The elements of statistical learning. 2nd ed. New York: Springer.CrossRefGoogle Scholar
Hotelling, H. 1931. The generalization of Student's ratio. Ann. Math. Stat., 2, 360–378.CrossRefGoogle Scholar
Huber, P. J. 1973. The 1972 Wald Memorial Lecture. Robust regression: asymptotics, conjectures and Monte Carlo. Ann. Stat., 35, 73–101.Google Scholar
Jiang, D., Bai, Z., and Zheng, S. 2013. Testing the independence of sets of large-dimensional variables. Sci. China Math., 56(1), 135–147.CrossRefGoogle Scholar
Jing, B. Y., Pan, G. M., Shao, Q.-M., and Zhou, W., 2010. Nonparametric estimate of spectral density functions of sample covariance matrices: A first step. Ann. Stat., 38, 3724–3750.CrossRefGoogle Scholar
John, S. 1971. Some optimal multivariate tests. Biometrika, 58, 123–127.Google Scholar
John, S. 1972. The distribution of a statistic used for testing sphericity of normal distributions. Biometrika, 59, 169–173.CrossRefGoogle Scholar
Johnstone, I. 2001. On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat., 29(2), 295–327.Google Scholar
Johnstone, I. 2007. High dimensional statistical inference and random matrices. Pages 307–333 of International Congress of Mathematicians, Vol. I. Zürich: Eur. Math. Soc.Google Scholar
Johnstone, I., and Titterington, D. 2009. Statistical challenges of high-dimensional data. Philos. Trans. R. Soc. London, Ser. A, 367(1906), 4237–4253.CrossRefGoogle ScholarPubMed
Jonsson, D. 1982. Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal., 12(1), 1–38.CrossRefGoogle Scholar
Kreĭn, M. G., and Nudel′man, A. A. 1977. The Markov Moment Problem and Extremal Problems. Providence, RI: American Mathematical Society. [Ideas and problems of P. L., Čebyšev and A. A., Markov and their further development, translated from the Russian by D., Louvish, Translations of Mathematical Monographs, Vol. 50.]CrossRefGoogle Scholar
Kritchman, S., and Nadler, B. 2008. Determining the number of components in a factor model from limited noisy data. Chem. Int. Lab. Syst., 94, 19–32.CrossRefGoogle Scholar
Kritchman, S., and Nadler, B. 2009. Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory. IEEE Trans. Signal Process., 57(10), 3930–3941.CrossRefGoogle Scholar
Laloux, L., Cizeau, P. P., Bouchaud, J., and Potters, M. 1999. Noise dressing of financial correlation matrices. Phys. Rev. Lett., 83, 1467–1470.CrossRefGoogle Scholar
Ledoit, O., and Wolf, M. 2002. Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Stat., 30, 1081–1102.Google Scholar
Li, J., and Chen, S. X. 2012. Two sample tests for high dimensional covariance matrices. Ann. Stat., 40, 908–940.CrossRefGoogle Scholar
Li, W. M., and Yao, J. 2012. A local moments estimation of the spectrum of a large dimensional covariance matrix. Tech. rept. arXiv:1302.0356.
Li, W., Chen, J., Qin, Y., Bai, Z., and Yao, J. 2013. Estimation of the population spectral distribution from a large dimensional sample covariance matrix. J. Stat. Plann. Inference, 143 (11), 1887–1897.CrossRefGoogle Scholar
Li, Z., and Yao, J. 2014. On two simple but effective procedures for high dimensional classification of general populations. Tech. rept. arXiv:1501.01763.
Lytova, A., and Pastur, L. 2009. Central limit theorem for linear eigenvalue statistics of the Wigner and the sample covariance random matrices. Ann. Probab., 37, 1778–1840.CrossRefGoogle Scholar
Marčenko, V. A., and Pastur, L. A. 1967. Distribution of eigenvalues for some sets of random matrices. Math. USSR-Sb, 1, 457–483.CrossRefGoogle Scholar
Markowitz, H. M. 1952. Portfolio selection. J. Finance, 7, 77–91.Google Scholar
Mehta, M. L. 2004. Random matrices. 3rd ed. New York: Academic Press.
Mestre, X. 2008. Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. IEEE Trans. Inform. Theory, 54, 5113–5129.CrossRefGoogle Scholar
Michaud, R. O. 1989. The Markowitz optimization enigma: Is “optimized” optimal?Financial Anal., 45, 31-42.Google Scholar
Nadler, B. 2010. Nonparametric detection of signals by information theoretic criteria: Performance analysis and an improved estimator. IEEE Trans. Signal Process., 58 (5), 2746–2756.CrossRefGoogle Scholar
Nagao, H. 1973a. Asymptotic expansions of the distributions of Bartlett's test and sphericity test under the local alternatives. Ann. Inst. Stat. Math., 25, 407–422.CrossRefGoogle Scholar
Nagao, H. 1973b. On some test criteria for covariance matrix. Ann. Stat., 1, 700–709.CrossRefGoogle Scholar
Nica, A., and Speicher, R. 2006. Lectures on the combinatorics offree probability. New York: Cambridge University Press.CrossRefGoogle Scholar
Pafka, S., and Kondor, I. 2004. Estimated correlation matrices and portfolio optimization. Phys. A, 343, 623-634.CrossRefGoogle Scholar
Pan, G. M. 2014. Comparison between two types of large sample covariance matrices. Ann. Inst. Henri Poincaré-Probab. Statist., 50, 655–677.CrossRefGoogle Scholar
Pan, G. M., and Zhou, W. 2008. Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab., 18, 1232–1270.CrossRefGoogle Scholar
Passemier, D., and Yao, J. 2012. On determining the number of spikes in a high-dimensional spiked population model. Random Matrix: Theory and Applciations, 1, 1150002.Google Scholar
Passemier, D., and Yao, J. 2013. Variance estimation and goodness-of-fit test in a high-dimensional strict factor model. Tech. rept. arXiv:1308.3890.
Passemier, D., and Yao, J. 2014. On the detection of the number of spikes, possibly equal, in the high-dimensional case. J. Multivariate Anal., 127, 173–183.CrossRefGoogle Scholar
Pastur, L. A. 1972. On the spectrum of random matrices. Theoret. Math. Phys., 10, 67–74.CrossRefGoogle Scholar
Pastur, L. A. 1973. Spectra of random self-adjoint operators. Russian Math. Surv., 28, 1–67.CrossRefGoogle Scholar
Pastur, L., and Shcherbina, M. 2011. Eigenvalue distribution of large random matrices. Mathematical Surveys and Monographs, vol. 171. Providence, RI: American Mathematical Society.Google Scholar
Paul, D. 2007. Asymptotics of sample eigenstruture for a large dimensional spiked covariance mode. Stat. Sin., 17, 1617–1642.Google Scholar
Paul, D., and Aue, A. 2014. Random matrix theory in statistics: A review. J. Stat. Plann. Inference, 150, 1-29.CrossRefGoogle Scholar
Péché, S. 2006. The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields, 134 (1), 127–173.CrossRefGoogle Scholar
Petrov, V. V. 1975. Sums ofindependent random variables. New York: Springer.
Pizzo, A., Renfrew, D., and Soshnikov, A. 2013. On finite rank deformations of Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat., 49 (1), 64–94.CrossRefGoogle Scholar
Raj Rao, N. 2006. RMTool-A random matrix calculator in MATLAB. http://www.eecs.umich.edu/ ajnrao/rmtool/.
Rao, N. R., Mingo, J. A., Speicher, R., and Edelman, A. 2008. Statistical eigen-inference from large Wishart matrices. Ann. Statist., 36 (6), 2850–2885.CrossRefGoogle Scholar
Renfrew, D., and Soshnikov, A. 2013. On finite rank deformations of Wigner matrices II: Delocalized perturbations. Random Matrices Theory Appl., 2(1), 1250015.CrossRefGoogle Scholar
Saranadasa, H. 1993. Asymptotic expansion of the misclassification probabilities of D-and A-criteria for discrimination from two high dimensional populations using the theory of large dimensional random matrices. J. Multivariate Anal., 46, 154–174.CrossRefGoogle Scholar
Sheather, S. J., and Jones, M. C. 1991. A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. Ser. B, 53, 683–690.Google Scholar
Silverstein, J. W. 1985. The limiting eigenvalue distribution of a multivariate F matrix. SIAM J. Math. Anal., 16(3), 641–646.CrossRefGoogle Scholar
Silverstein, J. W., and Choi, S.-I. 1995. Analysis of the limiting spectral distribution of large-dimensional random matrices. J. Multivariate Anal., 54(2), 295–309.Google Scholar
Silverstein, J. W., and Combettes, P. L. 1992. Signal detection via spectral theory of large dimensional random matrices. IEEE Trans. Signal Process., 40, 2100–2104.CrossRefGoogle Scholar
Srivastava, M. S. 2005. Some tests concerning the covariance matrix in high dimensional data. J. Jpn. Stat. Soc., 35(2), 251–272.CrossRefGoogle Scholar
Srivastava, M. S., Kollo, T., and von Rosen, D. 2011. Some tests for the covariance matrix with fewer observations than the dimension under non-normality. J. Multivariate. Anal., 102, 1090–1103.CrossRefGoogle Scholar
Sugiura, N., and Nagao, H. 1968. Unbiasedness of some test criteria for the equality of one or two covariance matrices. Ann. Math. Stat., 39, 1686–1692.CrossRefGoogle Scholar
Szegö, G. 1959. Orthogonal polynomials. New York: American Mathematical Society.Google Scholar
Tao, T. 2012. Topics in random matrix theory. Graduate Studies in Mathematics, vol. 132. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Ulfarsson, M. O., and Solo, V. 2008. Dimension estimation in noisy PCA with SURE and random matrix theory. IEEE Trans. Signal Process., 56(12), 5804–5816.CrossRefGoogle Scholar
Wachter, K. W. 1978. The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Probab., 6(1), 1–18.CrossRefGoogle Scholar
Wachter, K. W. 1980. The limiting empirical measure of multiple discriminant ratios. Ann. Stat., 8, 937–957.CrossRefGoogle Scholar
Wang, Q., and Yao, J. 2013. On the sphericity test with large-dimensional observations. Electr. J. Stat., 7, 2164–2192.Google Scholar
Wax, M., and Kailath, T. 1985. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process., 33(2), 387–392.CrossRefGoogle Scholar
Wigner, E. P. 1955. Characteristic vectors bordered matrices with infinite dimensions. Ann. Math., 62, 548–564.CrossRefGoogle Scholar
Wigner, E. P. 1958. On the distributions of the roots of certain symmetric matrices. Ann. Math., 67, 325–327.CrossRefGoogle Scholar
Wilks, S. S. 1932. Certain generalizations in the analysis of variance. Biometrika, 24, 471–494.CrossRefGoogle Scholar
Wilks, S. S. 1934. Moment-generating operators for determinants of product moments in samples from a normal system. Ann. Math., 35, 312–340.CrossRefGoogle Scholar
Yin, Y. Q. 1986. Limiting spectral distribution for a class of random matrices. J. Multivariate Anal., 20(1), 50–68.CrossRefGoogle Scholar
Yin, Y. Q., and Krishnaiah, P. R. 1983. A limit theorem for the eigenvalues of product of two random matrices. J. Multivariate Anal., 13, 489–507.CrossRefGoogle Scholar
Zheng, S. 2012. Central limit theorem for linear spectral statistics of large dimensional F matrix. Ann. Inst. Henri Poincaré Probab. Statist., 48, 444–476.CrossRefGoogle Scholar
Zheng, S., Bai, Z., and Yao, J. 2015. Substitution principle for CLT of linear spectral statistics of high- dimensional sample covariance matrices with applications to hypothesis testing. The Annals ofStatistics (accepted).CrossRefGoogle Scholar
Zheng, S., Jiang, D., Bai, Z., and He, X. 2014. Inference on multiple correlation coefficients with moderately high dimensional data. Biometrika, 101(3), 748–754.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jianfeng Yao, The University of Hong Kong, Shurong Zheng, Zhidong Bai
  • Book: Large Sample Covariance Matrices and High-Dimensional Data Analysis
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107588080.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jianfeng Yao, The University of Hong Kong, Shurong Zheng, Zhidong Bai
  • Book: Large Sample Covariance Matrices and High-Dimensional Data Analysis
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107588080.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jianfeng Yao, The University of Hong Kong, Shurong Zheng, Zhidong Bai
  • Book: Large Sample Covariance Matrices and High-Dimensional Data Analysis
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107588080.016
Available formats
×