Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Introduction
- SECTION I GRAFTINGS
- SECTION II SPECIFIC CHEMICAL REAGENTS
- SECTION III BEAD IMPLANTATION
- 7 Experimental manipulations during limb development in avian embryos
- 8 Induction of ectopic limb outgrowth in chick with FGF-8
- SECTION IV NUCLEIC ACID INJECTIONS
- SECTION V GENETIC ANALYSIS
- SECTION VI CLONAL ANALYSIS
- SECTION VII IN SITU HYBRIDIZATION
- SECTION VIII TRANSGENIC ORGANISMS
- SECTION IX VERTEBRATE CLONING
- SECTION X CELL CULTURE
- SECTION XI EVO–DEVO STUDIES
- SECTION XII COMPUTATIONAL MODELLING
- Appendix 1 Abbreviations
- Appendix 2 Suppliers
- Index
- Plate Section
- References
8 - Induction of ectopic limb outgrowth in chick with FGF-8
Published online by Cambridge University Press: 11 August 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Introduction
- SECTION I GRAFTINGS
- SECTION II SPECIFIC CHEMICAL REAGENTS
- SECTION III BEAD IMPLANTATION
- 7 Experimental manipulations during limb development in avian embryos
- 8 Induction of ectopic limb outgrowth in chick with FGF-8
- SECTION IV NUCLEIC ACID INJECTIONS
- SECTION V GENETIC ANALYSIS
- SECTION VI CLONAL ANALYSIS
- SECTION VII IN SITU HYBRIDIZATION
- SECTION VIII TRANSGENIC ORGANISMS
- SECTION IX VERTEBRATE CLONING
- SECTION X CELL CULTURE
- SECTION XI EVO–DEVO STUDIES
- SECTION XII COMPUTATIONAL MODELLING
- Appendix 1 Abbreviations
- Appendix 2 Suppliers
- Index
- Plate Section
- References
Summary
OBJECTIVE OF THE EXPERIMENT The chick embryo is extremely amenable to surgical manipulations such as bead implantation. Local delivery of signaling molecules is easily achieved in this experimental model and provides invaluable information as to their effect on a variety of developmental processes. Specifically, our knowledge about limb initiation was significantly increased when members of the Fibroblast Growth Factor (FGF) family were shown to induce ectopic limb formation (Cohn et al., 1995). In this experiment, recombinant FGF-8 is produced, purified, and applied to the flank of chick embryos, where it induces the formation of a fairly normal extra limb.
INTRODUCTION
The analysis of limb outgrowth and patterning during chick embryo development has become an excellent model for understanding the molecular mechanisms underlying general developmental processes. The choice of the chick as an experimental model system has greatly enhanced embryo manipulation and survival in the laboratory.
In most vertebrates, limb appendages originate in the flank of the early embryo where cells group in the so-called limb buds. The first step in limb development, known as limb initiation, comprises the induction of limb budding in specific locations of the embryo's flank. At this stage, most of the flank's extension is competent to give rise to limb buds (Figure 8.1). However, budding will occur only in distinct regions of the embryo's flank (four regions in tetrapods, two on each flank). The limb bud is formed by a mesodermal or mesenchymal core, covered by an ectodermal jacket (Figure 8.2).
- Type
- Chapter
- Information
- Key Experiments in Practical Developmental Biology , pp. 99 - 105Publisher: Cambridge University PressPrint publication year: 2005