Published online by Cambridge University Press: 11 August 2009
OBJECTIVE OF THE EXPERIMENT Lewis Wolpert originally proposed that a gradient of a diffusible molecule could control pattern formation depending on its concentration (Wolpert, 1969). Hedgehog (Hh) is one such widely accepted morphogenetic signal. In this exercise, we will study the function of the Hh transduction pathway in the control of pattern formation during the development of tergites (the dorsal cuticle of each abdominal segment) of Drosophila melanogaster.
DEGREE OF DIFFICULTY Moderate. The experiments described are relatively easy, inexpensive and can be carried out quickly.
INTRODUCTION
Pattern formation is one of the fundamental topics in Developmental Biology. Lewis Wolpert proposed a theoretical explanation of this process in his positional information model (Wolpert, 1969). Although a previous related model was also published (von Ubisch, 1953), the positional information model has been widely applied to a variety of developing systems. On the basis of previous results from hydra (Chapter 1) and insect segments (Locke, 1959; Lawrence, 1966; Stumpf, 1966; 1968), Wolpert (1969) suggested the existence of a gradient of a diffusible substance. This diffusible substance would be differentially interpreted into positional values. Depending on its position and how each cell interpreted the concentration of the substance, a variety of cell types could then differentiate. In order to explain his model better, Wolpert (1969) proposed the French flag model (Figure 16.1). The different colours in a cellular flag would appear as the differential expression of genes induced by the concentration of a diffusible molecule, or morphogen, distributed in a gradient away from a source or organiser (Figure 16.1).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.